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Introduction

The publication of Claude Shannon’s collected papers is long overdue. A substantial
collection of his papers was published in Russian in 1963 (see item [121] of his Bibliography),
but no English edition has ever appeared. The editors were therefore commissioned by the
Information Theory Society of the Institute of Electrical and Electronics Engineers to collect
and publish his papers.

Since much of Shannon’s work was never published, our first task was to assemble a
complete bibliography. We did this by consulting Claude and Betty Shannon, who have been
extremely helpful throughout this project and supplied us with copies of a number of
unpublished items; many of Claude’s friends and colleagues; the Bell Laboratories Archives;
the National Archives in Washington; the National Security Agency; the patent records;
Mathematical Reviews; and other sources. We believe the resulting bibliography of 127 items
is reasonably complete.

The second step was to decide what to include. Qur policy has been to include everything
of importance. We have included all the published papers, and all the unpublished material that
seemed of lasting value. Some war-time reports of very limited interest have been excluded, as
well as the M.1.T. seminar notes. If an excluded paper has an abstract, we have printed it. We
have made several sets of copies of the excluded material, and plan to deposit copies in the
AT&T Bell Laboratories library at Murray Hill, New Jersey, the M.L.T. library, and the Library
of Congress and the British Library.

The papers fall naturally into three groups: (A) communication theory, information theory
and cryptography; (B) computers, circuits and games; (C) the hitherto unpublished doctoral
dissertation on population genetics. Inside each group the papers are, with some exceptions,
arranged in chronological order. Minor items (abstracts, book reviews, and so on) have been
placed at the end of each section.

Most of the published works have been photographically reproduced from the originals,
while the others have been typeset by computer at AT&T Bell Labs.

The ‘*Notes’’ following each section give references to more recent work.

We should like to thank R. B. Blackman, P. Elias, E. N. Gilbert, R. Gnanadesikan,
R. L. Graham, D. W. Hagelbarger, T. T. Kadota, H. O. Pollak, D. Slepian, E. Wolman and
R. Wright for supplying us with copies of Shannon’s papers. R. A. Matula, of the AT&T Bell
Laboratories library staff, has been extremely helpful to us throughout this project. J. P.
Buhler, J. H. Conway, J. F. Crow, R. L. Graham, D. S. Johnson, T. Nagylaki and K. Thompson
kindly provided comments on some of the papers. We are very grateful to Susan Marko
(sometimes assisted by Sue Pope), who expertly retyped many of Shannon’s papers for us.

ix



Biography of Claude Elwood Shannon

Claude Elwood Shannon was born in Petoskey, Michigan, on Sunday, April 30, 1916. His
father, Claude Sr. (1862-1934), a descendant of early New Jersey settlers, was a businessman
and, for a period, Judge of Probate. His mother, Mabel Wolf Shannon (1880-1945), daughter
of German immigrants, was a language teacher and for a number of years Principal of Gaylord
High School, in Gaylord, Michigan.

The first sixteen years of Shannon’s life were spent in Gaylord, where he attended the
Public School, graduating from Gaylord High School in 1932. As a boy, Shannon showed an
inclination toward things mechanical. His best subjects in school were science and
mathematics, and at home he constructed such devices as model planes, a radio-controlled
model boat and a telegraph system to a friend’s house half a mile away. The telegraph made
opportunistic use of two barbed wires around a nearby pasture. He earned spending money
from a paper route and delivering telegrams, as well as repairing radios for a local department
store. His childhood hero was Edison, who he later learned was a distant cousin. Both were
descendants of John Ogden, an important colonial leader and the ancestor of many
distinguished people. Shannon’s recent hero list, without deleting Edison, includes more
academic types such as Newton, Darwin, Einstein and Von Neumann.

In 1932 he entered the University of Michigan, following his sister Catherine, who had just
received a master’s degree in mathematics there. While a senior, he was elected a member of
Phi Kappa Phi and an associate member of Sigma Xi. In 1936 he obtained the degrees of
Bachelor of Science in Electrical Engineering and Bachelor of Science in Mathematics. This
dual interest in mathematics and engineering continued throughout his career.

In 1936 he accepted the position of research assistant in the Department of Electrical
Engineering at the Massachusetts Institute of Technology. The position allowed him to
continue studying toward advanced degrees while working part-time for the department. The
work in question was ideally suited to his interests and talents. It involved the operation of the
Bush differential analyzer, the most advanced calculating machine of that era, which solved by
analog means differential equations of up to the sixth degree. The work required translating
differential equations into mechanical terms, setting up the machine and running through the
needed solutions for various initial values. In some cases as many as four assistants would be
needed to crank in functions by following curves during the process of solution.

Also of interest was a complex relay circuit associated with the differential analyzer that
controlled its operation and involved over one hundred relays. In studying and servicing this
circuit, Shannon became interested in the theory and design of relay and switching circuits. He
had studied symbolic logic and Boolean algebra at Michigan in mathematics courses, and
realized that this was the appropriate mathematics for studying such two-valued systems. He
developed these ideas during the summer of 1937, which he spent at Bell Telephone
Laboratories in New York City, and, back at M.LT., in his master’s thesis, where he showed
how Boolean algebra could be used in the analysis and synthesis of switching and computer
circuits. The thesis, his first published paper, aroused considerable interest when it appeared in
1938 in the A.L.LE.E. Transactions {1].” In 1940 it was awarded the Alfred Noble Prize of the

The numbers in square brackets refer to items in Shannon's bibliography.
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xii C. E. Shannon

combined engineering societies of the United States, an award given each year to a person not
over thirty for a paper published in one of the journals of the participating societies. A quarter
of a century later H. H. Goldstine, in his book The Computer from Pascal to Von Neumann,
called this work ‘‘one of the most important master’s theses ever written...a landmark in that it
helped to change digital circuit design from an art to a science.’’

During the summer of 1938 he did research work at M.L.T. on the design of the Bush Rapid
Selector, and was mainly involved with the vacuum tube circuits employed in this device. In
September of 1938, at the suggestion of Vannevar Bush, Shannon changed from the Electrical
Engineering Department to the Mathematics Department. He was awarded the Bolles
Fellowship and was also a teaching assistant while working toward a doctorate in mathematics.
Bush had just been made President of the Carnegie Institution in Washington, one of whose
branches, in Cold Spring Harbor, N.Y., dealt with the science of genetics. He suggested to
Shannon that algebra might be as useful in organizing genetic knowledge as it was in
switching, and Shannon decided to look into this matter with a view toward using it for a
doctoral thesis in mathematics. He spent the summer of 1939 at Cold Spring Harbor working
under geneticist Dr. Barbara Burks exploring the possibility, and found it a suitable subject for
a dissertation under the title *‘An Algebra for Theoretical Genetics’’ [3]. His Ph.D. supervisor
at M.L.T. was Professor Frank L. Hitchcock, an algebraist. In the Spring of 1939 he was elected
to full membership in Sigma Xi.

At about this time Shannon was also developing ideas both in computers and
communications systems. In a letter of February 16, 1939 now in the Library of Congress
archives ([2], included in Part A), he writes to Bush about trading relations between time,
bandwidth, noise and distortion in communication systems, and also about a computer design
for symbolic mathematical operations.

As the Spring of 1940 approached, Shannon had passed all requirements for both a master’s
in electrical engineering and a doctorate in mathematics — except for satisfying the language
requirements, always his weakest subjects. Facing reality, he buckled down in the last few
months, hired a French and German tutor and repeatedly worked his way through stacks of
flash cards. He finally passed the language exams (it took two tries with German) and in the
Spring of 1940 received the S.M. degree in Electrical Engineering and the degree of Doctor of
Philosophy in Mathematics at the same commencement. His Ph.D. dissertation, (3}, is
published here for the first time (in Part D).

The Summer of 1940 was spent at Bell Telephone Laboratories doing further research on
switching circuits. A new method of design was developed which greatly reduced the number
of contacts needed to synthesize complex switching functions from earlier realizations. This
was later published in a paper, *‘The Synthesis of Two-Terminal Switching Circuits’’ [50].

The academic year 1940-1941 was spent on a National Research Fellowship at the Institute
for Advanced Study in Princeton working under Hermann Weyl. It was during this period that
Shannon began to work seriously on his ideas relating to information theory and efficient
communication systems.

Thornton C. Fry, head of the mathematics department at Bell Labs, was in charge of a
committee on fire control systems for anti-aircraft use — the country was arming up at the time
because of the spreading European war threats — and asked Shannon to join in this effort.
Returning to Bell Labs, Shannon joined a team working on anti-aircraft directors — devices to
observe enemy planes or missiles and calculate the aiming of counter missiles. This problem
became crucial with the development of the German V1 and V2 rockets. Without the American
anti-aircraft directors, the ravaging of England, bad as it was, would have been vastly worse.
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Shannon spent fifteen years at Bell Laboratories in a very fruitful association. Many first-
rate mathematicians and scientists were at the Labs ~ men such as John Pierce, known for
satellite communication; Harry Nyquist, with numerous contributions to signal theory; Hendrik
Bode of feedback fame; transistor inventors Brattain, Bardeen and Shockley; George Stibitz,
who built an early (1938) relay computer; Barney Oliver, engineer extraordinaire; and many
others.

During this period Shannon worked in many areas, most notably in information theory, a
development which was published in 1948 as ‘‘A Mathematical Theory of Communication”’
[37]. In this paper it was shown that all information sources — telegraph keys, people speaking,
television cameras and so on — have a ‘‘source rate’’ associated with them which can be
measured in bits per second. Communication channels have a ‘‘capacity’’ measured in the
same units. The information can be transmitted over the channel if and only if the source rate
does not exceed the channel capacity (see the Preface to Part A).

This work on communication is generally considered to be Shannon’s most important
scientific contribution. In 1981 Professor Irving Reed. speaking at the International
Symposium on Information Theory in Brighton, England, said, ‘It was thirty-four years ago, in
1948, that Professor Claude E.Shannon first published his uniquely original paper, ‘A
Mathematical Theory of Communication,” in the Bell System Technical Journal. Few other
works of this century have had greater impact on science and engineering. By this landmark
paper and his several subsequent papers on information theory he has altered most profoundly
all aspects of communication theory and practice.”’

Shannon has rung many changes on the problems of information and noise. In a paper
““‘Communication Theory of Secrecy Systems’’ [25] cryptography is related to communication
in a noisy channel, the ‘‘noise’’ being in this case the scrambling by the key of the
cryptographic system. This work later led to his appointment as a consultant on cryptographic
matters to the United States Government.

Another problem, which he investigated jointly with E. F. Moore [88]-[90], was that of
increasing the reliability of relay circuits by redundant use of contacts, each of which may be
unreliable. Again this is a problem related to transmission in noisy channels.

Shannon has also applied these concepts to the problem of optimal investment strategies.
The “‘noisy signal’” is the stock market and related time series, and the problem is to maximize
a utility function by proper choice and adjustment of a portfolio.

In a lighter vein and in the computer and artificial intelligence area, Shannon wrote a paper
*‘Programming a Computer for Playing Chess’’ in 1950 [54]. At that time computers were
slow, inept and very difficult to program. Since then, many chess-playing programs have been
written, most of them following quite closely the system described in that early paper.

In 1965 he was invited to Russia to give lectures at an engineering conference. While there,
he took the opportunity to meet Mikhail Botvinnik, for many years the World Chess Champion.
Botvinnik, also an electrical engineer, had become interested in the chess programming
problem. Shannon remembers the discussion as interesting but carried on through a somewhat
noisy channel since the interpreters knew little of either chess or computers.

After the discussion, he asked Botvinnik for the pleasure of a chess game. Translators,
guides and members of the American party watched with rapt attention as the epic battle
unfolded. At one point Shannon had a slight edge (a rook for a knight and pawn), but alas the
result was foregone — after forty-two moves Shannon tipped over his king — a message that
needed no translation.



xiv C. E. Shannon

Further advances in chess programming continued through the next decades and in 1980
Shannon was invited, as an honored guest, to an International Computer Chess Championship
held in Linz, Austria. Eighteen computers from Sweden, Germany, Russia, France, England,
Canada and several from the United States were entered. Most of the computers remained at
home but were linked electronically to the tournament hall in Linz. The winner, ‘‘Belle,”’
developed by Ken Thompson and Joe Condon of Bell Laboratories, was not far from master
playing strength.

Dr. Shannon enjoys constructing amusing if not utilitarian devices, and his house is filled
with such brainchildren. Among these might be mentioned THROBAC (Thrifty ROman
numerical BAckward looking Computer) [76], a calculator which performs all the arithmetic
operations in the Roman numerical system; ‘‘turtles’” which wander around the floor, backing
up and turning from obstacles; game-playing machines of various types and sizes; and a three-
ball juggling machine with two hands that bounce-juggles three balls on a drumhead.

The *‘Ultimate Machine,”’ based on an idea of Marvin Minsky, was built in the early fifties.
The operation and spirit were well described by Arthur C. Clarke in Voice Across the Sea:
“*Nothing could be simpler. It is merely a small wooden casket, the size and shape of a cigar
box, with a single switch on one face. When you throw the switch, there is an angry,
purposeful buzzing. The lid slowly rises, and from beneath it emerges a hand. The hand
reaches down, turns the switch off and retreats into the box. With the finality of a closing
coffin, the lid snaps shut, the buzzing ceases and peace reigns once more. The psychological
effect, if you do not know what to expect, is devastating. There is something unspeakably
sinister about a machine that does nothing - absolutely nothing — except switch itself off.”’

The maze-solving mouse Theseus, built in 1950, took a more positive approach to its
universe. Controlled by a relay circuit, a lifesize magnetic mouse moved around a maze of
twenty-five squares. The maze could be altered at will and the mouse would then search
through the passageways until it found the arbitrarily placed goal. Having been through the
maze, the mouse could be placed anywhere it had been and would go directly to the goal -
placed in unfamiliar ground, it would search until it reached a known position and then proceed
to the goal, adding the new knowledge to its memory. It appears to have been the first learning
device of this fevel.

In the case of Theseus, both the ‘brain’’ and the ‘*muscles’’ were separate from the mouse
itself and were in fact under the maze. The brain was a circuit of about 100 relays, and the
muscles a pair of motors driving an electromagnet which by magnetic action moved the mouse
through the maze. With the development of solid state circuitry, self-contained mice became
feasible. Compared to Theseus, the brains were smaller but the mice were bigger. By 1978
enough engineers had built maze-solving mice for the /EEE Spectrum to hold an ‘‘Amazing
Micro Mouse Maze Contest,”’ at which Theseus made a guest appearance.

A happy consequence of Shannon’s sojourn at Bell Labs was his marriage to Mary
Elizabeth (Betty) Moore. Betty, a graduate in mathematics of Douglass College, Rutgers
University, worked as a numerical analyst (what was then called a ‘‘computer’’) in John
Pierce’s group. Her interests in handweaving and computing are currently combined in work
with a computer-controlled loom, an area in which she pioneered in the sixties. Claude and
Betty were married in 1949 and have three children, Robert, Andrew and Margarita. They live
on Mystic Lake, in Winchester, Massachusetts.

In 1956 Dr. Shannon was invited to be a visiting professor at M.I.T. and, in 1957-58, a
fellow at the Center for the Study of the Behavioral Sciences in Palo Alto, California. The
following year he became a permanent member of the M.I.T. faculty as Donner Professor of
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Science, where he continued research in various areas of communication theory. Among these
were communications systems with feedback and a study of the rate at which it is possible to
approach ideal coding as a function of delay. He continued his affiliation with Bell Telephone
Laboratories until July 1, 1972.

Many of Shannon’s papers have been translated into various foreign languages. Perhaps the
most thorough job was that of Russian scientists, who have long been interested in information
theory and computers and have contributed greatly to these fields. In 1963 he received three
copies of an 830-page collection, in Russian, of his scientific papers [121]. Years later, on a
visit to Russia, he was informed that his book had been collecting royalties to the amount of
several thousand rubles, which translated roughly into the same number of dollars.
Unfortunately, there was a catch — this could not be taken out of the country as money, but
could only be spent in Russia. Curiously, nothing they might buy seemed suitable. The books
were in Russian, Betty already had a fur coat, furniture was difficult to transport. They finally
ended up with an array of eight musical instruments ranging from a bassoon to a balalaika. On
the trip home the party was often taken for a traveling orchestra.

In his leisure time Shannon, in addition to the gadgeteering mentioned above, has a number
of recreations. He tries to jog a mile or two each day, and enjoys sports like juggling which
require good coordination. One Christmas, Betty, knowing his proclivities, gave him a
unicycle. Within a few days he was riding around the block; in a few weeks he could juggle
three balls while riding. In a few months he was building unusual cycles such as one with an
eccentric wheel (the rider moved up and down as he pedalled forward). He is an easy mark for
any new intellectual challenge — he designed a machine to solve the Rubik cube, and was
observed trying to equal his son’s record at Pac-Man.

Shannon plays the clarinet and enjoys music, especially the Dixieland popular in his youth.
He likes poetry with a nod to T. S. Eliot, the Rubaiyat and Ogden Nash, and has been known to
dash off a bit of light verse from time to time [127].

He holds honorary degrees from Yale (Master of Science, 1954), Michigan (1961),
Princeton (1962), Edinburgh (1964), Pittsburgh (1964), Northwestern (1970), Oxford (1978),
East Anglia (1982), Carnegie-Mellon (1984), Tufts (1987) and the University of Pennsylvania
(1991).

His awards include the Alfred Noble Prize (1940), Morris Liebmann Memorial Award of
the Institute of Radio Engineers (1949), Stuart Ballantine Medal of the Franklin Institute
(1955), Research Corporation Award (1956), Rice University Medal of Honor (1962), Marvin
J. Kelly Award (1962), 1.E.E.E. Medal of Honor (1966), National Medal of Science (1966)
presented by President Johnson, Golden Plate Award (1967), Harvey Prize, Technion, Haifa
(1972) presented by the President of Israel, Jacquard Award (1978), Harold Pender Award
(1978), Audio Engineering Society Gold Medal (1985), the Kyoto Prize (1985) and the Eduard
Rhein Prize (1991).

He delivered the Vanuxem Lectures, Princeton (1958); the Steinmetz Lecture. Schenectady
(1962); the Gibbs Lecture, American Mathematical Society (1965); the first Shannon Lecture,
LE.E.E. (1973); and the Chichele Lecture, Oxford (1978).

He has been Bolles Fellow at M.L.T. (1938-40); National Research Fellow at the Institute
for Advanced Study in Princeton (1940-41); Fellow of the Center for Advanced Study in the
Behavioral Sciences, Stanford (1957-58), Visiting Fellow at All Souls College, Oxford (1978);
and is a Fellow of Muir College of the University of California, the LE.E.E., and the Royal
Society. He is (or has been) a member of the National Academy of Sciences, the National
Academy of Engineering, the American Mathematical Society, the American Philosophical
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Society, the Royal Irish Academy, the American Academy of Arts and Sciences, the Royal
Netherlands Academy, the Leopoldina Academy of Leipzig, and Tau Beta Pi, Sigma Xi, Phi
Kappa Phi and Eta Kappa Nu. For many years he was a member of the board of directors of
Teledyne, Inc.

In 1983, Dr. Shannon wrote concerning information technologies: ‘*The growth of both
communication and computing devices has been explosive in the last century. It was about a
hundred years ago that the telephone and phonograph were invented, and these were followed
by radio, motion pictures and television. We now have vacuum tubes, transistors, integrated
circuits, satellite communication and microwave cable. We have even talked to astronauts on
the moon. Qur life style has been totally changed by advances in communication.

*‘On the computing side we started the twentieth century with slide rules and adding
machines. These were followed in quantum jumps by the Bush analog computers, Stibitz and
Aiken relay computers, Eckert and Mauchly vacuum tube machines (ENIAC), transistor
computers and, finally, the incredibly compact integrated circuit and chip computers. At each
step the computers became faster, cheaper and more powerful. These hardware revolutions
were matched by equally impressive developments in programming.

‘‘What can we expect in the future? Three advances in the artificial intelligence area would
be most welcome. (1) An optical sensor-computer combination capable of learning to
recognize objects, people, etc., as our eyes and occipital cortex do. (2) A manipulator-computer
combination capable of the purposeful operations of the human hand. (3) A computer program
capable of at least some of the concept formation and generalizing abilities of the human brain.

“‘In the communication area our government might consider diverting a small fraction of its
‘defense’ budget to the construction of giant radio telescopes as proposed by the SETI (Search
for Extraterrestrial Intelligence) program, to listen for evidence of intelligent life on other star
systems — possibly as a joint venture with the Soviets. Who knows, perhaps E.T. would have
words of wisdom for all of us!”’

Shannon was recently interviewed by the Scientific American and the interviewer, John
Horgan, reports that: ‘‘Claude E. Shannon can’t sit still. We’re at his home, a stuccoed
Victorian edifice overlooking a lake north of Boston, and I'm trying to get him to recall how he
came up with the theory of information. But Shannon, who is a boyish 73, with an elfish grin
and a shock of snowy hair, is tired of expounding on his past. Wouldn’t I rather see his toys?

*‘Without waiting for an answer, and over the mild protests of his wife, Betty, he leaps from
his chair and disappears into the other room. When I catch up with him, he proudly shows me
his seven chess-playing machines, gasoline-powered pogostick, hundred-bladed jackknife,
two-seated unicycle and countless other marvels. Some of his personal creations — such as a
juggling W. C. Fields mannequin and a computer called THROBAC that calculates in Roman
numerals — are a bit dusty and in disrepair, but Shannon seems as delighted with everything as a
10-year-old on Christmas morning.

