DUAL SITESWAPS (v0.2)

Dual concerns Vanilla and Multiplex Siteswaps.

Dual of a Scramblable Siteswap

The Demonstration is straight:

- 1. Let's **S** a Vanilla Scramblable Siteswap of period p in the form $a_0...a_i...a_{p-1}$. It then means that any rearrangement in the Siteswap gives a valid Siteswap **S**_i
- 2. If we get the Dual with a maximum throw of height H, of every S_i , we get a valid Siteswap. It then implies that any arrangement of H-a₀,..., H-a_{p-1} gives a valid Siteswap.
- ⇒ The Dual of a Vanilla Scramblable Siteswap is a Scramblable Siteswap.
- ⇒ We may use a very similar demonstration to show that The Dual of a Multiplex Scramblable Siteswap is a Multiplex Scramblable Siteswap.

Dual of a Magic Siteswap

- Strict Increasing Vanilla Magic Siteswap of Odd/Even parity
 - Let's **S** a strict increasing Magic Siteswap of Odd/Even Parity of period p.
 - S is thus in the form a₀ a₀+2 ... a₀+2i ... a₀+2(p-1) with :
 - \circ a₀ odd if Parity is Odd
 - \circ a₀ even if Parity is Even
 - The corresponding Dual with a maximum throw of height H is then:
 - H-a₀-2(p-1) ... H-a₀-2i ... H-a₀
 - This is a strict Increasing Magic Siteswap of period p and it's :
 - $\circ \quad \text{Odd if } H\text{-}a_0 \text{ is Odd}$
 - $\circ \quad \text{Even if } H\text{-}a_0 \text{ is Even}$
 - ⇒ The Dual of a Strict Increasing Vanilla Magic Siteswap of Odd/Even parity is a Strict Increasing Magic Siteswap :
 - \circ of Parity Odd if one of H or the originel Siteswap are Odd and the other is Even.
 - o of Parity Even if both H and the original Siteswap are Even or Odd

If H-a₀ == 2(p-1) (Even) or H-a₀ == 2p-1 (Odd), the Dual Magic Siteswap is complete. It contains all possible values.

- Strict decreasing Vanilla Magic Siteswap of Odd/Even parity
 - The demonstration is identical to the previous one. S is here in the form a₀ a₀-2 ... a₀-2i ... a₀-2(p-1) with :
 - \circ a₀ odd if Parity is Odd
 - \circ a₀ even if Parity is Even

- The corresponding Dual with a maximum throw of height H is then:
 - $H-a_0+2(p-1) \dots H-a_0+2i \dots H-a_0$
 - This is a strict Decreasing Magic Siteswap of period p and it's :
 - \circ Odd if H-a₀ is Odd
 - \circ Even if H-a₀ is Even
- ⇒ The Dual of a Strict Decreasing Vanilla Magic Siteswap of Odd/Even parity is a Strict Decreasing Magic Siteswap :
 - $\circ~$ of Parity Odd if one of H or the originel Siteswap are Odd and the other is Even.
 - $\circ~$ of Parity Even if both H and the original Siteswap are Even or Odd.

If $H-a_0 == 0$ (Even) or $H-a_0 == 1$ (Odd), the Dual Magic Siteswap is complete. It contains all possible values.

<u>Strict Increasing Vanilla Magic Siteswap without parity</u>

- Let's **S** a strict increasing Magic Siteswap without Parity of period p.
- S is thus in the form $a_0 a_0+1 \dots a_0+i \dots a_0+(p-1)$
- The corresponding Dual with a maximum throw of height H is then: H-a₀-(p-1) ... H-a₀-i ... H-a₀
 This is a strict Increasing Magic Siteswap of period p
- ⇒ The Dual of a Strict Increasing Vanilla Magic Siteswap without parity is a Strict Increasing Magic Siteswap.

If H-a₀ == p-1 (Even) or If H-a₀ == p (Odd), the Dual Magic Siteswap is complete. It contains all possible values.

Strict Decreasing Vanilla Magic Siteswap without parity

- The demonstration is identical to the previous one. It gives:
- S is here in the form a₀ a₀-1 ... a₀-i ... a₀-(p-1)
- The corresponding Dual with a maximum throw of height H is then: H-a₀+(p-1) ... H-a₀+i ... H-a₀
 - This is a strict Decreasing Magic Siteswap of period p
- ⇒ The Dual of a Strict Decreasing Vanilla Magic Siteswap without parity is a Strict Decreasing Magic Siteswap.

```
If H-a_0 == 0 (Even) or If H-a_0 == 1 (Odd), the Dual Magic Siteswap is complete. It contains all possible values.
```

- Vanilla Magic Siteswap without parity with split Odd/Even Throws in Strict Increasing/Decreasing Order
 - We then have here a split between m Odd and n Even Throws (m+n=p). We just have to apply both previous results on each part to see that the Dual is also a Magic Siteswap in the same Ordering.

- This is easy to find an example that shows that the Dual of a Multiplex Magic Siteswap is not necessarly a Magical Siteswap :
 - 1[23]0 is a Multiplex Magic Siteswap.
 - Its Dual of maximum height 4 is [44][(4-3)(4-2)][(4-1)4] = [44][12][34] that is not a Magical Siteswap.

Dual of a Reversible Siteswap

The Demonstration is straight:

- Let's **S** a Reversible Vanilla Siteswap of period p in the form $a_0...a_i...a_{p-1}$. It then means that $S'=a_{p-1}...a_i...a_0$ is also a valid Siteswap.
- If we get the Dual with a maximum throw of height H, of S we get a valid Siteswap in the form
 S_{dual} = H-a_{p-1}...H-a_i...H-a₀
- If we get the Dual with a maximum throw of height H, of S' we also get a valid Siteswap in the form S'_{dual} = H-a₀...H-a_i...H-a_{p-1}
- Since S'_{dual} is the Reversed of S_{dual} :
- \Rightarrow The Dual of a Vanilla Reversible Siteswap is a Vanilla Reversible Siteswap
- ⇒ We may use a very similar demonstration to show that The Dual of a Multiplex Reversible Siteswap is a Multiplex Reversible Siteswap.

Dual of a Palindrome Siteswap

- A Palindrome is a particular Reversible Siteswap.
- Let's S a Vanilla Palindrome Siteswap of period p in the form a₀a₁ ...a_i...a₁a₀.
 The Dual with a maximum throw of height H is then S'=H-a₀ H-a₁...H-a_i ... H-a₁ H-a₀ that is also valid and a Palindrome.
- ⇒ The Dual of a Vanilla Palindrome Siteswap is a Vanilla Palindrome Siteswap.
- ⇒ We may use a very similar demonstration to show that The Dual of a Multiplex Palindrome Siteswap is a Multiplex Palindrome Siteswap.

Frederic Roudaut (2020)