‘‘Is this the man who, as a young engineer at Bell Laboratories in 1948, wrote the Magna
Carta of the information age: The Mathematical Theory of Communication? Whose work
Robert W. Lucky, executive director of research at AT&T Bell Laboratories, calls the greatest
‘in the annals of technological thought?” Whose ‘pioneering insight’ IBM Fellow Rolf W.
Landauer equates with Einstein’s? Yes. This is also the man who invented a rocket-powered
Frisbee and who juggled while riding a unicycle through the halls of Bell Labs. ‘I've always
pursued my interests without much regard to financial value or value to the world,” Shannon
says. ‘I’ve spent lots of time on totally useless things.’
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‘*Shannon’s ideas were almost too prescient to have an immediate practical impact.
Vacuum-tube circuits simply could not calculate the complex codes needed to approach the
Shannon ifimit. In fact, not until the early 1970's — with the advent of high-speed integrated
circuits — did engineers begin fully to exploit information theory. Today Shannon’s insights
help shape virtually all systems that store, process or transmit information in digital form, from
compact disks to computers, from facsimile machines to deep-space probes such as Voyager.

‘‘Information theory has also infiltrated fields outside of communications, including
linguistics, psychology, economics, biology, even the arts. In the early 1970’s the IEEE
Transactions on Information Theory published an editorial, titled ‘‘Information Theory,
Photosynthesis and Religion,’” decrying this trend. Yet Shannon himself suggests that applying
information theory to biological systems may not be so farfetched, because in his view common
principles underlie mechanical and living things. ‘You bet,” he replies, when asked whether he
thinks machines can think. ‘I’'m a machine and you’re a machine, and we both think, don’t
we?’

*‘He built a ‘mind-reading’ machine [73] that played the game of penny-matching, in which
one person tries to guess whether the other has chosen heads or tails. A colleague at Bell Labs,
David W. Hagelbarger, built the prototype; the machine recorded and analyzed its opponent’s
past choices, looking for patterns that would foretell the next choice. Because it is almost
impossible for a human to avoid falling into such patterns, the machine won more than
50 percent of the time. Shannon then built his own version and challenged Hagelbarger to a
legendary dual. Shannon’s machine won.”

This biographical sketch was based on the booklet Claude E. Shannon, Medalist for 1983
that was issued when he was awarded the John Fritz medal. It has been supplemented by
material from other sources, including a profile by John Horgan that appeared in the Scientific
American of January 1990.

Another interview follows.
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Anthony Liversidge

Much to his discomfort, Claude Eiwood Shannon, at seventy, is a living legend. What
Louis Armstrong was to jazz, Shannon is to the electronic, digital information age, a founding
father who iaid down its most important principles. His contribution is saluted by the world.
Diplomas and prizes stretch along a wall and up a spiral staircase in his home. There would
surely be a Nobel too, if one existed in mathematics or information science.

But Shannon doesn’t seek prominence. He is as content as an English country gentleman in
his privacy. His face is so unfamiliar that when he arrived at a conference last year in Brighton,
England, devoted to the field he founded, he was hardly recognized. In the dining hall, a man
cried excitedly ‘‘Do you know who’s coming? Claude Shannon!’’, when Shannon was sitting
at the next table.

Not that he is unsociable. Out of the line of fire of the media, he laughs often, and is
variously playful as a gadgeteer and a prankster. He is vividly remembered at Bell Labs for
riding a unicycle down its long corridor and back again, juggling all the while. One of the
plaques on his wall is from the Wham-O Company for his rocket powered Frisbee. At the end
of the Brighton conference, he gave an amusing after dinner speech and pulling three tennis
balls from his pockets, demonstrated a juggling *‘cascade.’’

Shannon’s mathematical genius, on the other hand, is well recognized. He won fame first at
22 as a student at M.1.T., when he wrote an M.Sc. thesis which Howard Gardner, the Harvard
mind theorist, in The Mind's New Science, judges ‘‘possibly the most important, and also the
most famous, master’s thesis of the century.’

This prize winning paper, A Symbolic Analysis of Relay and Switching Circuits, put forward
a very bright idea. Shannon saw that the branching network of strict logic, Boolean algebra,
could be expressed by the relay switching circuits used in telephone exchanges. Essentially,
““If the alarm clock rings and it is Monday, then you have to go to work’’ was equivalent to *‘If
Switch A is closed, and Switch B is closed, then current flows through to the motor.”’

The insight was ‘‘monumental,’’ says Marvin Minsky, M.I.T.s Artificial Intelligence guru,
because it helped to lay the groundwork for constructing computers. ‘‘You could use
mathematics to calculate if a design was correct instead of using trial and error.”’

Ten years later, working at Bell Labs, Shannon came out with his masterwork, The
Mathematical Theory of Communication (University of Illinois Press). At a stroke he
transformed the understanding of the process of electronic communication, by providing it with
a mathematics, a general set of theorems called ‘information theory’. With lucid brilliance,
Shannon wrote out the basic principles of the signaling of information. It was like Newton
writing out the laws of motion for mechanics.

The slim paper exploded on the scene ‘like a bomb’, wrote John Pierce, a prominent
colleague, and author of Symbols, Signals and Noise (Dover). Suddenly, engineers had a
language to deal with the major puzzles of telephone and radio communications: how to

*  This article appeared (in a slightly different form) in Omni magazine, August 1987.

xix
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measure information, and how to exploit fully the capacity of a telephone wire, microwaves, a
fiber optic cable or any other channel of communication. So wide were the repercussions that
Fortune magazine was soon calling the theory one of man’s *‘proudest and rarest creations, a
great scientific theory which could profoundly and rapidly alter man’s view of his world.”’

What astonished engineers was Shannon’s proof that however “noisy” a communications
channel, it was always possible to send a signal without distortion. To do so, you have to
encode the message in such a way that it is self checking. With the right code, signals could
be received with as high accuracy as if there were no interference on the line.

A simple code might involve adding a symbol, a binary digit or ‘“bit,”’ every few bits of
message to describe whether a previous group of bits add up to an odd or even number.
English is another error correcting code. Noisy party conversation is intelligible partly because
half the language is redundant. The extra symbols allow you to fill in what you miss.

Shannon had lit a beacon, showing such codes were possible. Over the next twenty-five
years engineers steered into the dark by his light. Powerful codes were worked out, yielding
super accurate communications hardware, from space probes and computers to disk drives and
compact disc players. Drag a knife point across the surface of a compact disc, and error
correcting codes will mask the flaw, thanks to Shannon.

Voyager Il sending detailed pictures of Uranus and its ten newly discovered moons to
Earth 1.8 million miles away is a tribute to Shannon’s inspiration. So are the picture perfect
digital TV’s and VCR’s now joining CD’s on the home market. Information theory spurred the
digital revolution, where information is sent in discrete bits rather than in the wave form of
‘analog’ signals, because Shannon’s error correcting codes work naturally in digital.

A problem is that the name *‘information theory’’ is misleading. As opposed to everyday
use, in Shannon’s theory *‘information,”’ like *‘force’’ or ‘‘energy’’ in mechanics, is defined
very precisely as a commodity, measured in bits per second, unrelated to the meaning of the
message. Like the driver of a truckload of sealed packing cases, a communications engineer is
concerned only how to deliver the bits most efficiently.

Prompted by this misunderstanding, the short treatise, now in its eleventh printing, has
inspired great claims that information theory has a significance far beyond communications
engineering. Professors of the social sciences and other fields short of mathematical models
rushed to adapt the ideas to their own ends. The formulation has been applied to everything
from molecular biology and the brain to psychology, art, music, sociology, semantics and
linguistics, economics and even landscape gardening.

A wave of enthusiasm for such work came in the fifties, then receded. Now there is
renewed interest among some researchers. In one recent book, Grammatical Man, science
author Jeremy Campbell found enough progress to argue that Shannon’s theories are
fundamental to understanding the universe, and that ‘‘to the powerful theories of chemistry and
physics must be added a later arrival: a theory of information. Nature must be interpreted as
matter, energy and information."’

Shannon was in his mid-twenties when he worked out information theory. Born on the
prairie in Gaylord, Michigan, he had gone to the University of Michigan, and then M.L.T.,
where he wrote his Ph.D. thesis on the mathematics of genes and heredity. He joined Bell
Laboratories in 1941 and worked on cryptography. A theorem of Shannon’s was behind the
SIGSALY telephone, the huge speech scrambling apparatus which allowed Churchill to speak
to Roosevelt from a special, toilet-sized booth through a coding system that even today is
unbreakable.
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Shannon left for M.LT. in 1956, much to the regret of colleagues at Bell. ‘It was a big
loss,”” says Edgar Gilbert, a colleague. ‘‘He was always generating interesting ideas. He
would grasp the essence of a problem immediately, and come up with a totally different idea
that shed a great deal of light on it.”’

At M.LT. Shannon, made Donner Professor in 1958, gave ‘‘beautiful’’ lectures. says a
colleague, took a few select graduate students in hand, and refined information theory. By the
mid sixties, his preference for working at home became the rule (a friend borrowing his
deserted office found a sizable uncashed check more than a year old). He retired in 1978,
becoming Professor Emeritus, wealthy from investments in technological companies, some of
them founded by his friends. One is Teledyne, where until recently Shannon served on the
board of directors.

Not just a theorist, Shannon has always been fond of inventing and building gadgets and
machines. A famous one was a mechanical white mouse which could learn its way through a
maze, decades before the microchip. Another was Throbac, a calculator which operated in
Roman numerals, and a *mind reading’ machine which anticipated whether a challenger would
choose heads or tails. (Colleague David Hagelbarger invented this but Shannon’s stripped
down version outsmarted his ‘‘more conservative and pompous design,’” he says.)

Then there was Hex, a machine which played a board game. Shannon's prankish side came
out in the design, which cunningly concealed the fact that the machine had an unfair advantage.
A Harvard mathematician got very upset when he lost to Hex, which actually followed a
childishly simple strategy, but took an impressively long time to ‘‘think.”> He was all set to try
again, when Shannon took pity on him and confessed the truth,

None of these devices made his fortune, though there was one near miss. Shannon and
Edward Thorp, author of Beat The Dealer, once took a trip to Las Vegas with their wives and a
computer, intent on outsmarting the roulette wheels. Unfortunately, the analog computer and
the ratio apparatus were primitive by modern standards and so the enterprise failed for technical
reasons. This was a pity: a night of testing in Shannon’s basement had turned a few hundred
imaginary dotlars into $24,000.

A visit to his large house, down a shady lane a few miles from M.L.T., suggests that home
life for Shannon has not been dull. There is a pile of penciled manuscripts of his mathematical
work. Around the house there are five pianos and thirty other musical instruments ranging from
piccolos to trumpets. Among a sizeable collection of chess playing machines is one which
moves the pieces with a three fingered arm, beeps and makes wry comments. (In 1950
Shannon wrote the pioneering treatise on how a computer could be programmed to play chess.)
In the garage, there is a dusty pile of unicycles and penny farthings. The chair lift he built to
take his three children 450 feet down to the lakeside has been taken down, however, now that
they are grown.

For some time his current interest has been juggling, continuing a life long fascination with
balance and controlled instability. His machines include a motorized, gasoline powered pogo
stick, a unicycle with an off center wheel (it keeps a rider steady while juggling), and a tandem
unicycle that no couple has yet been able to ride. He goes to juggling conventions, and is
polishing a paper for Scientific American. In the toy room there is a machine with soft bean
bags for hands which “‘juggles’” steel balls. His model masterpiece is a tiny stage on which
three clowns juggle eleven rings, seven balls and five clubs, all driven by a diabolical
mechanism of clockwork and rods, invisible to the viewer in black light illumination.

When 1 visited him, Shannon was just back from Japan, where he had given a speech and
collected a Kyoto award in company with Messaien the composer. He was entertainingly



xxii Anthony Liversidge

hospitable, ready to show off photos of his family, a computer printout of his stock selections,
and all his toys. His gruff laugh made it clear that fun is still his life’s motif. Betty Shannon, a
math graduate who met Shannon at Bell Labs, was his partner in the constant merriment.
Occasionally the overlay of disarming geniality was penetrated, as a question gave him pause.
Under the beetle brows his eyes would show the canny depths of genius.

OMNI: How many balls can you juggle?

Shannon: I can do four. With five I don’t last very long! I can get them up there, but
catching them is a different matter!

OMNI: Did your genius come unannounced, or was there science and invention in your
background?

Shannon: My grandfather was an inventor who had some patents, a washing machine, stuff
like that. He was also very interested in determining the exact turn of the century, how it
should be fixed — 1900 or 1901. He owned a farm, and was always inventing farm machinery.

My father Claude was judge of probate in Gaylord, a little town of about
3000 people in Michigan. Small enough that if you walked a couple of blocks, you’d be in the
countryside. Here is a picture of me playing the E Flat alto homn in the town band. Here’s my
mother, who was principal of the high school in Gaylord. Very intelligent person, as was my
father. My father was clever mathematically and knew what he was talking about, but he didn’t
work in mathematics. My mother got glowing recommendations from her University of
Michigan professors in languages.

I don’t think there was much scientific influence between my father and myself.
He was a little distant, and by the time I got to be ten or fifteen he was practically seventy.
Although he certainly helped me when he could. I used to work with erector sets, and a friend
of mine and I had a telegraph system between our houses, half a mile away, and we built the
parts for this line for Morse Code signalling. Later we scrounged telephone equipment from
the local exchange and connected up a telephone. 1 was always interested in building things
that had funny motions, but my interest gradually shifted into electronics.

OMNI: Funny motions?

Shannon: Yes, especially like those dancers I used to see as a young man on the stage
burlesque theatre! They had an interesting motion. Cheap joke!

OMNI: When was the erector set?

Shannon: In the seventh grade or so. As a matter of fact when Betty and I got married |
said I'd always wished I’d got a number ten erector set, as I had only got up to eight and a half,
and she gave me one for Christmas!

Betty Shannon: 1 went out and gave him the biggest erector set you could buy in this
country — it was fifty bucks and everyone thought I was insane!

Shannon: Giving it to a grown man! But the fact of the matter is that it was extremely
useful and I used it to try out different things. Now I have a number ten Meccano set and two
others as well.

OMNI: Ashley Montagu in Growing Young says that it’s important to remain playful in
spirit through life. You seem to agree with that?
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Shannon: Yes, I certainly do. I am always building totally useless gadgets, some of which
you can see around here, just because | think they’re fun to make. They have no commercial
value, but | think they may be amusing.

OMNI: Don’'t you ever worry about the fact that they are not useful?

Shannon: No. That would be the last thing! Here’s a picture of me riding a unicycle and
juggling at the same time. That was more than thirty years ago. As a matter of fact you
wouldn’t believe the number of unicycles we have in our garage outside, and similar wheeled
vehicles of very odd types. I have a certain fascination for them.

OMNI: You once made an enormous impression riding a unicycle and juggling at the same
time in the corridors of Bell Labs!

Shannon: Yes I did! That created quite a stir.
OMNI: Was it such a staid place, Bell Labs, that this could create such a sensation?

Shannon: Oh no. Those people are very far out. But this was something that had never
happened in the hall before. Bell Labs was and is the freest research group in the country
associated with a commercial firm.

I worked at Bell Labs for fifteen years, and after that 1 was a consultant there.
They gave you great freedom. To begin with you could work on what you wanted, your own
ideas; they didn’t come and say, ‘‘work on this!’* At least, not to me. Not only that, but the
people in my department in the mathematics research group were all very bright and capable
and I had a lot of interaction with them. Yes, it is a great place.

OMNI: Can Bell Labs take credit to some extent for your achievement?

Shannon: ! think so. If I had been in another company, more aimed at a particular goal |
wouldn’t have had the freedom to work that way. [ think I could have done it if 1 had been at a
university. Most universities are totally free in which kind of research their professors do,
M.LT. for instance. Bell Labs was very open-minded.

OMNI: Shockley, the inventor of the transistor, was there at Bell Labs when you were there
— did you know him well?

Shannon: I remember going into his office, where he had a little object on his desk and 1
said ““What's that?,”” and he said “‘It’s a solid state amplifier,”’ and explained that it amplified
like a vacuum tube. In other words this was the transistor in its first version. Right there I got a
little grasp of its importance because of its small size. 1 consider Shockley and his team there
and Bardeen as the inventors of the most important thing discovered this century.

OMNI: Was the university environment less conducive to you?

Shannon: I believe that scientists get their best work done before they are fifty, or even
earlier than that. I did most of my best work while I was young.

OMNI: Is there some magical quality which disappears with age?

Shannon: It may be that our brains are not as sharp as when we are young. If you look at
the history of great scientists, and read about Newton or Einstein or people in that class, you
find that their greatest work was done at a fairly young age, usually between twenty and fifty.

OMNI: Some recent research suggests that the brain physically responds to stimulating
interests even in old age, and with growth in dendrites, and so there doesn’t seem to be an
obvious physical reason why the brain should not operate as well later. The experiments have
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been on rats, rather than people, of course!
Shannon: What did they do, ask them a hard mathematical question?
OMNI: Did your ambition wane at all?

Shannon: 1 don’t think I was ever motivated by the notion of winning prizes, although 1
have a couple of dozen of them in the other room. I was more motivated by curiosity. Never
by the desire for financial gain. I just wondered how things were put together. Or what laws or
rules govern a situation, or if there are theorems about what one can’t or can do. Mainly
because I wanted to know myself. After I had found the answers it was always painful to write
them up or to publish them (which is how you get the acclaim). There are many things I have
done and never written up at all. Too lazy, I guess. I have a file upstairs of unfinished papers.

OMNI: You weren’t affected by your success in the stock market, were you? Did it take
away the necessity to work so hard?

Shannon: Certainly not. It’s true we have been very successful in stocks, not just Teledyne,
but Hewlett Packard, Motorola and many other companies. Indeed I even did some work on
the theory of stocks and the stock market, which is among other papers that I have not
published. Everybody wants to know what’s in them! (Laughs.) It’s funny. I gave a talk at
M.LT. on this subject some twenty years ago and outlined the mathematics, but never published
it, and to this day people ask about it. Just last year when we were over in Brighton more than
one person came up to me and said *‘I heard you talked at M.L.T. about the stock market!’” 1
was amazed that anybody would even have remembered it!

OMNI: So your stock market success was based on mathematics?

Shannon: Oh yes. Mathematics and some good friends! More important, that! One of my
good friends since college days was Henry Singleton, who is head of Teledyne. He started his
company and asked me if I would like to invest in him. I had a good opinion of him and we put
as much as we could into Teledyne, and that’s gone off like crazy. That was in 1961.

Betty Shannon: We had already had one good experience with Bill Harrison, that taught us
what can happen if you’re lucky in the market.

Shannon: He started Harrison Laboratories, which merged with Hewlett Packard. That was
in 1953. We’ve had quite a few things like that. But in addition, we do study the graphs and
charts. The bottom line is that the mathematics is not as important in my opinion as the people
and the product.

OMNI: What was the lecture at M.1.T. about?

Shannon: The best way to balance a portfolio ~ the optimal amount you should have in
different stocks, to maximize the logarithm of the current value of the portfolio, if that is the
thing you are trying to maximize. But let me say that a lot of this is negated by the tax laws. If
you make money it becomes very painful to sell that stock, because you have to pay a capital
gains tax. This tends to negate all the theoretical thinking.

OMNI: It is not about when to buy or sell an individual stock?

Shannon: A lot of people look at the stock price, when they should be looking at the basic
company and its eamings. There are many problems concerned with the prediction of
stochastic processes, for example the earnings of companies. When we consider a new
investment, we look carefully at the earnings of the company, and think a lot about the future
prospects of the product. We’re fundamentalists, not technicians.
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OMNI: Are you lucky too?

Shannon: Far beyond any reasonable expectations.

You know economists talk about the efficient market, and say everything is
equalized out and nobody can really make any money, it’s all luck and so on. I don’t believe
that’s true at all. These are our current stocks, some of which we have only held a short time.
The annual growth rates are punched out by our machine there every night, a prehistoric
Apple 1I which Steve Jobs wired together himself.

The annual compounded growth rates of these stocks since we bought them, most
of them quite a few years ago, are 31% a year, 11%, 185% (that one we haven’t had too long),
30%, 31%, 181%, 10%, 18%, 114%, 21%, 2% and 27%. (Laughs.) That’s the full list of our
holdings.

OMNI: Which companies are the big gainers?

Shannon: Teledyne for example, we have held for 25 years, and it’s compounded 27 per
cent a year. The difference between going up 27 per cent and 10 per cent, such as you might
get in a bank, is incredible, especially when that happens for 25 years.

OMNI: Is there a future to using mathematics to predict fluctuations in stock prices?

Shannon: My general feeling is that it is easier to choose companies which are going to
succeed, than to predict short term variations, things which last only weeks or months, which
they worry about on Wall Street Week. There is a lot more randomness there and things
happen which you cannot predict, which cause people to sell or buy a lot of stock. I think it is
very hard to predict short term stock fluctuations. Furthermore when you get into short term
fluctuations you are always paying short term capital gains. With a long term stock you may
never pay taxes because you keep it forever.

OMNI: How did you get to M.L.T.?

Shannon: When I got my bachelor’s from Michigan I wasn't sure what 1 was going to do.
There was this little postcard on the wall saying that M.1.T. was looking for somebody to run
the differential analyser, a machine which Vannevar Bush had invented to solve differential
equations. They wanted a research assistant to run it, and I applied for the job. I spent the next
four years at M.LT. getting first a Master’s degree in electrical engineering, and then a
doctorate in mathematics. So throughout my life [ have been straddling those two fields.

OMNI: What was the differential analyser made of?

Shannon: The main machine was mechanical with spinning discs and integrators, and there
was a complicated control circuit with relays. I had to understand both of these. The relay part
got me interested. I knew about symbolic logic at the time from a course at Michigan, and I
realized that Boolean algebra was just the thing to take care of relay circuits and switching
circuits. I went to the library and got all the books I could on symbolic logic and Boolean
algebra, started interplaying the two, and wrote my Master’s thesis on it. That was the
beginning of my great career! (Laughs.)

OMNI: You saw the connection between a relay circuit and Boolean algebra? It was quite
an inspiration?

Shannon: Oh yeah. Trivial, actually, once you make it. The connection was not the main
thing. The more important, harder part was working out the details, how to interleave the
topology of the switching circuits, the way the contacts are connected up and so on, with the
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Boolean algebra expressions. Working that out was a lot of fun. I think I had more fun doing
that than anything else in my life, creatively speaking. It worked out so well. When I finished,
it was shown to several people there, including Vannevar Bush who was then vice-president
and dean of engineering at M.I.T.. He was very impressed and wrote a recommendation to get
it published, and to get me into the mathematics department there, instead of electrical
engineering. So I did my doctorate in mathematics.

OMNI: Was the basic insight that yes/no can be embodied in on/off switches so trivial?

Shannon: It’s not so much that a thing is ‘*open’’ or *‘closed,’’ the *‘yes’’ or *‘no’’ that you
mentioned. The real point is that two things in series are described by the word “*and’’ in logic,
so you would say this ‘‘and’’ this, while two things in parallel are described by the word *‘or.”
The word ‘‘not’’ connects with the back contact of a relay rather than the front contact. There
are contacts which close when you operate the relay, and there are other contacts which open,
so the word ‘‘not’’ is related to that aspect of relays. All of these things together form a more
complex connection between Boolean algebra, if you like, or symbolic logic, and relay circuits.

The people who had worked with relay circuits were, of course, aware of how to
make these things. But they didn’t have the mathematical apparatus or the Boolean algebra to
work with them, and to do them efficiently. A lot of my work has to do with minimizing
circuits, trying to get the smallest number of contacts, for example. They had done this to a
certain extent, but they hadn’t gone deeply into the mathematics, so they hadn’t done it nearly
as well as you could with the Boolean algebra.

LX)

OMNI: But they already had some idea, did they, of translating the words ‘‘and,”’ *‘or,
and ‘“*not’’ into a physical embodiment?

Shannon: They all knew the simple fact that if you had two contacts in series both had to be
closed to make a connection through. Or if they are in parallel, if either one is closed the
connection is made. They knew it in that sense, but they didn’t write down equations with plus
and times, where plus is like a parallel connection and times is like a series connection.

OMNI: Still, making the connection between relay circuits and Boolean algebra was
inspired, wasn’t it?

Shannon: Well, I don’t know what inspiration is. I think you do have flashes of insight. 1
may have had an insight one day and then I would spend some time in the library, writing
equations and so on, and more insights would come.

OMNI: Most people don’t know very much about your Ph.D. thesis, which applied
mathematics to biology, I understand - it sounds like DNA coding?

Shannon: Yes, it’s related to that. Animals have many pairs of chromosomes, Jong lines of
genes, and when two animals mate they get one of a pair from the mother and one from the
father, for each of the pairs. More complicated things can happen too. The chromosomes can
have a crossover so that you only get a portion of one half and a portion of the other half.

I tried to get a mathematical description of what goes on when you mix these
chromosomes in this kind of a process, and more generally when you have whole populations
mixing their chromosomes this way — what goes on in the statistics of the different gene
frequencies, which determine if your hair is brown, or what color your eyes are, or how tall you
are,

So I set up an algebra which described this complicated process. One could
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calculate, if one wanted to (although not many people have wanted to in spite of my work), the
kind of population you would have after a number of generations.

OMNI: So your scheme would tell us, for example, if Americans will eventually tum into a
nation of brunettes?

Shannon: I don’t know how many genes are related to hair color, I think probably more
than one pair, just as IQ is not just one or two genes but probably a great many.

My theory has to do with what happens when you have all the genetic facts. But
people don’t know all of them, especially for humans. They are pretty well versed on the
fruitfly! There they understand that this gene does this, this gene does that. But with regard to
humans, it’s hard to perform experiments to get the data. I was at a much more theoretical
level, assuming that all the genetic facts were available.

OMNI: Before you wrote your classic paper on The Mathematical Theory of
Communication, Norbert Wiener went round the offices at Bell Labs announcing ‘‘information
is entropy.”” Did that remark provoke you in any way to come up with information theory?

Shannon: No. I hadn’t even heard of that remark when I started my work. I don’t think
Wiener had much to do with information theory. He wasn’t a big influence on my ideas there,
though I once took a course from him. Don’t get me wrong, he was a great mathematician. He
was an idol of mine when I was a young student at M.L.T.

OMNI: When The Mathematical Theory of Communication was published, there was an
indignant review by a certain mathematician, accusing you of mathematical dishonesty because
your results weren’t proved, he said, with mathematical rigor. Did you think that plain silly, or
did you think, Well, maybe I should work hard to meet his criticisms?

Shannon: I didn’t like his review. He hadn’t read the paper carefully. You can write
mathematics line by line with each tiny inference indicated, or you can assume that the reader
understands what you are talking about. I was confident I was correct, not only in an intuitive
way but in a rigorous way. I knew exactly what I was doing, and it all came out exactly right.

OMNI: How would you explain the impact of your information theory on communications
engineering?

Shannon: On the philosophical level, one is able to understand the communication process
and measure what is being sent, measure information in so many bits or choices per second.
On the actual operational level, it enables you to combat noise and send information efficiently
and use the right amount of redundancy to allow you to decode at the receiving end in spite of
noisy communication.

OMNI: What about its importance in other fields? In the fifties, you criticized what you
called the bandwagon effect, where people in your view over-enthusiastically applied your
ideas to fields other than communications. Recently, the book Grammatical Man has again
suggested that it may be widely applicable. Are you as skeptical as you were in the fifties about
there being something more to it?

Shannon: I'd have to say I am interested in information theory and always was in the
narrow sense of communication work, on problems of coding and so on. You can broaden the
meaning of the term information theory to apply to all kinds of things, like genetics and how
the brain works and so on.

Many people now see it in a much broader context than I ever did. They apply it
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for example to the nervous system of animals or humans, where information is transmitted
along nerve networks, and there is redundancy, because the system is not very precise and
accurate. This is a noisy system.

A similar thing happens in the social system where we have lots of aids to
communication. If you’re talking to me I might say ‘‘what?’’ which is a feedback system to
overcome some of the noise, and to get correct transmission.

OMNI: Does your theory give a hint of how life might have evolved, seemingly in the face
of the second law of thermodynamics, which says that order should slowly disintegrate?

Shannon: The evolution of the universe is certainly a very puzzling thing to me as well as to
everybody else. It’s fantastic we’ve ever come to the level of organization we have, starting
from a big bang. Nonetheless, 1 believe in the big bang.

The second law of thermodynamics is not quite so simple as to say that from that
big bang you couldn’t get anything more than disorganization. There’s a lot of energy
involved. You could get local organization at the cost of overall increase of entropy. I'm a
firm believer in an increase in entropy as time goes on. But you can use some of it to increase
order elsewhere. In a steam engine, you can use disorganized heat energy to produce organized
mechanical energy but only at a certain cost. So I think it’s kind of that way in the universe.

I’ve puzzled many hours about the gradual organization of life and the structure of
knowledge, and all the things we humans have. To me it’s the most incredible thing! I don’t
happen to be a religious man and I don’t think it would help if I were!

OMNI: You wouldn’t want to say information theory is a substitute for belief in a God?
Shannon: I certainly would not!

OMNI: Marvin Minsky said you stopped working on information theory because you felt
all the important theorems were proved. Is that correct?

Shannon: No, I just developed different interests. As life goes on, you change your
direction.

OMNI: You have avoided the press over the years, have you?

Betty Shannon: Not deliberately. On the other hand, we haven’t sought them either. We
live very quietly.

Shannon: I'll tell you this, I'm not too crazy about interviews.
OMNI: Did you feel you were destined for fame?

Shannon: I don’t think so. I always thought I was quite sharp scientifically, but scientists
by and large don’t get the press that politicians or authors or other people do. I thought my
paper on switching was quite good, and I got a prize for it, and I thought my information paper
was very good, and I got all kinds of acclaim for that — there’s a wallful of prizes and stuff in
the other room.

OMNI: Do you find fame a burden?

Shannon: Not too much. I have people like you coming and wasting my afternoons, but
that isn’t too much of a burden!
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OMNI: Why is juggling so interesting 10 you, especially mathematically?

Shannon: 1 did write a paper for Scientific American, as yet unpublished. There is a
theorem which relates to how many balls you are juggling, and how long each one is in the air.
[ talk about a uniform juggle where every time you throw a ball it stays in the air the same
amount of time, and when it hits your hand it stays there the same amount of time. We
visualize a person not just with two hands but with several hands, or there could be several
different people involved. The theorem relates five quantities, the number of hands, the number
of balls, the vacant time when your hand has nothing in it, the contact time and the flight time.
These five things are all connected by a very simple relationship, which would be exciting to
nobody except a few mathematically inclined jugglers!

OMNI: Would it lead to a way of juggling more objects than ever before?

Shannon: You have to throw the balls higher to get more time, and it gives an indication of
how much higher you have to throw them, as a function of the number of balls you are

Jjuggling.

I’ve measured jugglers with stopwatches and observed how they do it, and if
they’re juggling seven balls, which is a very hard thing to do, they have to throw them very
high. I even had them put metallic strips on jugglers’ hands and had them juggling metal
covered balis so they would close a contact when they were holding the balls, and ran this data
into electronic clocks.

OMNI: Does it show what the limits of juggling are? Can we say that no one will ever
juggle more than fifteen balls, for example?

Shannon: No. All you have to do is throw them higher and be quicker. Indeed a friend of
ours holds the world record of twelve rings.

OMNI: It’s remarkable that you’ve never commercialized your delightful juggling clowns.
Betty Shannon: Oh fiddle!

Shannon: Well, I don’t think there would be too much of a market.

Betty Shannon: We don’t really believe in commercializing fun.

OMNI: You have a nice array of computerized chess machines in your toy room. Do you
still play chess?

Shannon: I don’t play at all.

Betty Shannon: He used to play very well. Good enough to play Botvinnik in Moscow.
Claude at one point got the exchange. Botvinnik was worried. He finaily won, but it was close.

OMNIL: Do you find it depressing that chess computers are getting so strong?

Shannon: I am not depressed by it. I am rooting for machines. I have always been on the
machines’ side.

Betty Shannon: Some people get very angry when he says that.

Shannon: I am not depressed by machines getting better. Whether people are going to be
replaced by machines, I don’t know. That’s a hard question. It may be possible within a
century or so, that machines are going to be doing almost everything better than we do. They
already do a lot of things better than we do. An automobile can go down the street a heck of a
lot faster than any person can, for example. They can do factory work of all kinds better than
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we can. The highly intellectual stuff is going to come later.

But I wouldn’t be at all surprised, no.

OMNI: Do you agree with Norbert Wiener, who is reported to have denied any basic
distinction between life and non-life, man and machine?

Shannon: That’s a heavily loaded question! Let me say this. 1 am an atheist to begin with.
I believe in evolutionary theory and that we are basically machines, but a very complex type,
far more so than any machine man has made yet. So in a way that’s both a Yes and a No. We
are kind of an extreme case of mechanical device ~ by mechanical I don’t mean just metals are
involved, of course, gears and so on. A natural device. I see no God involved or anything like
that.

OMNI: Will robots be complex enough to be friends of people, do you think?
Shannon: | think so. But it’s quite a way away.
OMNI: Could you imagine being friends with a robot?

Shannon: Yes I could. I could imagine that happening very easily. I see no limit to the
capability of machines. The microchips are getting smaller and smaller and faster and faster
and I can see them getting better than we are. I can visualize sometime in the future we will be

to robots as dogs are to humans.
OMNI: Can you imagine a robot President of the United States?

Shannon: Could be! I think by then you wouldn’t speak of the United States any more. It
would be a totally different organization.

OMNI: Is your famous proof that a reliable circuit can be built using unreliable components
relevant to the brain’s operations? Could the brain be making use of such design?

Shannon: How the brain manages to work so well with the kinds of elements it has is quite
a puzzle. It must make some use of redundancy in its connections. We know the brain can
suffer all kinds of damage and in particular neurons can go out of operation and it can still
handle things pretty well. So it must use some redundancy to take care of faulty operations.
But whether it does it the way we discussed in that paper is a much deeper and harder question.

In a modern desk computer there is generally no redundancy. If one part gets into
trouble that will show up in later operation. It seems to me that the way the brain works and
how we manage to live in spite of all kinds of internal troubles shows that there must be a great
deal of redundancy there, and a design which involves some kind of concept of multiple units
or parallelism.

OMNI: But your paper involved more than redundancy — you showed that even if you had
relays which closed only 60 per cent of the time when triggered, you could still cleverly design
a circuit which would work. Could the brain be using such an approach?

Shannon: The brain has ten billion neurons, or some such huge number, so probably it is
cheaper for biology to make more components than to work out sophisticated circuits. But I
wouldn’t put it past evolution to do some very clever things like that! I am totally astounded by
how clever and sophisticated some of the things we see in the human or animal bodies are, due
to long evolutionary changes, 1 presume. This could be happening in the brain, but an easier
way would be parallelism. The brain is pretty sophisticated in other directions, as we know.
When it really gets going we have all these clever people like Einstein.
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OMNI: Why aren’t you more involved with computers, personally? One would think you
would love playing with them. Aren’t they the ultimate gadget?

Shannon: I don't mess around with programming at all. I find that kind of dull, feeding
stuff into a computer. Designing computers would be more my taste, but I haven’t been feeling
much like it lately. 1 guess I've had a bellyful of that game. There was the differential
analyser, then relay circuits, and all those things that were leading up to these computers, and
I’ve written papers on all those subjects.

OMNI: Perhaps you like machines that you can build yourself, rather than computers which
you can’t build from scratch any more?

Shannon: I do like the physical aspects of these things, but you’re oversimplifying to say I
don’t really like the symbolic things too. Mathematics itself involves symbolics.

OMNI: Where did you find all your chess machines?

Shannon: There’s a store in Los Angeles which has all these different chess machines.
Mrs. Shannon: Claude went hog wild.

Shannon: Yes. Bought one of each.

OMNI: Did you make the motorized pogo stick hanging in your garage?

Shannon: No, I bought it, from a guy in New Jersey who made it. I don’t think he had
much success with it. I may have been one of the few buyers. It’s gasoline driven. There's a
piston in it which fires each time it comes down, so you go along at great velocity! But I found
it very uncomfortable. - It was kind of a shock each time the thing exploded there and so it
didn’t ever get much use.

OMNI: When you went to Las Vegas equipped with computer and radio to win at roulette,
why did you abandon the project?

Shannon: The thing worked very well here in the house. The roulette wheel is up in the
attic now. A real professional one you know. The predictor would predict not in which hole
the ball was going to fall but which half of the wheel. It was a lot better than a 50-50
prognosis. Two thirds of the time it would pick the right half of the wheel. This improved the
odds so that you would win at a very good rate if it kept going.

OMNI: It worked extremely well, then, on that roulette wheel at least. How did it do it?

Shannon: Part of it depended on the fact that wheels in Las Vegas and elsewhere are
somewhat tilted, and they don’t level them up well. We examined many wheels and we could
see some of them were tilted quite strongly. If you pick those out then there is a strong
probability that the ball will fall in a certain segment of the outside of the wheel, and you can
tell quite well how long it will take for that to happen.

If you time the spinning of the wheel you can see where the wheel is going to be
when the ball falls in. The wheel is going around one way and the ball is going around the
other, and you find the concurrence of those two things, where the wheel is going to be when
the ball falls in. It's a simple dynamical system with very little friction.

OMNI: Why wouldn’t you have to take into account the strength of the croupier’s throw?

Shannon: The device we used timed both the wheel and the ball. The person standing there
would press a button when they gave the wheel a good spin, and the double zero went by a
certain point, and also when the ball was thrown and passed a certain point, and came around
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again to that point. The croupier could throw it at different speeds, true, but this was taken into
account in the computation.

OMNI: But you had to see where it started?

Shannon: You had to both time the wheel and get an indication of when the ball left the
croupier’s hand. Both of those things were involved in this little computer that we made. But
we had a lot of practical problems, and we never made any money really.

OMNI: But could you have made money if you had worked hard to solve these purely
practical problems?

Shannon: I think so, if we had been willing to spend another month cleaning up details. But
we got discouraged after we spent a lot of time and effort.

OMNI: You once wrote that the redundancy of a language determined whether you could
have crossword puzzles in that language, and that since English has a redundancy of about half,
you couldn’t have three dimensional crossword puzzles in English. Is that right?

Shannon: Yes. You can’t build big ones in three dimensions. In English there are more
constraints among the letters, and it gets harder to find other words which will tie them together
in a two dimensional pattern. A fortiori, if I may use another English word, it gets even harder
to tie them together in three dimensions.

OMNI: Your interest in balance and controlled instability which shows up in your unicycles
and juggling is very relevant to robots and their control systems. Are the robot designers
making the pilgrimage to your house to ask about robots?

Shannon: | have built a number of robotic devices and juggling machines. They are more a
matter of entertainment for me than practical devices for the rest of the world. I like to show
them off to people but I don’t expect to sell very many.

OMNI: If you were funded to the full would you build a robot that would ride a bicycle?

Shannon: Oh, I have built little bicycle riders already. 1 have one four inches high that rides
a tiny two wheeled bicycle. That’s almost trivial to do, actually. I worked on a little
mechanical unicycle rider but I never got that working very well.

OMNI: Is it true you investigated the idea of mirrored rooms?

Shannon: Yes, I tried to work out all the possible mirrored rooms that made sense, in that if
you looked everywhere from inside one, space would be divided into a bunch of rooms, and
you would be in each room and this would go on to infinity without contradiction. That is,
you’d move your head around and everything would look sensible. 1 think there were seven
types of room. 1 planned to build them all in my extra room here and give people an exciting
tour.

The simplest case would be a cube where you would just see an infinite series of
yourself receding into the distance. All of space would be divided sensibly into these cubical
patterns. But other ones, tetrahedra and so on, yield much more complex and interesting
patterns. 1 will build them if I can finish all my other projects!

At the moment I am working on another juggling machine, which might juggle five
balls. I am using an air hockey table, and plan to juggle disks by tilting the table.

OMNI: What’s your secret in remaining so carefree?
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Shannon: I do what comes naturally, and usefulness ts not my main goal. I like to solve
new problems all the time. I keep asking myself, How would you do this? Is it possible to
make a machine to do that? Can you prove this theorem? These are my kind of problems. Not
because [ am going to do something useful.
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Preface to Shannon’s Collected Papers (Part A)

Claude Shannon’s creation in the 1940’s of the subject of information theory is one of the
great intellectual achievements of the twentieth century. Information theory has had an
important and significant influence on mathematics, particularly on probability theory and
ergodic theory, and Shannon’s mathematics is in its own right a considerable and profound
contribution to pure mathematics. But Shannon did his work primarily in the context of
communication engineering, and it is in this area that his remarkably original work stands as a
unique monument. In his classical paper of 1948 and its sequels, he formulated a model of a
communication system that is distinctive for its generality as well as for its amenability to
mathematical analysis. He formulated the central problems of theoretical interest, and gave a
brilliant and elegant solution to these problems. We preface this section of his collected works
with a very short description of this pioneering work.

Let us look first at his model. Shannon saw the communication process as essentially
stochastic in nature. The meaning of information plays no role in the theory. In the Shannon
paradigm, information from a ‘‘source’’ (defined as a stochastic process) must be transmitted
though a ‘‘channel’’ (defined by a transition probability law relating the channel output to the
input). The system designer is allowed to place a device called an ‘‘encoder’’ between the
source and channel which can introduce a fixed though finite (coding) delay. A *‘decoder’” can
be placed at the output of the channel. The theory seeks to answer questions such as how
rapidly or reliably can the information from the source be transmitted over the channel, when
one is allowed to optimize with respect to the encoder/decoder?

Shannon gives elegant answers to such questions. His solution has two parts. First, he
gives a fundamental limit which, for example, might say that for a given source and channel, it
is impossible to achieve a fidelity or reliability or speed better than a certain value. Second, he
shows that for large coding delays and complex codes, it is possible to achieve performance
that is essentially as good as the fundamental limit. To do this, the encoder might have to make
use of a coding scheme that would be too slow or complicated to be used in practice.

One of Shannon’s most brilliant insights was the separation of problems like these (where
the encoder must take both the source and channel into account) into two coding problems. He
showed that with no loss of generality one can study the source and channel separately and
assume that they are connected by a digital (say binary) interface. One then finds the (source)
encoder/decoder to optimize the source-to-digital performance, and the (channel)
encoder/decoder to optimize the performance of the channel as a transmitter of digital data.
Solution of the source and channel problems leads immediately to the solution of the original
joint source-channel problem. The fact that a digital interface between the source and channel
is essentially optimal has profound implications in the modern era of digital storage and
communication of all types of information.

Thus the revolutionary elements of Shannon’s contribution were the invention of the
source-encoder-channel-decoder-destination model, and the elegant and remarkably general
solution of the fundamental problems which he was able to pose in terms of this model.
Particularly significant is the demonstration of the power of coding with delay in a
communication system, the separation of the source and channel coding problems, and the
establishment of fundamental natural limits on communication.

In the course of developing the solutions to the basic communication problem outlined
above, Shannon created several original mathematical concepts. Primary among these is the

3
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notion of the ‘‘entropy’’ of a random variable (and by extension of a random sequence), the
‘‘mutual information’’ between two random variables or sequences, and an algebra that relates
these quantities and their derivatives. He also achieved a spectacular success with his technique
of random coding, in which he showed that an encoder chosen at random from the universe of
possible encoders will, with high probability, give essentially optimal performance.

Shannon’s work, as well as that of his legion of disciples, provides a crucial knowledge
base for the discipline of communication engineering. The communication mode!l is general
enough so that the fundamental limits and general intuition provided by Shannon theory
provide an extremely useful ‘‘roadmap’’ to designers of communication and information
storage systems. For example, the theory tells us that English text is not compressible to fewer
than about 1.5 binary digits per English letter, no matter how complex and clever the
encoder/decoder. Most significant is the fact that Shannon’s theory indicated how to design
more efficient communication and storage systems by demonstrating the enormous gains
achievable by coding, and by providing the intuition for the correct design of coding systems.
The sophisticated coding schemes used in systems as diverse as ‘‘deep-space’’ communication
systems (for example, NASA'’s planetary probes), and home compact disk audio systems, owe a
great deal to the insight provided by Shannon theory. As time goes on, and our ability to
implement more and more complex processors increases, the information theoretic concepts
introduced by Shannon become correspondingly more relevant to day-to-day communications.



A Mathematical Theory of Communication
By C. E. SHANNON

INTRODUCTION

HE recent development of various methods of modulation such as PCM

and PPM which exchange bandwidth for signal-to-noise ratio has in-
tensified the interest in a general theory of communication. A basis for
such a theory is contained in the important papers of Nyquist! and Hartley?
on this subject. In the present paper we will extend the theory to include a
number of new factors, in particular the effect of noise in the channel, and
the savings possible due to the statistical structure of the original message
and due to the nature of the final destination of the information.

The fundamental problem of communication is that of reproducing at
one point either exactly or approximately a message selected at another
point. Frequently the messages have meaning; that is they refer to or are
correlated according to some system with certain physical or conceptual
entities. These semantic aspects of communication are irrelevant to the
engineering problem. The significant aspect is that the actual message is
one selecled from a sel of possible messages. The system must be designed
to operate for each possible selection, not just the one which will actually
be chosen since this is unknown at the time of design.

If the number of messages in the set is finite then this number or any
monotonic function of this number can be regarded as a measure of the in-
formation produced when one message is chosen from the set, all choices
being equally likely. As was pointed out by Hartley the most natural
choice is the logarithmic function. Although this definition must be gen-
eralized considerably when we consider the influence of the statistics of the
message and when we have a continuous range of messages, we will in all
cases use an essentially logarithmic measure.

The logarithmic measure is more convenient for various reasons:

1. It is practically more useful. Parameters of engineering importance

! Nyquist, H., ‘‘Certain Factors Affecting Telegraph Speed,’’ Bell System Technical Jour-
nal, April 1924, p. 324; ‘‘Certain Topicsin Telegraph Transmission Theory,”” A.I. E. E.
Trans., v. 47, April 1928, p. 617.

* Hartley, R. V. L., “Transmission of Information,”’ Bell System Teclmical Journal, July
1928, p. 535.

Published in Tue BerL System TecnNicaL JourNaL MONOGRAPH B-1598

Vol. 27, pp. 379-423, 623-656, July, October, 1948 .
Copyright 1948 by AMericAN TeLernoNe AND Terecrarnt Co. Reissued December, 1957
Printed in U. §. A.
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such as time, bandwidth, number of relays, etc., tend to vary linearly with
the logarithm of the number of possibilities. For example, adding one relay
to a group doubles the number of possible states of the relays. It adds 1
to the base 2 logarithm of this number. Doubling the time roughly squares
the number of possible messages, or doubles the logarithm, etc.

2. It is nearer to our intuitive feeling as to the proper measure. This is
closely related to (1) since we intuitively measure entities by linear com-
parison with common standards. One feels, for example, that two punched
cards should have twice the capacity of one for information storage, and two
identical channels twice the capacity of one for transmitting information.

3. It is mathematically more suitable. Many of the limiting operations
are simple in terms of the logarithm but would require clumsy restatement in
terms of the number of possibilities.

The choice of a logarithmic base corresponds to the choice of a unit for
measuring information. If the base 2 is used the resulting units may be
called binary digits, or more briefly bits, a word suggested by J. W. Tukey.
A device with two stable positions, such as a relay or a flip-flop circuit, can
store one bit of information. N such devices can store N bits, since the
total number of possible states is 2¥ and log,2¥ = N. If the base 10 is
used the units may be called decimal digits. Since

log:s M = logio M/logs2
= 3.32 logio M,

a decimal digit is about 3} bits. A digit wheel on a desk computing machine
has ten stable positions and therefore has a storage capacity of one decimal
digit. In analytical work where integration and differentiation are involved
the base e is sometimes useful. The resulting units of information will be
called natural units. Change from the base a to base b merely requires
multiplication by logs a.

By a communication system we will mean a system of the type indicated
schematically in Fig. 1. It consists of essentially five parts:

1. An information source which produces a message or sequence of mes-
sages to be communicated to the receiving terminal. The message may be
of various types: e.g. (a) A sequence of letters as in a telegraph or teletype
system; (b) A single function of time f(f) as in radio or telephony; (c) A
function of time and other variables as in black and white television—here
the message may be thought of as a function f(x, ¥, {) of two space coordi-
nates and time, the light intensity at point (x, ¥) and time { on a pickup tube
plate; (d) Two or more functions of time, say f({), g(!), h(f)—this is the
case in “three dimensional” sound transmission or if the system is intended
to service several individual channels in multiplex; (e) Several functions of
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several variables—in color television the message consists of three functions
f(x, 5, 1), g(x, 5, 1), h(x, y, !) defined in a three-dimensional continuum—
we may also think of these three functions as components of a vector field
defined in the region—similarly, several black and white television sources
would produce “messages” consisting of a number of functions of three
variables; (f) Various combinations also occur, for example in television
with an associated audio channel.

2. A !ransmiller which operates on the message in some way to produce a
signal suitable for transmission over the channel., In telephony this opera-
tion consists merely of changing sound pressure into a proportional electrical
current. In telegraphy we have an encoding operation which produces a
sequence of dots, dashes and spaces on the channel corresponding to the
message. In a multiplex PCM system the different spcech functions must
be sampled, compressed, quantized and encoded, and finally interlcaved

INFORMATION
SOURCE TRANSMITTER RECEIVER DESTINATION

Lo

RECEIVED
SIGNAL

SIGNAL

ME SSAGE MESSAGE

SOURCE
Fig. 1—Schematic diagram of a general communication system.
properly to construct the signal. Vocoder systems, television, and fre-
quency modulation are other examples of complex operations applied to the
message to obtain the signal.

3. The channel is merely the medium used to transmit the signal from
transmitter to receiver. It may be a pair of wires, a coaxial cable, a band of
radio frequencies, a beam of light, etc.

4. The receiver ordinarily performs the inverse operation of that done by
the transmitter, reconstructing the message from the signal.

S. The destination is the person (or thing) for whom the message is in-
tended.

We wish to consider certain general problems involving communication
systems. To do this it is first neccssary to represent the various elements
involved as mathematical entities, suitably idealized from their physical
counterparts. We may roughly classify communication systems into three
main categories: discrete, continuous and mixed. By a discrete system we
will mean onc in which both the message and the signal are a scquence of
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discrete symbols. A typical case is telegraphy where the message is a
sequence of letters and the signal a sequence of dots, dashes and spaces.
A continuous system is one in which the message and signal are both treated
as continuous functions, e.g. radio or television. A mixed system is one in
which both discrete and continuous variables appear, e.g., PCM transmis-
sion of speech.

We first consider the discrete case. This case has applications not only
in communication theory, but also in the theory of computing machines,
the design of telephone exchanges and other fields. In addition the discrete
case forms a foundation for the continuous and mixed cases which will be
treated in the second half of the paper.

PART I: DISCRETE NOISELESS SYSTEMS

1. Tue DiscrReETE NoOISELESS CHANNEL

Teletype and telegraphy are two simple examples of a discrete channel
for transmitting information. Generally, a discrete channel will mean a
system whereby a sequence of choices from a finite set of elementary sym-
bols S; - - - S. can be transmitted from one point to another. Each of the
symbols S; is assumed to have a certain duration in time {; seconds (not
necessarily the same for different S;, for example the dots and dashes in
telegraphy). It is not required that all possible sequences of the S be cap-
able of transmission on the system; certain sequences only may be allowed.
These will be possible signals for the channel. Thus in telegraphy suppose
the symbols are: (1) A dot, consisting of line closure for a unit of time and
then line open for a unit of time; (2) A dash, consisting of three time units
of closure and one unit open; (3) A letter space consisting of, say, three units
of line open; (4) A word space of six units of line open. We might place
the restriction on allowable sequences that no spaces follow each other (for
if two letter spaces are adjacent, it is identical with a word space). The
question we now consider is how one can measure the capacity of such a
channel to transmit information.

In the teletype case where all symbols are of the same duration, and any
sequence of the 32 symbols is allowed the answer is easy. Each symbol
represents five bits of information. If the system transmits # symbols
per second it is natural to say that the channel has a capacity of 5» bits per
second. This does not mean that the teletype channel will always be trans-
mitting information at this rate—this is the maximum possible rate and
whether or not the actual rate reaches this maximum depends on the source
of information which feeds the channel, as will appear later.
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In the more general case with different lengths of symbols and constraints
on the allowed sequences, we make the following definition:
Definition: The capacity C of a discrete channel is given by

C = Lim '8 ¥ (D)
T —*0 T
where N(T) is the number of allowed signals of duration T.

It is easily seen that in the teletype case this reduces to the previous
result. It can be shown that the limit in question will exist as a finite num-
ber in most cases of interest. Suppose all sequences of the symbols S, , - - - ,
S are allowed and these symbols have durations 4, -+, #,. What is the
channel capacity? If N(¢) represents the number of sequences of duration
! we have

NO=Nt—u)+Nt—ta)+---+N@t—1,)

The total number is equal to the sum of the numbers of sequences ending in
S1, 82, -+, Sa and these are N(¢ — 4), N(t — b), -+, N(t — ,), respec-
tively. According to a well known result in finite differences, N(/) is then
asymptotic for large ¢ to X, where X, is the largest real solution of the
characteristic equation:

Xh4Xx""4+... 4 X""=1
and .thcrcfore
C = log Xo

In case there are restrictions on allowed sequences we may still*often ob-
tain a difference equation of this type and find C from the characteristic
equation. In the telegraphy case mentioned above

N@)=N@—-2)4+Nt—4)+Nt—-5+Ne—-7+Nt— 8
+ N(@ — 10)

as we see by counting sequences of symbols according to the last or next to
the last symbol occurring. Hence C is — log uo where puq is the positive
root of 1 = p? 4 p* 4 p¥ 4+ 7 + p® + 4’ Solving this we find C = 0.539.

A very general type of restriction which may be placed on allowed se-
quences is the following: We imagine a number of possible states a; , a2, - - ,
as . For each state only certain symbols from the set S, , ---, Sa can be
transmitted (different subsets for the different states). When one of these
has been transmitted the state changes to a new state depending both on
the old state and the particular symbol transmitted. The telegraph casc is
a simple example of this. There are two states depending on whether or not
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a space was the last symbol transmitted. If so then only a dot or a dash
can be sent next and the state always changes. If not, any symbol can be
transmittcd and the state changes if a space is sent, otherwise it remains
the same. The conditions can be indicated in a linear graph as shown in
Fig. 2. The junction points correspond to the states and the lines indicate
the symbols possible in a state and the resulting state. In Appendix I it is
shown that if the conditions on allowed sequences can be described in this
form C will exist and can be calculated in accordance with the following
result:

Theorem 1: Let b{? be the duration of the st symbol which is allowable in
state ¢ and leads to state . Then the channel capacity C is equal to log
W where W is the largest rcal root of the determinait equation:

I3 Wi’ — 551 = 0.

where §;; = 1if i = j and is zero otherwisc.

DASH
A (7 oot
Noasn
WORD SPACE

Fig. 2—Graphical rcpresentation of the constraints on tclegraph symbols.

For cxample, in the telegraph case (Fig. 2) the determinant is:
-1 W+ w
WwrHwe W+ wr -1

On expansion this leads to the equation given above for this case.

2. Tur DiISCRETE SOURCE OF INFORMATION

We have secn that under very general conditions the logarithm of the
number of possible signals in a discrete channel increases linearly with time.
The capacity to transmit information can be specified by giving this rate of
increase, the number of bits per second required to specify the particular
signal used.

We now consider the information source. How is an information source
to be described mathematically, and how much information in bits per sec-
ond is produced in a given source? The main point at issuc is the effect of
statistical knowledge about the source in reducing the required capacity
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of the channel, by the use of proper encoding of the information. In teleg-
raphy, for example, the messages to be transmitted consist of sequences
of letters. These sequences, however, are not completely random. In
general, they form sentences and have the statistical structure of, say, Eng-
lish. The letter E occurs more frequently than Q, the sequence TIH more
frequently than XP, etc. The existence of this structurc allows one to
make a saving in time (or channel capacity) by properly encoding the mes-
sage sequences into signal sequences. This is already done to a limited ex-
tent in telegraphy by using the shortest channel symbol, a dot, for the most
common English letter E; while the infrequent letters, Q, X, Z arc repre-
sented by longer sequences of dots and dashes. This idea is carried still
further in certain commercial codes where common words and phrases are
represented by four- or five-letter code groups with a considerable saving in
average time. The standardized greeting and anniversary telegrams now
in use extend this to the point of encoding a sentence or two into a relatively
short sequence of numbers.

We can think of a discrete source as generating the message, symbol by
symbol. It will choose successive symbols according to certain probabilitics
depending, in general, on preceding choices as well as the particular symbols
in question. A physical system, or a mathematical model of a system which
produces such a sequence of symbols governed by a set of probabilities is
known as a stochastic process.? We may consider a discrete source, there-
fore, to be represented by a stochastic process. Conversely, any stochastic
process which produces a discrete sequence of symbols chosen from a finite
set may be considered a discrete source. This will include such cases as:
1. Natural written languages such as English, German, Chinese.

2. Continuous information sources that have been rendered discrete by some
quantizing process. For example, the quantized speech from a PCM
transmitter, or a quantized television signal.

3. Mathematical cases where we merely define abstractly a stochastic
process which generates a sequence of symbols. The following are ex-
amples of this last type of source.

(A) Suppose we have five letters A, B, G, D, E which are chosen each
with probability .2, successive choices being independent. This
would lead to a sequence of which the following is a typical example.
BDCBCECCCADCBDDAAECEEA
ABBDAEECACEEBAEECBCEAD
This was constructed with the use of a table of random numbers.*

3 See, for example, S. Chandrasekhar, ‘“Stochastic Problems in Physics and Astronomy,”

Reviews :{ Modern Physics, v. 15, No. 1, January 1943, p. 1.
4 Kendall and Smith, ‘“Tables of Random Sampling Numbers,’' Cambridge, 1939.



12

C. E. Shannon

(B) Using the same five letters let the probabilities be 4, .1, .2, .2, .1

respectively, with successive choices independent. A typical
message from this source is then:
AAACDCBDCEAADADACEDA
EADCABEDADDCECAAAAAD

(C) A more complicated structure is obtained if successive symbols are

not chosen independently but their probabilities depend on preced-
ing letters. In the simplest case of this type a choice depends only
on the preceding letter and not on ones before fhat. The statistical
structure can then be described by a set of transition probabilities
pi(7), the probability that letter i is followed by letter j. The in-
dices i and j range over all the possible symbols. A second equiv-
alent way of specifying the structure is to give the ‘“‘digram” prob-
abilities p(, ), i.e., the relative frequency of the digram i j. The
letter frequencies p(), (the probability of letter ¢), the transition
probabilities p;(7) and the digram probabilities p(z, 7) are related by
the following formulas.

() = 2,: pG, 7) = Z,; G, i) = Z; p() i3
p(i,5) = p(Dp:(4)
2; pii) = 22 p0) = ;3 26, ) = 1.

As a specific example suppose there are three letters A, B, C with the prob-
ability tables:

p:(7) j i|p(i) p(, 7 J
A B C A B C
Alo ¢ 1 Al 47 Al0 o 1%
i B|§ % 0 B} 3% i Bligr o7 0
Clyi & 1% Ciar Cldr s 1¥s

A typical message from this source is the following:
ABBABABABABABABBBABBBBBAB
ABABABABBBACACABBABBBBABB
ABACBBBABA

The next increase in complexity would involve trigram frequencies
but no more. The choice of a letter would depend on the preceding
two letters but not on the message before that point. A set of tri-
gram frequencies p(%, j, k) or equivalently a set of transition prob-
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abilities p.;(k) would be required. Continuing in this way one ob-
tains successively more complicated stochastic processes. In the
general n-gram case a set of n-gram probabilities (i, , 42, -+ - , )
or of transition probabilities ps,, 45 ..... in- (ia) is required to
specify the statistical structure.

(D) Stochastic processes can also be defined which produce a text con-
sisting of a sequence of “words.” Suppose there are five letters
A, B, C, D, E and 16 “words” in the language with ascociated

probabilities:

J0A .16 BEBE .11 CABED .04 DEB
.04 ADEB .04 BED 05 CEED .15 DEED
.05 ADEE 02 BEED .08 DAB .01 EAB
O1BADD .05CA 04 DAD 05 EE

Suppose successive “words” are chosen independently and are

separated by a space. A typical message might be:

DAB EE A BEBE DEED DEB ADEE ADEE EE DEB BEBE

BEBE BEBE ADEE BED DEED DEED CEED ADEE A DEED

DEED BEBE CABED BEBE BED DAB DEED ADEB

If all the words are of finite length this process is equivalent to one

of the preceding type, but the description may be simpler in terms

of the word structure and probabilities. We may also generalize

here and introduce transition probabilities between words, etc.

These artificial languages are useful in constructing simple problems and
examples to illustrate various possibilities. We can also approximate to a
natural language by means of a series of simple artificial languages. The
zero-order approximation is obtained by choosing all letters with the same
probability and independently. The first-order approximation is obtained
by choosing successive letters independently but each letter having the
same probability that it does in the natural language® Thus, in the first-
order approximation to English, E is chosen with probability .12 (its fre-
quency in normal English) and W with probability .02, but there is no in-
fluence between adjacent letters and no tendency to form the preferred
digrams such as TH, ED, etc. In the second-order approximation, digram
structure is introduced. After a letter is chosen, the next one is chosen in
accordance with the frequencies with which the various letters follow the
first one. This requires a table of digram frequencies p;(j). In the third-
order approximation, trigram strurture is introduced. Each letter is chosen
with probabilities which depend on the preceding two letters.
$ Letter, digram and trigram frequencies are given in “Secret and Urgent” by Fletcher

Pratt, Blue Ribbon Books 1939. Word [requencics are tabulated in “Relative Frequency
of English Speech Sounds,” G. Dewcy, Harvard University Prcss, 1923.
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3. THE SERIES OF APPROXIMATIONS TO ENGLISH

To give a visual idea of how this series of processes approaches a language,
typical sequences in the approximations to English have been constructed
and are given below. In all cases we have assumed a 27-symbol “alphabet,”
the 26 letters and a space.

1. Zero-order approximation (symbols independent and equi-probable).
XFOML RXKHRJFFJUJ ZLPWCFWKCY]J
FFJEYVKCQSGXYD QPAAMKBZAACIBZLH]JQD

2. First-order approximation (symbols independent but with frequencies

of English text).
OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI
ALHENHTTPA OOBTTVA NAH BRL

3. Sccond-order approximation (digram structure as in English).

ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY
ACHIN D ILONASIVE TUCOOWE AT TEASONARE FUSO
TIZIN ANDY TOBE SEACE CTISBE
4. Third-order approximation (trigram structure as in English).
IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID
PONDENOME OF DEMONSTURES OF THE REPTAGIN IS
REGOACTIONA OF CRE
5. First-Order Word Approximation. Rather than continue with tetra-
gram, - -+, n-gram structure it is easier and better to jump at this
point to word units. Here words are chosen independently but with
their appropriate frequencies.
REPRESENTING AND SPEEDILY IS AN GOOD APT OR
COME CAN DIFFERENT NATURAL HERE HE THE A IN
CAME THE TO OF TO EXPERT GRAY COME TO FUR-
NISHES THE LINE MESSAGE HAD BE THESE.
6. Second-Order Word Approximation. The word transition probabil-
ities are correct but no further structure is included.
THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH
WRITER THAT THE CHARACTER OF THIS POINT IS
THEREFORE ANOTHER METHOD FOR THE LETTERS
THAT THE TIME OF WHO EVER TOLD THE PROBLEM
FOR AN UNEXPECTED

The resemblance to ordinary English text increases quite noticeably at
each of the above steps. Note that these samples have reasonably good
structure out to about twice the range that is taken into account in their
construction. Thus in (3) the statistical process insures reasonable text
for two-letter sequence, but four-letter sequences from the sample can
usually be fitted into good sentences. In (6) sequences of four or more
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words can easily be placed in sentences without unusual or strained con-
structions. The particular sequence of ten words ‘‘attack on an English
writer that the character of this” is not at all unreasonable. It appears
then that a sufficiently complex stochastic process will give a satisfactory
representation of a discrete source.

The first two samples were constructed by the use of a book of random
numbers in conjunction with (for example 2) a table of letter frequencies.
This method might have been continued for (3), (4), and (5), since digram,
trigram, and word frequency tables are available, but a simpler equivalent
method was used. To construct (3) for example, one opens a book at ran-
dom and sclects a letter at random on the page. This letter is recorded.
The book is then opened to another page and one reads until this letter is
encountered. The succceding letter is then recorded. Turning to another
page this second letter is searched for and the succeeding letter recorded,
etc. A similar process was used for (4), (5), and (6). It would be interest-
ing if further approximations could be constructed, but the labor involved
becomes enormous at the next stage.

4. GRAPHICAL REPRESENTATION OF A MARKOFF PROCESS

Stochastic processes of the type described above are known mathe-
matically as discrete Markofl processes and have been extensively studied in
the literature.® The general case can be described as follows: There exist a
finite number of possible “states” of a system; Sy, S2, -+, Sa. In addi-
tion there is a set of transition probabilities; p:(j) the probability that if the
system is in state S; it will next go to state S;. To make this Markoff
process into an information source we need only. assume that a letter is pro-
duced for each transition from one state to another. The states will corre-
spond to the *residuc of influence” from preccding letters.

The situation can be represented graphically as shown in rigs. 3, 4 and 3.
The “states” are the junction points in the graph and the probabilities and
letters produced for a transition are given beside the corresponding line.
Figure 3 is for the example B in Section 2, while Fig. 4 corresponds to the
example C. In Fig. 3 there is only one state since successive letters arc
independent. In Fig. 4 there are as many states as letters. If a trigram
example were constructed therc would be at most n? states corresponding
to the possible pairs of letters preceding the one being chosen. Figure 5
is a graph for the case of word structure in example D. Here S corresponds
to the ‘“‘space” symbol.

¢ For a detailed treatment see M. Frechet, ‘“Methods des fonctions arbitraires. Theorie

des énéncments en chaine dans le cas d’un nombre fini d’états possibles.”” Taris, Gauthicr-
Villars, 1938.
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5. Ercopic AND MIXED SOURCES

As we have indicated above a discrete source for our purposes can be con-
sidered to be represented by a Markoff process. Among the possible discrete
Markoff processes there is a group with special properties of significance in

4 A g
£ 2
o Cc
D—.2

Fig. 3—A graph corresponding to the source in example B.

Fig. 5—A graph corresponding to the source in example D.

communication theory. This special class consists of the ‘“‘ergodic” proc-
esses and we shall call the corresponding sources ergodic sources. Although
a rigorous definition of an ergodic process is somewhat involved, the general
idea is simple. In an ergodic process every sequence produced by the proc-
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ess is the same in statistical properties. Thus the letter frequencies,
digram frequencies, etc., obtained from particular sequences will, as the
lengths of the sequences increase, approach definite limits independent of
the particular sequence. Actually this is not true of every sequence but the
set for which it is false has probability zero. Roughly the ergodic property
means statistical homogeneity.

All the examples of artificial languages given above are ergodic. This
property is related to the structure of the corresponding graph. If the graph
has the following two properties’ the corresponding process will be ergodic:

{. The graph does not consist of two isolated parts A and B such that it is
impossible to go from junction points in part A to junction points in
part B along lines of the graph in the direction of arrows and also im-
possible to go from junctions in part B.to junctions in part A.

2. A closed series of lines in the graph with all arrows on the lines pointing
in the same orientation will be called a “circuit.”” The “length” of a
circuit is the number of lines in it. Thus in Fig. S the series BEBES
is a circuit of length 5. The second property required is that the
greatest common divisor of the lengths of all circuits in the graph be
one.

If the first condition is satisfied but the second one violated by having the
greatest common divisor equal to d > 1, the sequences have a certain type
of periodic structure. The various sequences fall into d different classes
which are statistically the same apart from a shift of the origin (i.e., which
letter in the sequence is called letter 1). By a shift of from Qup tod — 1
any sequence can be made statistically equivalent to any other. A simple
example with d = 2 is the following: There are three possible letters a, b, c.
Letter a is followed with either & or ¢ with probabilities § and ¥ respec-
tively. Either b or ¢ is always followed by letter a. Thus a typical sequence
is

abacacacabacababacac

This type of situation is not of much importance for our work.

If the first condition is violated the graph may be separated into a set of
subgraphs each of which satisfies the first condition. We will assume that
the second condition is also satisfied for each subgraph. We have in this
case what may be called a “mixed” source made up of a number of pure
components. The components correspond to the various subgraphs.
If L,, Ly, Ly, - - - are the component sources we may write

L=pLi+ psla+ psla+ ---

where p; is the probability of the component source L; .
T These are restatements in terms of the graph of conditions given in Frechet.
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Physically the situation represented is this: There are several different
sources Ly, L2, Ly , + - - which are each of homogeneous statistical structure
(i.e., they are ergodic). We do not know a priori which is to be used, but
once the sequence starts in a given pure component L; it continues indefi-
nitely according to the statistical structure of that component.

As an example one may take two of the processes defined above and
assume p; = .2 and p; = .8. A sequence from the mixed source

L=2L+ 8L,

would be obtained by choosing first L; or L, with probabilitics .2 and .8
and after this choice gencrating a sequence from whichever was chosen.

Except when the contrary is stated we shall assume a source to be ergodic.
This assumption cnables one to identify avcrages along a sequence with
averages over the ensemble of possible sequences (the probability of a dis-
crepancy being zero). For example the relative frequency of the letier A
in a particular infinite scquence will be, with probability one, equal to its
relative frequency in the ensemble of sequences.

If P; is the probability of state ¢ and p,(j) the transition probability to
state 7, then for the process to be stationary it is clear that the P; must
satisfy equilibrium conditions:

Pj = Z; Pipi(5).

In the ergodic casc it can be shown that with any starting conditions the
probabilities P;(N) of being in state j after N symbols, approach the equi-
librium values as N — o,

6. Cuoice, UNCERTAINTY AND ENTROPY

We have represented a discrete information source as a Markoff process.
Can we definc a quantity which will measure, in some sense, how much in-
formation is “produced” by such a process, or better, at what rate informa-
tion is produced?

Suppose we have a sct of possible events whose probabilities of occurrence
are py, P2, -+, Pn. These probabilities are known but that is all we know
concerning which event will occur. Can we find a mcasure of how much
“choice” is involved in the selection of the event or of how uncertain we are
of the outcome?

If there is such a measure, say H(p1, p2, -+ - , Pn), it is reasonable to re-
quire of it the following properties:

1. H should be continuous in the p;.

2. If all the p; are equal, p; = 111 , then II should be a monotonic increasing
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function of n. With equally likely events there is more choice, or un-
certainty, when there are more possible events.

3. If a choice be broken down into two successive choices, the original
H should be the weighted sum of the individual values of H. The
meaning of this is illustrated in Fig. 6. At the left we have three
possibilities p; = 4, 2 = 4, ps = §.  On the right we first choose be-
tween two possibilitieseach with probability 4, and if the second occurs
make another choice with probabilities 3, 4. The final results have
the same probabilities as before. We require, in this special case,
that

HE, 40 = HG D +4HE D

The cocfficient 4 is because this second choice only occurs half the time.

/2 /2
if2
/3
2 2/381/3
1/6 1/3
1/6

Fig, 6—Decomposition of a choice from thrce possibilities.

In Appendix II, the following result is established:
Theorem 2: The only H satisfying the three above assumptions is of the
form:

H=-K Z pi lOg j &
t=l

where K is a positive constant.

This theorem, and the assumptions required for its proof, are in no way
necessary for the present theory. It is given chiefly to lend a certain plausi-
bility to some of our later definitions. The real justification of these defi-
nitions, however, will reside in their implications.

Quantities of the form I = —Z p, log p; (the constant K metely amounts
to a choice of a unit of measure) play a central role in information theory as
measures of information, choice and uncertainty. The form of H will be
recognized as that of entropy as defined in certain formulations of statistical
mechanics® where p; is the probability of a system being in cell i of its phase
space. H is then, for example, the H in Boltzmann’s famous II theorem.
We shall call H = — Z p; log p: the entropy of the set of probabilities

* See, for example, R. C. Tolman, *Principles of Statistical Mechanics,” Oxford.
Clarendon, 1938.
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P, **+, pa. If xis a chance variable we will write H(x) for its entropy;
thus x is not an argument of a function but a label for a number, to differen-
tiate it from H(y) say, the entropy of the chance variable y.
The entropy in the case of two possibilities with probabilities p and ¢ =
1 — p, namely
= —(plog p+ glog 9)
is plotted in Fig. 7 as a function of 2.

The quantity H has a number of interesting properties which further sub-
stantiate it as a reasonable measure of choice or information.

ZERN
/ \

~
pd

aiTs

[
paat
1

(7]
e}
e

(4] o 2 3 A -] P 4 7 .8 .9 L

Fig. 7—Entropy in the case of two pessibilities with probabilities p and (1 — p).

1. H = 0 if and only if all the p; but one are zero, this one having the
value unity. Thus only when we are certain of the outcome does H vanish.
Otherwise H is positive.

2. For a given #, H is a maximum and cqual to log # when all the p; are

equal ( i.e., ;) . This is also intuitively the most uncertain situation,

3. Suppose there are two events,  and y, in question with m possibilities
for the first and # for the second. Let p(i, 7) be the probability of the joint
occurrence of i for the first and 7 for the second. The entropy of the joint
event is

H(z,y) = — 22;, (i, 1) log p(i, 1)
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while

H(x) = — Z‘. 20, 5) log ; #G, )
HG) = = 2 4G, 1) log 2 5G, 5).

It is easily shown that
H(x,y) < H(x) + H(y)

with equality only if the events are independent (i.e., p(i, 7) = (i) (7).
The uncertainty of a joint event is less than or equal to the sum of the
individual uncertainties.

4. Any change toward equalization of the probabilities p;, p2, -+, pa
increases . Thus if py < p; and we increase p,, decreasing p; an equal
amount so that p, and p; are more nearly equal, then I increases. More
generally, if we perform any “averaging” operation on the p; of the form

pi = Zj: ai; pj

where Z aij = Z a;; = 1,and all a;; > O, then H increases (except in the
i ]

special case where this transformation amounts to no more than a permuta-
tion of the p; with H of course remaining the same).

S. Suppose there are two chance events x and y as in 3, not necessarily
independent. For any particular value ¢ that x can assume there is a con-
ditional probability p«(;) that y has the value ;. This is given by

)
P = DIFTGRY

We define the conditional eniropy of y, H .(y) as the average of the entropy
of y for each value of x, weighted according to the probability of getting
that particular x. That is

HAy) = —‘Zi 2(i, 7) log $:(5).

This quantity measures how uncertain we are of y on the average when we
know x. Substituting the value of pi(j) we obtain

H(xy J’) - H(x)

or
H(x, y) = H(x) + H,(y)
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The uncertainty (or entropy) of the joint event x, y is the uncertainty of x
plus the uncertainty of y when x is known,
6. From 3 and 5 we have

II(x) + H(y) > H(x,y) = H(x) + H.(y)
Hence

H(y) 2 H.(y)

The uncertainty of y is never increased by knowledge of x. It will be de-
creased unless » and y are independent events, in which case it is not changed.

7. Tue ENTROPY OF AN INFORMATION SOURCE

Consider a discrete source of the finite state type considercd above.
For each possible state ¢ there will be a set of probabilities p;(j) of pro-
ducing the various possible symbols j. Thus therc is an cntropy H; for
cach state. The entropy of the source will be defined as the average of
these I7; weighted in accordance with the probability of occurrence of the

states in question:
2 Pl
1]

—g P pi(5) log pi(5)

n

This is the entropy of the source per symbol of text. If the Markoff proc-
ess is proceeding at a definite time rate there is also an entropy per second

=2 f:l;

where f; is the average frequency (occurrences per second) of state £, Clearly
I = mll

where m is the average number of symbols produced per second. H or H'
measures the amount of information gencrated by the source per symbol
or per second. If the logarithmic base is 2, they will represent bits per
symbol or per second.

If successive symbols are independent then II is simply —Z p; log p;
where p; is the probability of symbol 5. Suppose in this casc we consider a
long message of N symbols. It will contain with high probability about
/N occurrences of the first symbol, pN occurrences of the second, etc.
Hence the probability of this particular message will be roughly

p=ptV pI*" - pint

or
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lOgP*NZPiIOSP-'

logp = —NH
0= log1/p .
N

H is thus approximately the logarithm of the reciprocal probability of a
typical long sequence divided by the number of symbols in the sequence.
The same result holds for any source. Stated more precisely we have (see
Appendix III):

Theorem 3: Given any ¢ > 0 and & > 0, we can find an N, such that the se-
quences of any length N > N, fall into two classes:

1. A set whose total probability is less than e.

2. The remainder, all of whose members have probabilities satisfying the
inequality

log p~ _ l
i Hi<s
—1
In other words we are almost certain to have 13%\—,— very close to I when N

is large.

A closely related result deals with the number of scquences of various
probabilitics. Consider again the sequences of length N and lct them be
arranged in order of decreasing probability. We define n(g) to be the
number we must take from this st starting with the most probable one in
order to accumulate a total probabilily ¢ for those taken.

Theorem 4:

. log n(q) _
ym=y =
when g does not equal 0 or 1.

We may interpret log n(g) as the number of bits required to specify the
sequence when we consider only the most probable sequences with a total
log_n(q)

N
specification. The theorem says that for large NV this will be independent of
g and equal to H. The rate of growth of the logarithm of the number of
reasonably probable sequences is given by II, regardless of our interpreta-
tion of ‘“‘reasonably probable.” Due to these results, which are proved in
appendix 111, it is possible for most purposes to treat the long sequences as
though there were just 2" of them, each with a probability 2777,

probability ¢. Then is the number of bits per symbol for the
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The next two theorems show that & and H’ can be determined by limit-
ing operations directly from the statistics of the message sequences, without
reference to the states and transition probabilities between states.
Theorem 5: Let p(B:) be the probability of a sequence B; of symbols from
the source. Let

G = —% 3 #(B) log (30

where the sum is over all sequences B; containing N symbols. Then G»
is a monotonic decreasing function of N and

LimGy = H.

N0

Theorem 6: Let p(B:, S;) be the probability of sequence B; followed by
symbol S; and ps,(S;) = p(B:, S;)/p(B:) be the conditional probability of
S; alter B;. Let

Fy = =2 p(B;,S;) log ps,(S;)

A\

where the sum is over all blocks B; of N — 1 symbols and over all symbols
S;j. Then Fy is a monotonic decreasing function of N,

Fy = NGy —(N — 1) Gr-a,

1 n
GN=NZIFN,
I'NS.GN’

and Lim Fy = L.

N—s00

These results are derived in appendix III. They show that a series of
approximations to I can be obtained by considering only the statistical
structure of the sequences extending over 1, 2, --- N symbols. Fy is the
better approximation. In fact Iy is the entropy of the N ** order approxi-
mation to the source of the type discussed above. If there are no statistical
influences extending over more than N symbols, that is if the conditional
probability of the next symbol knowing the preceding (¥ — 1) is not
changed by a knowledge of any before that, then 'y = H. Fy of course is
the conditional entropy of the next symbol when the (N — 1) preceding
ones are known, while G is the entropy per symbol of blocks of N symbols.

The ratio of the entropy of a source to the maximum value it could have
while still restricted to the same symbols will be called its relative enlropy.
This is the maximum compression possible when we encode into the same
alphabet. One minus the relative entropy is the redundancy. The redun-
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dancy of ordinary English, not considering statistical structure over greater
distances than about eight letters is roughly 509,. This means that when
we write English half of what we write is determined by the structure of the
language and half is chosen freely. The figure 509, was found by several
independent methods which all gave results in this neighborhood. One is
by calculation of the entropy of the approximations to English. A sccond
method is to delete a certain fraction of thc letters from a sample of English
text and then let somecone attempt to rcstore them. If they can be re-
stored when 50% are deleted the redundancy must be greater than 509%.
A third method depends on certain known results in cryptography.

Two extremes of redundancy in English prose are represented by Basic
English and by James Joyces’ book “Finigans Wake.” The Basic English
vocabulary is limited to 850 words and the redundancy is very high. This
is reflected in the expansion that occurs when a passage is translated into
Basic English. Joyce on the other hand enlarges the vocabulary and is
alleged to achieve a compression of semantic content.

The redundancy of a language is related to the existence of crossword
puzzles. If the redundancy is zero any sequence of letters is a reasonable
text in the language and any two dimensional array of letters forms a cross-
word puzzle. If the redundancy is too high the language imposes too
many constraints for large crossword puzzles to be possible. A more de-
tailed analysis shows that if we assume the constraints imposed by the
language are of a rather chaotic and random nature, large crossword puzzles
are just possible when the redundancy is 50%. 1If the redundancy is 339,
three dimensional crossword puzzles should be possible, etc.

8. REPRESENTATION OF THE ENcODING AND DECODING QPERATIONS

We have yet to represent mathematically the operations performed by
the transmitter and receiver in encoding and decoding the information.
Either of these will be called a discrete transducer. The input to the
transducer is a sequence of input symbols and its output a sequence of out-
put symbols. The transducer may have an internal memory so that its
output depends not only on the present input symbol but also on the past
history. We assume that the internal memory is finite, i.e. there exists
a finite number m of possible states of the transducer and that its output is
a function of the present state and the present input symbol. The next
state will be a second function of these two quantities. Thus a transducer
can be described by two functions:

Yo = f(xn, an)

anyt = g(%n, an)
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where: x, is the n** input symbol,
a, is the state of the transducer when the n' input symbol is introduced,
¥« is the output symbol (or sequence of output symbols) produced when
%a is introduced if the state is an.

If the output symbols of one transducer can be identified with the input

symbols of a second, they can be connected in tandem and the result is also
a transducer. If there exists a second transducer which operates on the out-
put of the first and recovers the original input, the first transducer will be
called non-singular and the second will be called its inverse.
Theorem 7: The output of a finite state transducer driven by a finite state
statistical source is a finite state statistical source, with entropy (per unit
time) less than or equal to that of the input. If the transducer is non-
singular they are equal.

Let « represent the state of the source, which produces a scquence of
symbols x; ; and let 8 be the state of the transducer, which produces, in its
output, blocks of symbols y;. The combined system can be represented
by the “product state space” of pairs (a, 8). Two points in the space,
(a1, B1) and (a2 P2), are connected by a line if @ can produce an x which
changes B, to B2, and this line is given the probability of that x in this case.
The line is labeled with the block of y; symbols produced by the transducer.
The entropy of the output can be calculated as the weighted sum over the
states. If we sum first on g8 each resulting term is less than or equal to the
corresponding term for a, hence the entropy is not incrcased. If the trans-
ducer is non-singular let its output be connected to the inverse transducer.
If 117, H; and Il arc the output entropies of the source, the first and
second transducers respectively, then Hy > H; > I3 = II] and therefore
Hy = II,.

Suppose we have a system of constraints on possible sequences of the type
which can be represented by a linear graph as in Fig. 2. If probabilities
p¢; were assigned to the various lines connecting state i to state j this would
become a source. There is one particular assignment which maximizes the
resulting entropy (sce Appendix IV).

Theorem 8: Let the system of constraints considered as a channel have a
capacity C. If we assign
(» I’J l{'.)
pii = B, C v
where £ is the duration of the s** symbol leading from state i to state j
and the B; satisfy .
{(2)

B = Z B,'C— $i
0

then H is maximized and equal to C.
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By proper assignment of the transition probabilities the entropy of sym-
bols on a channel can be maximized at the channel capacity.

9. TuE FUNDAMENTAL THEOREM FOR A NOISELESS CHANNEL.

We will now justify our interpretation of H as the rate of generating
information by proving that I/ determines the channel capacity required
with most efficient coding.

Theorem 9: Let a source have entropy II (bits per symbol) and a channel
have a capacity C (bits per second). Then it is possible to encode the output

of the source in such a way as to transmit at the average rate 7('[' — ¢ symbols
per second over the channel where e is arbitrarily small. Tt is not possible

. Cc
to transmit at an average rate greater than A

The converse part of the theorem, that }(:1" cannot be exceeded, may be

proved by noting that the entropy of the channel input per second is equal
to that of the source, since the transmitter must be non-singular, and also
this entropy cannot exceed the channel capacity. Hence II' € C and the
number of symbols per second = H'/lIl < C/H.

The first part of the theorem will be proved in two different ways. The
first method is to consider the set of all sequences of N symbols produced by
the source. For &V large we can divide these into two groups, one containing
less than 2" members and the second containing less than 2** members
(where R is the logarithm of the number of different symbols) and having a
total probability less than u. As N increases 5 and u approach zero. The
number of signals of duration T in the channel is greater than 2'°™"" with
0 small when T is large. If we choose

I
T=<Z,-+x)1v

then there will be a sufficient number of sequences of channel symbols for
the high probability group when N and T are sufficiently large (however
small A) and also some additional ones. The high probability group is
coded in an arbitrary one to one way into this set. The temaining sequences
are represented by larger sequences, starting and ending with one of the
sequences not used for the high probability group. This special sequence
acts as a start and stop signal for a different code. In between a sufficient
time is allowed to give enough different sequences for all the low probability
messages. This will require

T1=<g+¢)N
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where ¢ is small. The mean rate of transmission in message symbols per
second will then be greater than

[(1—a)§+a§‘ _l=[(1—a)(g+x)+a(§+¢)]—'

As N increases §, A and ¢ approach zero and the rate approachesg .

Another method of performing this coding and proving the theorem can
be described as follows: Arrange the messages of length N in order of decreas-
ing probability and suppose their probabilities are gy 2 g2 2 p3... 2 n.

s—1

Let P, = ) $:; that is P, is the cumulative probability up to, but not
1

melading, p, . We first encode into a binary system. The binary code for
message s is obtained by expanding P, as a binary number. The expansion
is carried out to m, places, where s, is the integer satisfying:

1 1
logg— < m, < 1 + loga —
&5 &7

Thus the messages of high probability are represented by short codes and
those of low probability by long codes. From these inequalities we have
1 1

e L Py .
2m."P<2m.—l

The code for P, will differ from all succeeding ones in one or more of its
m, places, since all the remaining P; are at least 2—:_: larger and their binary

expansions thercfore differ in the first m, places. Consequently all the codes
are different and it is possible to recover the message from its code. If the
channel sequences are not already sequences of binary digits, they can be
ascribed binary numbers in an arbitrary fashion and the binary code thus
translated into signals suitable for the channel.

The average number [’ of binary digits used per symbol of original mes-
sage is easily estimated. We have

1

H = V Zm, P,

But,

1 1 1 1 1
ﬁz (log2 'P—‘) ) S -A—,E"I.P. < 7\72 (l + logz -;’-:) D

and therelore,
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GN511,<GN+%

As N increases Gy approaches H, the entropy of the source and H’ ap-
proaches H.
We sce from this that the inefficiency in coding, when only a finite delay of

N symbols is used, need not be greater than I_tl plus the difference between

the true entropy f and the entropy Gy calculated for sequences of length N,
The per cent excess time needed over the ideal is therefore less than

Gn 1

—I—i + ilTV - 1.

This method of encoding is substantially the same as one found inde-
pendently by R. M. Fano.® His method is to arrange the messages of length
N in order of decrcasing probability. Divide this series into two groups of
as nearly equal probability as possible. If the message is in the first group
its first binary digit will be 0, otherwise 1. The groups are similarly divided
into subsets of nearly equal probability and the particular subset determines
the second binary digit. This processis continued until each subset contains
only one message. It is easily seen that apart from minor differences (gen-
erally in the last digit) this amounts to the same thing as the arithmetic
process described above.

10. DiscussioN AND ExAMPLES

In order to obtain the maximum power transfer from a generator to a load
a transformer must in general be introduced so Lhat the generator as scen
from the load has the load resistance. The situation here is roughly anal-
ogous. The transducer which does the encoding should match the source
to the channel in a statistical sense. The source as seen from the channel
through the transducer should have the same statistical structure as the
source which maximizes the entropy in the channel. The content of
Theorem 9 is that, although an exact match is not in general possible, we can
approximate it as closely as desired. The ratio of the actual rate of trans-
mission to the capacity C may be called the cfficiency of the coding system.
This is of course equal to the ratio of the actual entropy of the channel
symbols to the maximum possible entropy.

In general, ideal or nearly ideal encoding requircs a long delay in the
transmitter and recciver. In the noiseless case which we have been
considering, the main function of this delay is to allow reasonably good

® Technical Report No. 65, The Research Laboratory of Electronics, M. I. T.
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matching of probabilities to corresponding lengths of scquences. With a
good code the logarithm of the reciprocal probability of a long message
must be proportional to the duration of the corresponding signal, in fact

T

lg,;p" —C]

must be small for all but a small fraction of the long messages.

If a source can produce only one particular message its entropy is zero,
and no channel is required. For example, a computing machine set up to
calculate the successive digits of = produces a definite sequence with no
chance clement. No channel is required to “transmit” this to another
point. One could construct a second machine to compute the same sequence
at the point. Iowever, this may be impractical. In such a case we can
choose to ignore some or all of the statistical knowledge we have of the
source. We might consider the digits of = to be a random sequence in that
we conslruct a system capable of sending any sequence of digits. In a
similar way we may choose to use some of our statistical knowledge of Eng-
lish in constructing a code, but not all of it. In such a case we consider the
source with the maximum entropy subject to the statistical conditions we
wish to retain. The entropy of this source determines the channel capacity
which is necessary and sufficient. In the = example the only information
retained is that all the digits arc chosen from the set 0, 1, ..., 9. In the
case of English one might wish to use the statistical saving possible due to
letter frequencies, but nothing else. The maximum entropy source is then
the first approximation to English and its entropy determines the required
channel capacity.

As a simple example of some of thesc results consider a source which
produces a sequence of letters chosen from among A, B, C, D with prob-
abilitics 3, 4, %, %, successive symbols being chosen independently. We
have

H=—(blogh+Llog}+ §log})

= I bits per symbol.

Thus we can approximate a coding system to encode messages from this
source into binary digits with an average of  binary digit per symbol.
In this case we can actually achieve the limiting value by the following code
(obtained by the method of the second proof of Theorem 9):
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0
10
110
111

gas~

The average number of binary digits used in encoding a scquence of N sym-
bols will be

NAX1+1iX24+32X3) =1IN

It is easily seen that the binary digits 0, 1 have probabilities 4, 1 so the I for
the coded scquences is one bit per symbol.  Since, on the average, we have 1
binary symbols per original letter, the entropics on a time basis are the
same. The maximum possible entropy for the original sct is log 4 = 2,
occurring when A4, BB, C, D have probabilitics 4, 1, §, 4. Hence the relative
entropy is §. We can translate the binary sequences into the original set of
symbols on a two-to-one basis by the following table:

00 A’
01 B
10 c
11 D

This double process then encodes the original message into the same symbols
but with an average compression ratio § .

As a second example consider a source which produces a sequence of A's
and B’s with probability p for A and ¢ for B. If p < < q wehave

H=—log p"(l — p)'~"
_ _p lng (l - p)(l-‘ﬂ)/l’

Il

plog

[
P
In such a case one can construct a fairly good coding of the message on a
0, 1 channel by sending a special sequence, say 0000, for the infrequent
symbol 4 and then a sequence indicating the number of B’s following it.
This could be indicated by the binary representation with all numbers con-
taining the special sequence deleted. All numbers up to 16 are represented
as usual; 16 is represented by the next binary number after 16 which does
not contain four zeros, namely 17 = 10001, etc.

It can be shown that as p — 0 the coding approaches ideal provided the
length of the special sequence is properly adjusted.



32 C. E. Shannon

PART II: THE DISCRETE CHANNEL WITH NOISE

11. REPRESENTATION OF A Noi1sY DiscRETE CHANNEL

We now consider the case where the signal is perturbed by noise during
transmission or at one or the other of the terminals. This means that the
received signal is not necessarily the same as that sent out by the trans-
mitter. Two cases may be distinguished. If a particular transmitted signal
always produces the same received signal, i.e. the received signal is a definite
function of the transmitted signal, then the effect may be called distortion.
If this function has an inverse—no two transmitted signals producing the
same received signal—distortion may be corrected, at least in principle, by
merely performing the inverse functional opération on the received signal.

The case of interest here is that in which the signal does not always undergo
the same change in transmission. In this case we may assume the received
signal E to be a function of the transmitted signal S and a second variable,
the noise N.

E = {(S, N)

The noise is considered to be a chance variable just as the message was
above. In general it may be represented by a suitable stochastic process.
The most general type of noisy discrete channel we shall consider is a general-
ization of the finite state noise free channel described previously. We
assume a finite number of states and a set of probabilities

pa. i(ﬁ; j)'

This is the probability, if the channel is in state « and symbol ¢ is trans-
mitted, that symbol j will be received and the channel left in state 8. Thus
« and § range over the possible states, i over the possible transmitted signals
and j over the possible received signals. In the case where successive sym-
bols are independently perturbed by the noise there is only one state, and
the channel is described by the set of transition probabilities p:(7), the prob-
ability of transmitted symbol 1 being received as j.

If a noisy channel is fed by a source there are two statistical processes at
work: the source and the noise. Thus there are a number of entropies that
can be calculated. First there is the entropy H(x) of the source or of the
input to the channel (these will be equal if the transmitter is non-singular).
The entropy of the output of the channel, i.e. the received signal, will be
denoted by H(y). In the noiseless case H(y) = H(x). The joint entropy of
input and output will be H(xy). Finally there are two conditional entro-
pies H,(y) and H(x), the entropy of the output when the input is known
and conversely. Among these quantities we have the relations

H(x,y) = H(x) + H.(y) = H(y) + H,(x)
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All of these entropies can be measured on a per-second or a per-symbol
basis.

12. EqQuivocAaTIiON AND CHANNEL CAPACITY

If the channel is noisy it is not in general possible to reconstruct the orig-
inal message or the transmitted signal with cerlainty by any operation on the
received signal E. There are, however, ways of transmitting the information
which are optimal in combating noise. This is the problem which we now
consider,

Suppose there are two possible symbols 0 and 1, and we are transmitting
at a rate of 1000 symbols per second with probabilities po = py = 4. Thus
our sourcc is producing information at the rate of 1000 bits per second. Dur-
ing transmission the noise introduces errors so that, on the average, 1 in 100
is received incorrectly (a0 as 1, or 1 as 0). What is the rate of transmission
of information? Certainly less than 1000 bits per second since about 1%,
of the received symbols are incorrect. Our first impulse might be to say the
rate is 990 bits per second, merely subtracting the expected number of errors.
This is not satisfactory since it fails to take into account the recipient’s
lack of knowledge of where the errors occur. We may carry it to an extreme
case and suppose the noise so great that the received symbols are entirely
independent of the transmitted symbols. The probability of receiving 1 is
} whatever was transmitted and similarly for 0. Then about half of the
received synibols are correct due to chance alone, and we would be giving
the system credit for transmitting 500 bits per second while actually no
information is being transmitted at all. Equally “good” transmission
would be obtained by dispensing with the channel entirely and flipping a
coin at the receiving point.

Evidently the proper correction to apply to the amount of information
transmitted is the amount of this information which is missing in the re-
ceived signal, or alternatively the uncertainty when we have received a
signal of what was actually sent. From our previous discussion of entropy
as a measure of uncertainty it seems reasonable to use the conditional
entropy of the message, knowing the rececived signal, as a measure of this
missing information. This is indeed the proper definition, as we shall see
later. Following this idea the rate of actual transmission, R, would be ob-
tained by subtracting from the rate of production (i.e., the entropy of the
source) the average rate of conditional entropy.

R = H(x) — H,(x)

The conditional entropy H,(x) will, for convenience, be called the equi-
vocation. 1t measures the average ambiguity of the received signal.
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In the example considered above, if a Q is reccived the a posleriori prob-
ability that a 0 was transmitted is .99, and that a 1 was transmitted is
.01, These figures are reversed if a 1 is received. Hence

H,(x) = — {99 log .99 - 0.01 log 0.01]
= ,081 bits/symbol

or 81 bits per second. We may say that the system is transmitting at a rate
1000 — 81 == 919 bits per second. In the extreme case where a 0 is equally
likely to be received as a 0 or 1 and similarly for 1, the a posteriori proba-
bilities are $, } and

I,(x) = — I} log 3 + } log 1]
1 bit per symbol

or 1000 bits per second. The rate of transmission is then 0 as it should
be.

The following theorem gives a direct intuitive interpretation of the

equivocation and also serves to justify it as the unique appropriate measure.
We consider a communication system and an observer (or auxiliary device)
who can see both what is sent and what is recovered (with errors
due to noise). This observer notes the errors in the recovered message and
transmits data to the receiving point over a “correction channel” to enable
the receiver to correct the errors. The situation is indicated schematically
in Fig. 8.
Theorem 10: If the correction channel has a capacily equal to H,(x) it is
possible to so encode the correction data as to send it over this channel
and correct all but an arbitrarily small fraction € of the errors. This is not
possible if the channel capacity is less than I, (x).

Roughly then, H,(x) is the amount of additional information that must be
supplied per second at the receiving point to correct the received message.

To prove the first part, consider long scquences of received message M’
and corresponding original message M. There will be logarithmically
TII,(x) of the M’s which could reasonably have produced cach M’. Thus
we have TH,(x) binary digits to send cach T seconds. This can be done
with e frequency of errors on a channel of capacity H,(x).

The second part can be proved by noting, first, that for any discrete chance
variables x, y, z

I, (x, z) > II,(x)
The left-hand side can be expanded to give
Hyz) + Hulx) 2 H(x)
H,(x) 2 Hfx) — Hfz) 2 &) — HE)
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If we identify x as the output of the source, y as the reccived signal and z
as the signal sent over the correction channel, then the right-hand side is the
equivocation less the rate of transmission over the correction channel. If
the capacity of this channel is less than the equivocation the right-hand side
will be greater than zero and H,.(x) > 0. DBut this is the uncertainty of
what was sent, knowing both the received signal and the correction signal,
If this is greater than zero the frequency of errors cannot be arbitrarily
small.
Lxample:
Suppose the errors occur at random in a sequence of binary digits: proba-
bility p that a digit is wrong and g = 1 — p that it is right. These crrors
can be corrected if their position is known. Thus the correction channel
neced only send information as to these positions. This amounts to trans-

CORRECTION DATA

OBSE RVER

Y

SOURCE TRANSMITTER RECEIVER CORRECTING
DEVICE
Fig. 8—Schemalic diagram of a correction system.

mitting from a source which produces binary digits with probability # for
1 (correct) and g for O (incorrect). This requircs a channel of capacity

—[plog p + qlog gl

which is the equivocation of the original system.
The rate of transmission R can be written in two other forms due to the
identities noted above. We have

R = H(x) — H,(x)
= H(y) — H.(y)
= I(x) + U(y) — H(, y).

The first defining expression has already been interpreted as the amount of
information sent less the uncertainty of what was sent. The second meas-
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ures the amount received less the part of this which is due to noise. The
third is the sum of the two amounts less the joint entropy and therefore in a
sense is the number of bits per second common to the two. Thus all three
expressions have a certain intuitive significance.

The capacity C of a noisy channel should be the maximum possible rate
of transmission, i.e., the rate when the source is properly matched to the
channel. We therefore define the channel capacity by

C = Max (H(x) — H,(x))

where the maximum is with respect to all possible information sources used
as input to the channel. If the channel is noiseless, H,(x) = 0. The defini-
tion is then equivalent to that already given for a noiscless channel since the
maximum entropy for the channel is its capacity.

13. THE FUNDAMENTAL THEOREM FOR A DISCRETE CIIANNEL WITII
Noise

It may seem surprising that we should define a definite capacity C for
a noisy channel since we can never send certain information in such a case.
It is clear, however, that by sending the information in a redundant form the
probability of errors can be reduced. For example, by repeating the
message many times and by a statistical study of the different received
versions of the message the probability of errors could be made very small.
One would expect, however, that to make this probability of errors approach
zero, the redundancy of the encoding must increase indefinitely, and the rate
of transmission therefore approach zero. This is by no means true. If it
were, there would not be a very well defined capacity, but only a capacity
for a given frequency of errors, or a given equivocation; the capacity going
down as the error requirements are made more stringent. Actually the
capacity C defined above has a very definite significance. It is possible
to send information at the rate C through the channel with as small a fre-
quency of errors or equivocation as desired by proper encoding. This state-
ment is not true for any rate greater than C. If an attempt is made to
transmit at a higher rate than C, say C + R,, then there will necessarily
be an equivocation equal to a greater than the excess R,. Nature takes
payment by requiring just that much uncertainty, so that we are not
actually getting any more than C through correctly.

The situation is indicated in Fig. 9. The rate of information into the
channel is plotted horizontally and the equivocation vertically. Any point
above the heavy line in the shaded region can be attained and those below
cannot. The points on the line cannot in general be attained, but there will
usually be two points on the line that can.
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These results are the main justification for the definition of C and will
now be proved.
Theorem 11. Let a discrete channel have the capacity C and a discrete
source the entropy per second H. If II < C there exists a coding system
such that the output of the source can be transmitted over the channel with
an arbitrarily small frequency of errors (or an arbitrarily small equivocation).
If H > C it is possible to encode the source so that the equivocation is less
than Il — C + e where ¢ is arbitrarily small. There is no method of encod-
ing which gives an equivocation less than # — C.

The method of proving the first part of this theorem is not by exhibiting
a coding method having the desired properties, but by showing that such a
code must exist in a certain group of codes. In fact we will average the
frequency of errors over this group and show that this average can be made
less than e. If the average of a set of numbers is less than ¢ there must
exist at least one in the set which is less than e. This will establish the
desired result.

AN A

ATTAINABLE
REGION

Hy(x)

C H(x)

Fig. 9—The equivocation possible for a given input entropy to a channel.

The capacity C of a noisy channel has been defined as
C = Max (H(x) — H,(x))

where x is the input and y the output. The maximization is over all sources
which might be used as input to the channel.

Let So be a source which achieves the maximum capacity C. If this
maximum is not actually achieved by any source let S, be a source which
approximates to giving the maximum rate. Suppose S, is used as input to
the channel. We consider the possible transmitted and received sequences
of a4 long duration T. The following will be true:

1. The transmitted sequences fall into two classes, a high probability group
with about 27#&) members and the remaining sequences of small total
probability.

2. Similarly the received sequences have a high probability set of about
2™7® members and a low probability set of remaining sequences.

3. Each high probability output could be produced by about 27** inputs.
The probability of all other cases has a small total probability.
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All the €’s and é’s implied by the words *small” and ‘“‘about” in these
statements approach zcro as we allow T to incrcase and S, to approach the
maximizing source.

The situation is summarized in Fig. 10 where the input sequences are
points on the left and output sequences points on the right. The fan of
cross lines represents the range of possible causes for a typical output.

Now supposec we have another source producing information at rate R
with R < C. In the period T this source will have 2™® high probability
outputs. We wish to associate these with a selection of the possible channel

€
[ ]
[}
M
[ J [ J
L [ J
L J
2H(X)T *
HIGH PROBABILITY o

ZH‘y T

HIGH PROBABILITY
RECEIVED SIGNALS

MESSAGES

W(xh'

2
REASONABLE CAUSES
FOR EACH €

° H{y)T
® REASONABLE EFFECTS @

FROM EACH M
L ]

Fig. 10—Schematic representation of the relations between inputs and outputs in a
channel.

inputs in such a way as to get a small frequency of errors. We will set up
this association in all possible ways (using, however, only the high proba-
bility group of inputs as determined by the source So) and average the fre-
quency of errors for this large class of possible coding systems. This is the
same as calculating the frequency of errors for a random association of the
messages and channel inputs of duration . Suppose a particular output
91 is observed. What is the probability of more than one message in the set
of possible causes of y,7 There are 2™ messages distributed at random in
2™ points. The probability of a particular point being a message is

thus
QTR=H(=)
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The probability that none of the points in the fan is a message (apart from
the actual originating message) is

P = [l — 27(‘!—"(!))]21'",(;)

Now R < H(x) — H,(x) so R — H(x) = —H,(x) — n with  positive.
Consequently

P=1{1~ 2"7"-(2)—1'-:],1”.(:)

approaches {as T — «)
1—2m,

Hence the probability of an error approaches zero and the first part of the
theorem is proved.

The second part of the theorem is easily shown by noting that we could
merely send C bits per second from the source, completely neglecting the
remainder of the information generated. At the recciver the neglected part
gives an equivocation H(x) — C and the part transmitted need only add e.
This limit can also be attained in many other ways, as will be shown when we
consider the continuous case.

The last statement of the theorem is a simple consequence of our definition
of C. Suppose we can encode a source with R = C + ¢ in such a way as to
obtain an equivocation H,(x) = @ — ¢ with ¢ positive,. Then R = H(x) =
C + aand

H(x) — II(x) = C + ¢

with e positive. This contradicts the definition of C as the maximum of
H(x) — H(x).

Actually more has been proved than was stated in the theorem. If the
average of a set of numbers is within ¢ of their maximum, a fraction of at
most /e can be more than /¢ below the maximum. Since ¢ is arbitrarily
small we can say that almost all the systems are arbitrarily close to the ideal.

14. DiscussiON

The demonstration of theorem 11, while not a pure existence proof, has
some of the deficiencies of such proofs. An attempt to obtain a good
approximation to ideal coding by following the method of the proof is gen-
erally impractical. In fact, apart from some rather trivial cases and
certain limiting situations, no explicit description of a series of approxima-
tion to the ideal has been found. Probably this is no accident but is related
to the difficulty of giving an explicit construction for a good approximation
to a random sequence.
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An approximation to the ideal would have the property that if the signal
is altered in a reasonable way by the noise, the original can still be recovered.
In other words the alteration will not in general bring it closer to another
reasonable signal than the original. This is accomplished at the cost of a
certain amount of redundancy in the coding. The redundancy must be
introduced in the proper way to combat the particular noise structure
involved. However, any redundancy in the source will usually help if it is
utilized at the receiving point. In particular, if the source already has a
certain redundancy and no attempt is made to eliminate it in matching to the
channel, this redundancy will help combat noise. For example, in a noiseless
telegraph channel one could save about 50%, in time by proper encoding of
the messages. This is not done and most of the redundancy of English
remains in the channel symbols. This has the advantage, however, of
allowing considerable noise in the channel. A sizable fraction of the letters
can be received incorrectly and still reconstructed by the context. In
fact this is probably not a bad approximation to the ideal in many cases,
since the statistical structure of English is rather involved and the reasonable
English sequences are not too far (in the sense required for theorem) from a
random selection.

As in the noiseless case a delay is generally required to approach the ideal
encoding. It now has the additional function of allowing a large sample of
noise to affect the signal before any judgment is made at the receiving point
as to the original message. Increasing the sample size always sharpens the
possible statistical assertions.

The content of theorem 11 and its proof can be formulated in a somewhat
different way which exhibits the connection with the noiseless case more
clearly. Consider the possible signals of duration T and suppose a subset
of them is selected to be used. Let those in the subset all be used with equal
probability, and suppose the receiver is constructed to select, as the original
signal, the most probable cause from the subset, when a perturbed signal
is received. We define N(7T, ¢) to be the maximum number of signals we
can choose for the subset such that the probability of an incorrect inter-
pretation is less than or equal to ¢.

Theorem 12: Lim l_ogiVT(Ii) = C, where C is the channel capacity, pro-

T—o0
vided that ¢ does not equal 0 or 1.

In other words, no matter how we set our limits of reliability, we can
distinguish reliably in time 7" enough messages to correspond to about CT
bits, when T is sufficiently large. Theorem 12 can be compared with the
definition of the capacity of 3 noiseless channel given in section 1.
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15. ExAMPLE OF A DiscrRETE CHANNEL AND ITs CAPACITY

A simple example of a discrete channel is indicated in Fig. 11. There
are three possible symbols. The first is never affected by noise. The second
and third each have probability p of coming through undisturbed, and ¢

of being changed into the other of the pair. We have (letting « = — [p log
P
TRANSMITTED e RECEIVED
SYMBOLS q SYMBOLS
5 .

Fig. 11—Example of a discrcte channel.

p + ¢ log gl and P and Q be the probabilities of using the first or second
symbols)

H(x) = —Plog P - 2Qlog Q

oy(x) = 20a

We wish to choose P and  in such a way as to maximize H(x) — H,(x),
subject to the constraint P + 2Q = 1. Hence we consider

U= —Plog P — 20 log Q — 20a + AP + 20)

1
E-ﬁ——l—]ogP-l-)\—O
U
A -2 =0.
20 2 -2logQ -+ 22 =0
Eliminating A
log P =logQ + a
P =0 =08
= _B =
e B+12
The channel capacity is then
C=logﬂ+2.

B
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Note how this checks the obvious values in the cases p = ltand p = }.
In the first, 3 = 1 and C = log 3, which is correct since the channel isthen
noiseless with three possible symbols. If p = }, 8 = 2 and C = log 2.
Here the sccond and third symbols cannot be distinguished at all and act
together like one symbol. The first symbol is used with probability P =
} and the second and third together with probability 4. This may be
distributed in any desired way and still achieve the maximum capacity.

For intermediate values of p the channel capacity will lie between log
2and log 3. The distinction between the second and third symbols conveys
some information but not as much as in the noiseless case. The first symbol
is used somewhat more frequently than the other two because of its freedom
from noise.

16. Tue CuanNeL CApAciTY IN CERTAIN SrecCIAL CASES

If the noise affects successive channel symbols independently it can be
described by a set of transition probabilities p;; . This is the probability,
if symbol 7 is sent, that j will be received. The maximum channel rate is
then given by the maximum of

2, Pipijlog 20 Pipi; — 2, Pipiilog pi;
$.f i 5.5

where we vary the P; subject to ZP; = 1. This leads by the method of
Lagrange to the equations,

Psi
.i = = 1y 2, * e 0
}l:, D4 log Z Pi b N s=1

Multiplying by P, and summing on s shows that u = —C. Let the inverse
of p,; (if it exists) be k,, so that > Bapyi = 8;;. Then:

Z hu poj log po; — log Z Pipi = —C 2 ha.
37 + 8

Hence:

22 Pipa = exp [C 20 hu + 3 by pus log pus]
L] L} 8.7

or,

P; = ‘Z I exp [C E he + Z et paj log Pl

This is the system of equations for determining the maximizing values of
P, with C to be determined so that £ P; = 1. When this is done C will be
the channel capacity, and the P; the proper probabilities for the channel
symbols to achieve this capacity.
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If each input symbol has the same set of probabilities on the lines emerging
from it, and the same is true of each output symbol, the capacity can be
easily calculated. Examples are shown in Fig. 12. In such a case H.(y)
is independent of the distribution of probabilities on the input symbols, and
is given by —Z p; log p; where the p; are the values of the transition proba-
bilities from any input symbol. The channel capacity is

Max [H(y) — H.(y)]
= Max H(y) + Z p:log p:.
The maximum of H(y) is clearly log m where m is the number of output

- /2 -

- /2 .

/2 /2

a b c
Fig. 12—Examples of discrete channcls with the same transition probabilitics for each
nput and for each output.
i

symbols, since it is possible to make them all equally probable by making
the input symbols equally probable. The channel capacity is therefore

C=logm+ Z p;log pi.

In Fig. 12a it would be

C=1log4—log2=log?2.
This could be achieved by using only the 1st and 3d symbols. In Fig. 12b

C=1logd—%log3—4%log6

=log4 —log3 — }log2

= log } 2*.
in Tig. 12¢ we have

C=1log3—43log2—4log3d —3%logé

3
= log Sizigi -
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Suppose the symbols fall into several groups such that the noise never
causes a symbol in one group to be mistaken for a symbol in another group.
Let the capacity for the nth group be C. when we use only the symbols
in this group. Then it is easily shown that, for best use of the entire set,
the total probability P, of all symbols in the nth group should be

26
T 226"
Within a group the probability is distributed just as it would be if these
were the only symbols being used. The channel capacity is

C = log 22°*,

p,

17. AN ExaMpLE OF EFFICIENT CODING

The following example, although somewhat unrealistic, is a case in which
exact matching to a noisy channel is possible. There are two channel
symbols, 0 and 1, and the noise affects them in blocks of seven symbols. A
block of seven is either transmitted without error, or exactly one symbol of
the seven is incorrect. These eight possibilities are equally likely. We have

C = Max [H(y) — H.(»)]
=417+ §log}}
= # bits/symbol.
An efficient code, allowing complete correction of errors and transmitting at
the rate C, is the following (found by a method due to R. Hamming):

Let a block of seven symbols be X1, X, ... X7 Of these X3, X5, X and
X7 are message symbols and chosen arbitrarily by the source. The other
three are redundant and calculated as follows:

Xy is chosen to make a = X, + X; + X¢ + X7 even
X2 [ “" €« [{4 ﬁ — X2 + X3 + X. + X7 113
Xl " {1 “° ' ‘y e X! + X3 + X‘ + X7 {3
When a block of seven is received a,8 and v are calculated and if even called

zero, if odd called one. The binary number « 8 v then gives the subscript
of the X; that is incorrect (if O there was no error).

APPENDIX 1

Toe GrowTH OF THE NUMBER OF BLocks oF Symsors Witn A
FiniTE STATE CONDITION

Let NV (L) be the number of blocks of symbols of length L ending in state

i. Then we have
Ni{L) = 2 NAL — b))
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where b};, b, ... b%; are the length of the symbols which may be chosen
in state i and lead to state j. Thesc are linear difference equations and the
behavior as L — « must be of the type

N; = A;W"
Substituting in the difference equation

(2)
is

A WE = 3 A Wb
(¥

or
{a)

4; = )"; AW
X wrd ~ ) =o.
For this to be possible the determinant
DW) = |ai;| = [; Wy — 8
must vanish and this determines W, which is, of course, the largest real root

of D = 0.
The quantity C is then given by

C = Lim

L—co

. L
log 2724, we log W

and we also note that the same growth properties result if we require that all
blocks start in the same (arbitrarily chosen) state.

APPENDIX 2
DERrIvATION OF H = —Z p; log ps
Let H (}‘, :—t, cee, '1') = A(n). From condition (3) we can decompose

a choice from s™ equally likely possibilities into a series of m choices each
from s equally likely possibilities and obtain

AG™) = m A(s)
Similarly
A@™) = n AQ)
We can choose # arbitrarily large and find an m to satisfy

sﬂl _<_ ‘n < :("l"'l)
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Thus, taking logarithms and dividing by » log s,

P AP S -1 BT
n " logs ™ =n n logs
where ¢ is arbitrarily small.
Now from the monotonic property of A(n):
AGE™ < AW < AG™Y
m A(s) < nA(l) < (m+ 1) A(s)
Hence, dividing by nA(s),
AW _m m  A()
—SA(S)_—‘*' or '—‘ m<!
A@) _ logt _

where K must be positive to satisfy (2).

Now suppose we have a choice from » possibilitics with commeasurable prob-
n;

Zn
from Zn; possibilities into a choice from n possibilitics with probabilities
Pi. .. paand then, if the ith was chosen, a choice from n; with cqual prob-
abilities. Using condition 3 again, we equate the total choice from Iy,
as computed by two methods

KlogZni=H(py,..., pa) + KZ pilog n;

abilities p; = where the #; are integers. We can break down a choice

Hence
H=KI[ZpilogZni— 2 p;log ni

= —KEp.-logz—;‘;';-‘_= —KZ pilog ps.

If the p; are incommeasurable, they may be approximated by rationals and
the same expression must hold by our continuity assumption. Thus the
expression holds in general. The choice of coefficient K is a matter of con-
venience and amounts to the choice of a unit of measure.

APPENDIX 3

THEOREMS ON ERGODIC SOURCES

If it is possible to go from any state with P > 0 to any other along a path
of probability » > 0, the system is ergodic and the strong law of large num-
bers can be applied. Thus the number of times a given path p;; in the net-
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work is traversed in a long sequence of length N is about proportional to the
probability of being at £ and then choosing this path, P;p;;N. If N is large
enough the probability of percentage error - § in this is less than e so that
for all but a set of small probability the actual numbers lic within the limits

. (P.'p.'; + SN
Hence nearly all sequences have a probability p given by
p= np(_;;'wui&)n

and '%8.? i< limited by
N
I
21%,_’ = Z(P: pi; = 8) log pi;
or
lo

_g_p_ = ZPipijlog pij| <.

This proves theorem 3.

Theorem 4 follows immediately from this on calculating upper and lower
bounds for n(g) based on the possible range of values of p in Theorem 3.

In the mixed (not ergodic) case if

L =2 p.' L.'
and the entropies of the componentsare Il; > H; > ... > H, we have the
Theorem: k‘r: lOg—;(—q) = ¢(g) is a decreasing step function,

21 s
¢(q) = H, in the interval E a; < ¢ < E ;.
1 1

To prove theorems 5 and 6 first note that Fy is monotonic decreasing be-
cause increasing N adds a subscript to a conditional entropy. A simple
substitution for ps: (S;) in the definition of FFy shows that

Fy =NGy — (N — 1) Gra

and summing this for all N gives Gy = —1%2‘. Fy. Hence Gy = Fy and Gy

monotonic decreasing. Also they must approach the same limit. By using

theorem 3 we sec that Lim Gy = H.
N

APPENDIX 4
MAXIMIZING THE RATE FOR A SYSTEM OF CONSTRAINTS

Suppose we have a set of constraints on sequences of symbols that is of
the finite state type and can be represented therefore by a linear graph.



48 C. E. Shannon

Let £{7 be the lengths of the various symbols that can occur in passing from
state ¢ to state 7. What distribution of probabilities P; for the different
states and p(') for choosing symbol s in state s and going to state j maximizes
the rate of generating information under these constraints? The constraints
define a discrete channel and the maximum rate must be less than or equal
to the capacity C of this channel, since if all blocks of large length were
equally likely, this rate would result, and if possible this would be best. We
will show that this rate can be achieved by proper choice of the P; and »$7.
The rate in question is

—2P;pi log 887 N
ZPwpi; 6 M

Let i = Z £, Evidently for a maximum {7 = kexp £7. The con-

straints on maxumzation are ZP; = 1, Z pis=1,Z Ppi; — 8;) =0,
)

Hence we maximize

- "2P|p" lOg Pu . . . Lo — .
U= __.E.P_EZ,_—- + A ZP + Zui pi; -+ zﬂJPl(pU 8')')
U _ _MPi1 + log pis) + NP:il; o P o=
ap.-,-— 70 +A+ it 0P =0.
Solving for p.;

pii = A:B; D™,

Since
Dpi=1, AT =2 B, D™
2 2

B; D¢
T X BD

The correct value of D is the capacity C and the B; are solutions of
B P = z B,C—‘

for then

B:
pii = _BJ.-C_‘“

zP‘lB—;!:C-“, = P’

or
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P; u=1_,i
z:i'_c“ B

So that if A, satisfy
2 C—t 7
P;= By
Both of the sets of equations for B; and v; can be satisfied since C is such that
|C% — 5;1=0
In this case the rate is

ZP; pi; log g«’ C—t“

ZPipii by

ZP; pi; log B,
- C— B
P; Pis t.",'
but
ZP; pii(log B; — log B;) = E P;jlog B; — ZP;logB; = 0
H

Hence the rate is C and as this could never be exceeded this is the maximum?
justifying the assumed solution.
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PART III: MATHEMATICAL PRELIMINARIES

In this final installment of the paper we consider the case where the
signals or the messages or both are continuously variable, in contrast with
the discrete nature assumed until now. To a considerable extent the con-
tinuous case can be obtained through a limiting process from the discrete
case by dividing the continuum of messages and signals into a large but finite
number of small regions and calculating the various parameters involved on
a discrete basis. As the size of the regions is decreased these parameters in
general approach as limits the proper values for the continuous case. There
are, however, a few new effects that appear and also a general change of
emphasis in the direction of specialization of the general results to particu-
lar cases.

We will not attempt, in the continuous case, to obtain our results with
the greatest generality, or with the extreme rigor of pure mathematics, since
this would involve a great deal of abstract measure theory and would ob-
scure the main thread of the analysis. A preliminary study, however, indi-
cates that the theory can be formulated in a completely axiomatic and
rigorous manner which includes both the continuous and discrete cases and
many others. The occasional liberties taken with limiting processes in the
present analysis can be justified in all cases of practical interest.

18. SETs AND ENSEMBLES OF FUNCTIONS

We shall have to deal in the continuous case with sets of functions and
ensembles of functions. A set of functions, as the name implies, is merely a
class or collection of functions, generally of one variable, time. It can be
specified by giving an explicit representation of the various functions inthe
set, or implicitly by giving a property which functions in the set possess and
others do not. Some examples are:

1. The set of functions:

Jit) = sin (¢ + 0).

Each particular value of & determines a particular function in the set.
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2. The set of all functions of time containing no frequencies over W cycles
per second.
3. The set of all functions limited in band to W and in amplitude to 4.
4. The set of all English speech signals as functions of time.
An ensemble of functions is a set of functions together with a probability
measure whereby we may determine the probability of a function in the
set having certain properties.! For example with the set,

fo(l) = sin ({ + 0,

we may give a probability distribution for 6, P(8). The set then becomes
an ensemble.
Some further examples of ensembles of functions are:
1. A finite set of functions fi() (¢ = 1, 2, - - -, n) with the probability of
fx being p» .
2. A finite dimensional family of functions

f(al,alv ctty On ;l)
with a probability distribution for the parameters «; :

p(al, cee, )

For example we could consider the ensemble defined by
flay, - 80,00, ,00;0) = Zl a, sin n(wt + 6,)

with the amplitudes g; distributed normally and independently, and the
phrases 8; distributed uniformly (from 0 to 27) and independently.
3. The ensemble

_ 2 sinx(2We — #)
Jei ) = 2o =y

with the a; normal and independent all with the same standard deviation
A/N. Thisis a representation of “white” noise, band-limited to the band
from O to W cycles per second and with average power N.?

1In mathemalical terminology the functions belong to a measure space whose total
measure is unity.

! This representation can be used as a definition of band limited white noise. It has
certain advantages in that it involves fewer limiting operations than do definitions that
have been used in the past. The name “white noise,’” already firmly intrenched in the
literature, is perhaps somewhat unfortunate. In optics white light mcans cither an
continuous spectrum as contrasted with a point spectrum, or a spectrum which is flat witx
wavelength (which is not the same as a spectrum flat with frequency).
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4. Let points be distributed on the ¢ axis according to a Poisson distribu-
tion. At each selected point the function f(f) is placed and the different
functions added, giving the ensemble

,._ii:. J((E )

where the 4 are the points of the Poisson distribution. This ensemble
can be considered as a type of impulse or shot noise where all the impulses
are identical.
S. The set of English speech functions with the probability measure given
by the frequency of occurrence in ordinary use.
An ensemble of functions fa(¢) is stationary if the same enscmble results
when all functions are shifted any fixed amount in time. The ensemble

fp(l) = sin (l + 0)

is stationary if @ distributed uniformly from 0 to 2=. If we shift each func-
tion by 4 we obtain

L+ u) =sin(t+4+0)

= sin (! + ¢)

with ¢ distributed uniformly from 0 to 2x. Each function has changed
but the ensemble as a whole is invariant under the translation. The other
examples given above are also stationary.

An ensemble is ergodic if it is stationary, and there is no subset of the func-
tions in the set with a probability different from 0 and 1 which is stationary.
The ensemble

1

sin ({ + 6)

is ergodic. No subset of these functions of probability #0, 1 is transformed
into itself under all time translations. On the other hand the ensemble

asin (t + 0)

with ¢ distributed normally and @ uniform is stationary but not ergodic.
The subset of these functions with @ between 0 and 1 for example is
stationary.

Of the examples given, 3 and 4 are efgodic, and 5 may perhaps be con-
sidered so. If an ensemble is ergodic we may say roughly that each func-
tion in the set is typical of the ensemble. More precisely it is known that
with an ergodic ensemble an average of any statistic over the ensemble is
equal (with probability 1) to an average over all the time translations of a
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particular function in the set.' Roughly speaking, cach function can be ex-
pected, as time progresses, to go through, with the proper frequency, all the
convolulions of any of the functions in the sct.

Just as we may perform various operations on numbers or functions to
obtain new numbers or funclions, we can perform operations on ensembles
to obtain new ensembles. Suppose, for example, we have an ensemble of
functions fa(f) and an operator T which gives for cach function f,(f) a result
galt):

ga(l) = Tfa(l)

Probability measure is defined for the set go(f) by means of that for the sct
Ja(t). The probability of a certain subset of the go(f) functions is equal
to that of the subsct of the fa(#) functions which produce members of the
given subset of g functions under the operation T Physically this corre-
sponds to passing the ensemble through some device, for example, a filter,
a rectifier or a modulator. The output functions of the device form the
ensemble g.(!).

A device or operator T will be called invariant if shifting the input merely
shifts the output, i.e., if

gu(l) = Tfa(.l)
implies
gl + 1) = Tfo(t + 1)

for all fa(!) and all f4. Tt is casily shown (sec appendix 1) that if T is in-
variant and the input cnsemble is stationary then the output ensemble is
slationary. Likewisc if the inpul is ergodic the output will also be ergodic.

A filter or a rectificr is invariant under all time translations. The opera-
tion of modulation is not since the carrier phase gives a certain time struc-
ture. However, modulation is invariant under all translations which are
multiples of the period of the carrier.

Wiener has pointed out the intimate relation between the invariance of
physical devices under time translations and Fourier theory.! Ic has

3 This is the famous ergodic theorem or rather one aspect of this theorem which was
proved is somewhat different formulations by Birkhoff, von Neumann, and Koopman, and
subscquently generalized by Wicner, Hopf, Hurewicz and others.  The literaturcon ergoclic
theory is quite extensive and the reader is referred to the papers of these writers for pre-
cise and gencral formulations; e.g., I5. Hopf “Ergodentheorie” Ergebnisse der Mathematic
und ihrer Grenzgebiete, Vol. 5, “On Causality Statistics and Probability’’ Journa! of
Mathematics and Physics, Vol. X111, No. 1, 1934; N. Weiner “The Ergodic Thcorem”’
Duke Mathcmatical Journal, Vol. 5, 1939,

! Communication theory is hicavily indebted to Wiencr for much of its basic philosophy
and theory. His classic NDRC report “The Interpolation, Extrapolation, and Smoothing
of Stationary Time Scries,’”’ to appear soon in hook form, contains the first clear-cut
formulation of communication thcory as a statistical problem, the study of operations
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shown, in fact, that if a device is linear as well as invariant Fourier analysis
is then the appropriate mathematical tool for dealing with the problem.

An ensemble of functions is the appropriate mathematical representation
of the messages produced by a continuous source (for example speech), of
the signals produced by a transmitter, and of the perturbing noise. Com-
munication theory is properly concerned, as has been emphasized by Wiener,
not with operations on particular functions, but with operations on en-
sembles of functions. A communication systém is designed not for a par-
ticular speech function and still less for a sine wave, but for the ensemble of
speech functions.

19. Banp LiMITED ENSEMBLES oF FUNCTIONS

If a function of time f(!) is limited to the band from 0 to W cycles per
second it is completely determined by giving its ordinates at a series of dis-
crete points spaced Z_IW scconds apart in the manner indicated by the follow-
ing result.’

Theorem 13: Let f(I) contain no frequencies over 1¥.
Then

S—i_ll x(2W1 — n)
QWi —n)

Xn =/(2'T‘V).

In this expansion f(¢) is represented as a sum of orthogonal functions.
The coeflicients X, of the various Lerms can be considered as coordinates in
an infinite dimensional “function space.” In this space each function cor-
responds to precisely one point and each point to one function.

A function can be considered to be substantially limited to a time T if all
the ordinates X, outside this interval of time arc zero. In this case all but
2TW of the coordinates will be zero. Thus functions limited to a band W
and duration T correspond to points in a space of 2T'W dimensions.

A subset of the functions of band W and duration T corresponds to a re-
gion in this space. For example, the functions whose total energy is less

70 = )jj X,

where

on time series. This work, although chiefly concerned with the lincar prediction and
filtcring problem, is an important collateral refcrence in connection with the present paper.
We may also refer here lo Wiener’s forthcoming book “Cybernctics” dealing with the
gencral problems of communication and control.

® For a proof of this theorcm and further discussion sce the author’s paper “Communi-
cation in the Presence of Noisc” o be published in the Proceedings of the Institute of Radio
Engineers.
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than or equal to E correspond to points in a 2T'W dimensional sphere with
radius r = +/2WE.

An ensemble of functions of limited duration and band will be represented
by a probability distribution p(x, « - - x.) in the corresponding » dimensional
space. If the ensemble is not limited in time we can consider the 2TW co-
ordinates in a given interval T to represent substantially the part of the
function in the interval T and the probability distribution p(x;, - -+, x,)
to give the statistical structure of the ensemble for intervals of that duration.

20. ENTROPY OF A CONTINUOUS DISTRIBUTION

The entropy of a discrete set of probabilities py, - - - pa has been defined as:

H= =3 pilog p: .

In an analogous manner we define the entropy of a continuous distribution
with the density distribution function p(x) by:

= -./_': p(x) log p(x) dx

With an n dimensional distribution p(x,, -+, x.) we have
= —f f[.(xl--'r,.)logp(n, cee  Xa) A2y e e dxy.

If we have two arguments x and y (which may themselves be multi-dimen-
sional) the joint and conditional entropies of p(x, y) are given by

H(x,y) = — f f #(x, y) log p(x, y) dx dy

and
- oz, y)
H.(y) = —ff p(x, ) log ) dx dy
1) = = [ [ 105,910 522 4z ay
where

p(x) = f p(x, y) dy

(y) = f Mz, y) dx.

The entropies of continuous distributions have most (but not all) of the
properties of the discrete case. In particular we have the following:
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. If xis limited to a certain volume v in its space, then I{(x) is a maximum

and equal to log v when p(x) is constant 11’ in the volume.

. With any two variables x, y we have

H(x, y) < H(x) + H(y)

with equality if (and only if) x and y are independent, i.e., p(x, ¥) = p(x)
() (apart possibly from a set of points of probability zero).

. Consider a generalized averaging operation of the following type:

P(y) = f o(z, y)p(x) dx
with
f a(x,y) dx = fa(x, y)dy = 1, a(x,y) > 0.

Then the entropy of the averaged distribution p’(y) is equal to or greater
than that of the original distribution p(x).

. We have

H(x,y) = H(x) + HSy) = H(y) + H,(x)
and
H(y) < H(y).

. Let p(x) be a one-dimensional distribution. The form of p(x) giving a

maximum entropy subject to the condition that the standard deviation
of x be fixed at ¢ is gaussian. To show this we must maximize

H() = — [ p(s) log o) d
with
o = f px)Fds and 1= f p(x) dx
as constraints. This requires, by the calculus of variations, maximizing
[ 1=8(2) 10g 8(x) + Mp()s* + a2 .

The condition for this is
—1 —log p(x) +Na® + pu =0
and consequently (adjusting the constants to satisfy the constraints)

1 —(z2/2¢)

P(x) = \/2—‘_0 4
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Similarly in »# dimensions, suppose the second order moments of
P2, + -+, xa) are fixed at Ay;:

A-‘:':f"' fxexi?(xn“',xn)dxn---dx...

Then the maximum entropy occurs (by a similar calculation) when
p(xa, - -+, x,) is the n dimensional gaussian distribution with the second

order moments A ;.
. The entropy of a onc-dimensional gaussian distribution whose standard
deviation is ¢ is given by

I(x) = log \/2xeo.
This is calculated as follows:

1 —(z3/207)

o) = Jama®
2
—~log #(x) = log \/2xr o + —2%2

H() = — [ 9(2) log (=) da

x

= fp(x) log /21 o dx + fp(x)f.:dx

2
= log V2ro + 210—,

= log V/2ro + log Ve
= log \/2reo.
Similarly the n dimensional gaussian distribution with associated

quadratic form a;; is given by

o
play, -, x0) = (lz—(%nl,, exp (— §Zai; X: X;)

and the entropy can be calculated as
II = log (2rc)"?|ay; ||

where | a;; | is the determinant whose elements are a;; .
. If x is limited to a half line (p(x) = 0 for x < 0) and the first moment of
x is fixed at a:

a= [’ p(x)x dx,
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then the maximum entropy occurs when
| R
pz) = -
a

and is equal to log ea.

. There is onc important difference between the continuous and discrete

entropics. In the discrele case the entropy measures in an absolute
way the randomness of the chance variable. In the continuous case the
measurement is relative lo the coordinale system.  1f we change coordinates
the entropy will in general change.  In fact il we change Lo coordinates
% + -+ ya the new entropy is given by

1(y) = f fll(xn SE N (;) log g2+ - xa)J (;:) dy, - dys

xy. . . .
where J (—)-') is the Jacobian of the coordinate transformation. On ex-

panding the logarithm and changing variables lo #, - -+ x,, we obtain:

II(y)=Il(x)—f~-- f/:(x,,---,x,.)log.l(;)dxl'--dx...

Thus the new entropy is the old entropy less the expected logarithm of
the Jacobian. In the continuous case the entropy can be considered a
measure of randomness relative lo an assumed sltandard, namely the co-
ordinate system chosen with cach small volume element dx, - - - dx, given
cqual weight. When we change the coordinate system the entropy in
the new system measures the randomness when cqual volume clements
dy, - -+ dy, in the new syslem are given equal weight.

In spite of this dependence on the coordinate system the entropy
concept is as important in the continuous case as the discrete case. This
is due to the fact that the derived concepts of information rate and
channel capacity depend on the difference of two cntropics and this
difference does 1ot depend on the coordinate frame, each of the two terms
being changed by the same amount.

Tlic entropy of a continuous distribution can be negative. The scale
of measurements sets an arbitrary zero corresponding to a uniform dis-
tribution over a unit volume. A distribution which is more confined than
this has less entropy and will be ncgative. The rates and capacities will,
however, always be non-ncgative.

A particular case of changing coordinates is the linear transformation

Yi= Z LUELE
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In this case the Jacobian is simply the determinant | a;; [~! and
H(y) = H(x).+ log | ai; | .

In the case of a rotation of coordinates (or any measure preserving trans-
formation) J = t and H(y) = H(x).

21. EnTROPY OF AN ENSEMBLE OF FUNCTIONS

Consider an ergodic ensemble of functions limited to a certain band of
width W cycles per second. Let

Pl o+ x,)

be the density distribution function for amplitudes x; - - - x, at # successive
sample points. We define the entropy of the ensemble per degree of free-
dom by

= —Lim%;f fp(xl---x..) log p(x1, -+, xa) dxy - - - dx,,.
We may also define an entropy H per second by dividing, not by #, but by
the time T in seconds for » samples. Since n = 2TW, H’ = 2WH.

With white thermal noise p is gaussian and we have

II' = log \/2xeN,
H = W log 2xeN.

For a given average power N, white noise has the maximum possible
entropy. This follows from the maximizing properties of the Gaussian
distribution noted above.

The entropy for a continuous stochastic process has many properties
analogous to that for discrete processes. In the discrete case the entropy
was related to the logarithm of the probability of long sequences, and to the
number of reasonably probable sequences of long length. In the continuous
case it is related in a similar fashion to the logarithm of the probability
densily for a long series of samples, and the volume of reasonably high prob-
ability in the function space.

More precisely, if we assume p(x; - - - 2,) continuous in all the x; for all #,
then for sufficiently large n

logp _ II" <e
”
for all choices of (1, +--, x.) apart from a set whose total probability is
less than &, with & and e arbitrarily small. This follows from the ergodic
property if we divide the space into a large number of small cells.
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The relation of H to volume can be stated as follows: Under the same as-
sumptions consider the n dimensional space corresponding to p(x;, « - - , x.).
Let V,(g) be the smallest volume in this space which includes in its interior
a total probability g. Then

Lim log Vﬂ(q) - III
n—soo n
provided ¢ does not equal 0 or 1.

These results show that for large » there is a rather well-defined volume (at
least in the logarithmic sense) of high probability, and that within this
volume the probability density is relatively uniform (again in the logarithmic
sensc).

In the white noisec case the distribution function is given by

_ 1 _ 1 2
P(xn"'xu) = mexp Q—ﬁZx;.

Since this depends only on Zx} the surfaces of cqual probability density
are spheres and the entire distribution has spherical symmetry. The region
of high probability is a sphere of radius 4/nN. As s#— o the probability

of being outside a sphere of radius v/#(N + ¢) approaches zero and ;1-‘ times

the logarithm of the volume of the sphere approaches log \/2x¢N.

In the continuous case it is convenient to work not with the entropy H of
an ensemble but with a derived quantity which we will call the entropy
power. This is defined as the power in a white noise limited to the same
band as the original ensemble and having the same entropy. In other words
if H' is the entropy of an ensemble its entropy power is

1 ’
Ny = s €XP 21,

In the geometrical picture this amounts to measuring the high probability
volume by the squared radius of a sphere having the same volume. Since
white noise has the maximum entropy for a given power, the entropy power
of any noise is less than or equal to its actual power.

22. ENTROPY Loss IN LINEAR FILTERS

Theorem 14: 1f an ensemble having an entropy H; per degree of freedom
in band W is passed through a filter with characteristic ¥ (f) the output
ensemble has an entropy

I, =, + % [w log | V() [ df.
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The operation of the filter is essentially a linear transformation of co-
ordinates. If we think of the different frequency components as the original
coordinate system, the new frequency components are merely the old ones
multiplied by factors. The coordinate transformation matrix is thus es-

TABLE I
ENTROPY | ENTROPY
GAIN POWER |POWER GAIN IMPULSE RESPONSE
FACTOR |IN DECIBELS
1
! sin2rt
(R " - —_— ~-8.68 ——=
_\- e? ()2
Y © [
1
—@®aen 214 - sint _ cost
- @2 (2) 5.32 z[—J cost ]
t t
o ) 1
'
PPE B 0.384 —aus c'[cost.—l_ cost , smt]
t4 2t2 t3
o @ 1
1
2 Jy (t)
Py 2 i 2 - LA B
- > (e) 2.66 5 y
° w 1
' |
1
1
H
[] 1 - ) - .
i per 868 pore: [cos (i-ajt-cos t.]
lex:
°T % ]

sentially diagonalized in terms of these coordinates. The Jacobian of the
transformation is (for n sine and n cosinc componcnts)

7 =TrGr
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where the f; are equally spaced through the band W. This becomes in
the limit

exp o [ log | V() [ .

Since J is constant its average value is this same quantity and applying the
theorem on the change of entropy with a change of coordinates, the result
follows. We may also phrase it in terms of the entropy power. Thus if
the entropy power of the first ensemble is Ny that of the second is

1
N, exp 7 fw log | Y(/) | df.

The final entropy power is the initial entropy power multiplied by the geo-
metric mean gain of the filter. If the gain is measured in db, then the
output entropy power will be increased by the arithmetic mean db gain
over W.

In Table I the entropy power loss has been calculated (and also expressed
in db) for a number of ideal gain characteristics. The impulsive responses
of these filters are also given for IV = 2, with phase assumed to be 0.

The entropy loss for many other cases can be obtained from these results.

For example the entropy power factor -}2 for the first case also applies to any

gain characteristic obtained from 1 — w by a measure preserving transforma-
tion of the w axis. In particular a linearly increasing gain G(w) = w, ora
“saw tooth” characteristic between 0 and 1 have the same entropy loss.

. . . 1
The reciprocal gain has the reciprocal factor. Thus — has the factor 2.
w
Raising the gain to any power raises the factor to this power.

23. ENTROPY OF THE SUM oF Two ENSEMBLES

If we have two ensembles of functions f.(¢) and gs(f) we can form a new
ensemble by “addition.” Suppose the first ensemble has the probability
density function p{x;, ---, x,) and the second ¢{x,, -+, x,). Then the
density function for the sum is given by the convolution:

,(x“...,xn).__f... [p(yn,---,y..)

. Q(xl —yly"'»xn""yn)dyl)dyh""dyn'

Physically this corresponds to adding the noises or signals represented by
the original ensembles of functions.
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The following result is derived in Appendix 6.

Theorem 15: Let the average power of two ensembles be ¥, and N, and
let their entropy powers be N; and N;. Then the entropy power of the
sum, N, is bounded by

Ni+ NS Ny < Ny + Ns.

White Gaussian noise has the peculiar property that it can absorb any
other noise or signal ensemble which may be added to it with a resultant
entropy power approximately equal to the sum of the white noise power and
the signal power (measured from the average signal value, which is normally
zero), provided the signal power is small, in a certain sense, compared to
the noise.

Consider the function space associated with these ensembles having n
dimensions. The white noise corresponds to a spherical Gaussian distribu-
tion in this space. The signal ensemble corresponds to another probability
distribution, not necessarily Gaussian or spherical. Let the second moments
of this distribution about its center of gravity be a;;. That is, if
p(x1, -+ -, xa) is the density distribution function

a.-;'=f"' fp(;c;—a;)(x,—a,-)dx.,---,dx,.

where the a; are the coordinates of the center of gravity. Now g;; is a posi-
tive definite quadratic form, and we can rotate our coordinate system to
align it with the principal directions of this form. a,; is then reduced to
diagonal form b;;. We require that each b;; be small compared to N, the
squared radius of the spherical distribution.

In this case the convolution of the noise and signal produce a Gaussian
distribution whose corresponding quadratic form is

N4+ 5.
The entropy power of this distribution is

(N + )"
or approximately
= [(N)" + ZbN) ]

= N +lzb.'.'.
n

The last term is the signal power, while the first is the noisc power.
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PART 1IV: THE CONTINUOUS CHANNEL

24. THe Caracity OF A CoNTINUOUS CHANNEL

In a continuous channel the input or transmitted signals will be con-
tinuous functions of time f(f) belonging to a certain set, and the output or
received signals will be perturbed versions of these. We will consider only
the case where both transmitted and received signals are limited to a certain
band W. They can then be specified, for a time T, by 2T'W numbers, and
their statistical structure by finite dimensional distribution functions.
Thus the statistics of the transmitted signal will be determined by

P(x, .- )xn) = P(x)
and those of the noise by the conditional probability distributioh
Pq ----- :.(yl, Tty yn) = Pz(y)-

The rate of transmission of information for a continuous channel is defined
in a way analogous to that for a discrete channel, namely

R = H(x) — H,(2)

where H(x) is the entropy of the input and H,(x) the equivocation. The
channel capacity C is defined as the maximum of R when we vary the input
over all possible ensembles. This means that in a finite dimensional ap-

proximation we must vary P(x) = P(x;, -+ , x.) and maximize
_ P(x, y)
fP(x) log P(x) dx + ff P(x,y) log ) dx dy.

This can be written

ff P(x, y) log P(()Pz’)) dx dy

using the fact that f f P(x, y) log P(x) dx dy = f P(x) log P(x) dx. The

channel capacity is thus expressed

C = Lim MafofP(x ) logP(( % ) dx dy.

T-sm P(s) )P( )
It is obvious in this form that R and C are independent of the coordinate
P(x, y)

system since the numerator and denominator in log will be multi-

P(x)P(y)
plied by the same factors when x and y are transformed in any one to one
way. This integral expression for-C is more general than H(x) — H,(x).

Properly interpreted (see Appendix 7) it will always exist while H(x) — H,(x)
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may assume an indeterminate form o — oo in some cases. This occurs, for
example, if x is limited to a surface of fewer dimensions than 7 in its 1 dimen-
sional approximation.

If the logarithmic base used in computing H(x) and H,(x) is two then C
is the maximum number of binary digits that can be sent per second over the
channel with arbitrarily small equivocation, just as in the discrete case.
This can be scen physically by dividing the space of signals into a large num-
ber of small cells, sufficiently small so that the probability density P.(y)
of signal x being perturbed to point y is substantially constant over a cell
(either of x or ). If the cells are considered as distinct points the situation
is essentially the same as a discrete channel and the proofs used there will
apply. But it is clear physically that this quantizing of the volume into
individual points cannot in any practical situation alter the final answer
significantly, provided the regions are sufficiently small. Thus the capacity
will be the limit of the capacities for the discrete subdivisions and this is
just the continuous capacity defined above.

On the mathematical side it can be shown first (sec Appendix 7) that if %
is the message, x is the signal, y is the received signal (perturbed by noise)
and v the recovered message then

H(x) — Hy(x) 2 H(u) — H,(4)

regardless of what operations are performed on # to obtain x or on y to obtain
v. Thus no matter how we encode the binary digits to obtain the signal, or
how we decode the reccived signal to recover the message, the discrete rate
for the binary digits does not exceed the channel capacity we have defined.
On the other hand, it is possible under very general conditions to find a
coding system for transmitting binary digits at the rate C with as small an
cquivocation or frequency of errors as desired. This is true, for example, if,
when we take a finite dimensional approximating space for the signal func-
tions, P(x, y) is continuous in both x and y except at a set of points of prob-
ability zero.

An important special case occurs when the noise is added to the signal
and is independent of it (in the probability sense). Then P,(y) is a function
only of the difference n = (y — x),

P.(y) = Q(y — 2)

and we can assign a definite entropy to the noise (independent of the sta-
tistics of the signal), namely the entropy of the distribution Q(n). This
entropy will be denoted by H(n).

Theorem 16: If the signal and noise are independent and the received
signal is the sum of the transmitted signal and the noise then the rate of
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transmission is
R = H(y) — H(n)
i.e., the entropy of the received signal less the entropy of the noise. The
channel capacity is
C = 1’\,{(3.):( H(y) — H(n).

We have, since y = x 4 n:
H(x, y) = H(z, n).
Expanding the left side and using the fact that x and » are independent
H(y) + Hy(x) = H(x) + H(n).
Hence
R = H(x) — H,(x) = H(y) — H(n).

Since H(n) is independent of P(x), maximizing R requires maximizing
H(y), the entropy of the received signal. If there are certain constraints on
the ensemble of transmitted signals, the entropy of the received signal must
be maximized subject to these constraints.

25. CHANNEL CAPACITY WITH AN AVERAGE POWER LiMriratioN

A simple application of Theorem 16 is the case where the noise is a white
thermal noise and the transmitted signals are limited to a certain average
power P. Then the received signals have an average power P + N where
N is the average noise power. The maximum entropy for the reccived sig-
nals occurs when they also form a white noise ensemble since this is the
greatest possible entropy for a power P + N and can be obtained by a
suitable choice of the ensemble of transmitted signals, namely if they form a
white noise ensemble of power P. The entropy (per second) of the re-
ceived ensemble is then

H(y) = W log 2xe(P 4 N),

and the noise entropy is
H(n) = W log 2xeN.
The channel capacity is

P+ N

C = H(y) — H(n) = W log ¥

Summarizing we have the following:
Theorem 17: The capacity of a channel of band W perturbed by white
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thermal noise of power V when the average transmitter power is P is given by

P+ N
A

C=Wlog

This means of course that by sufficiently involved encoding systems we
can transmit binary digits at the rate W log, P ; v
arbitrarily small frequency of errors. It is not possible to transmit at a
higher rate by any encoding system without a definite positive frequency of
errors.

To approximate this limiting rate of transmission the transmitted signals
must approximate, in statistical properties, a white noisc.® A system which
approaches the ideal rate may be described as follows: Let M = 2' samples
of white noise be constructed each of duration T. These are assigned
binary numbers from 0 to (A — 1). At the transmitter the message se-
quences are broken up into groups of s and for each group the corresponding
noise sample is transmitted as the signal. At the receiver the M samples are
known and the actual received signal (perturbed by noise) is compared with
each of them. The sample which has the least R.M..S. discrepancy from the
received signal is chosen as the transmitted signal and the corresponding
binary number reconstructed. This process amounts to choosing the most
probable (a posteriori) signal. The number M of noise samples used will
depend on the tolerable frequency e of errors, but for almost all selections of
samples we have

bits per second, with

Lim Lim 98T _ o, P+ N
€0 Tesom T N

so that no matter how small ¢ is chosen, we can, by taking T sufficiently

+ N

large, transmit as near as we wish to TW log binary digits in the

time T.
o P+ N . .
Formulas similar to C = IV log —N for the white noisc case have

been developed independently by several other writers, although with some-
what different interpretations. We may mention the work of N. Wiener,’
W. G. Tuller,’ and H. Sullivan in this connection.
In the case of an arbitrary perturbing noise (not necessarily white thermal
noise) it does not appear that the maximizing problem involved in deter-
8 This and other properties of the white noise casc are discussed from the geometrical
point of view in ‘‘Communication in the Presence of Noise,” loc. cit.

1¢Cybernetics,"’ loc. cit.
8Sc. D. thesis, Department of Electrical Enginecring. M.I1.T., 1948
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mining the channel capacity C can be solved explicitly. However, upper
and lower bounds can be set for C in terms of the average noise power N
and the noise entropy power N,. These bounds are sufficiently close to-
gether in most practical cases to furnish a satisfactory solution to the
problem,

Theorem 18: The capacity of a channel of band 1V perturbed by an arbi-
trary noise is bounded by the inequalities

P+
N

P+ N

M i
<CK<L
SC<Wleg N,

W log

where

P = average transmitter power

N = average noise power

N, = entropy power of the noise.

Here again the average power of the perturbed signals will be P 4 N.
The maximum entropy for this power would occur if the received signal
were white noise and would be W log 2xe(P - N). It may not be possible
to achieve this; i.e. there may not be any ensemble of transmitted signals
which, added to the perturbing noise, produce a white thermal noise at the
receiver, but at least this sets an upper bound to H(y). We have, therefore

C = max H(y) — H(n)
< W log 2xe(P + N) — W log 2xeN, .

This is the upper limit given in the theorem. The lower limit can be ob-
tained by considering the rate if we make the transmitted signal a white
noise, of power P. In this case the entropy power of the received signal
must be at least as great as that of a white noise of power P> 4 N, since we
have shown in a previous theorem that the entropy power of the sum of two
ensembles is greater than or equal to the sum of the individual entropy
powers. Hence

max Ii(y) > W log 2xe(P + N,)
and
C 2 W log 2xe(P + N,) — W log 2xeN,

P+ N,
N,

= W log

As P increases, the upper and lower bounds approach each other, so we
have as an asymptotic rate

P+ N

1

W log
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If the noise is itself white, N = N, and the result reduces to the formula
proved previously:

C= Wlog(l +IIT;)

If the noise is Gaussian but with a spectrum which is not necessarily flat,
"y is the geometric mean of the noise power over the various frequencies in
the band W. Thus

N, = exp%—,f’log N(f)df

where N(f) is the noise power at frequency f.
Theorem 19: If we set the capacity for a given transmitter power P
equal to
P4 N — 19
N,
then n is monotonic decreasing as P increases and approiches 0 as a limit.
Suppose that for a given power P, the channel capacity is
P+ N—m
N,

This means that the best signal distribution, say p(x), when added to the
noise distribution g(x), gives a received distribution r(y) whose entropy
power is (Py + N — m). Let us increase the power to P + AP by adding
a white noise of power AP to the signal. The entropy of the received signal
is now at least

C = Wlog

W log

H(y) = W log 2xe(Py + N — n + AP)

by application of the theorem on the minimum entropy power of a sum.
Hence, since we can attain the X indicated, the entropy of the maximizing
distribution must be at least as great and » must be monotonic decreasing.
To show that n — 0 as P — = consider a signal which is a whitc noise with
a large P. Whatever the perturbing noise, thc received signal will be
approximately a white noise, if P is sufficiently large, in the sense of having
an entropy power approaching P 4 N.

26. Tue CHANNEL CAPACITY WITH A PEAK POWER LIMITATION

In some applications the transmitter is limited not by the average power
output but by the peak instantaneous power. The problem of calculating
the channel capacity is then that of maximizing (by variation of the ensemble
of transmitted symbols)

H(y) — H(n)



70 C. E. Shannon

subject to the constraint that all the functions f(¢) in the ensemble be less
than or equal to 4/, say, for all &. A constraint of this type does not work
out as well mathematically as the average power limitation. The most we

have obtained for this case is a lower bound valid for all %, an ‘“‘asymptotic”

upper band (valid for large 1%) and an asymptotic value of C for %small.

Theorem 20: The channel capacity C for a band W perturbed by white
thermal noise of power N is bounded by

C 2 Wlogr%”%,

wlhere S is the peak allowed transmitter power. TFor sufficiently large 1%

—g-S-i-N

where ¢ is arbitrarily small. As %—» 0 (and provided the band W starts
at 0)

c—+w10g<1+1§\-,).

We wish to maximize the entropy of the received signal. If 1% is large

this will occur very nearly when we maximize the entropy of the trans-
mitted ensemble.

The asymptotic upper bound is obtained by relaxing the conditions on
the ensemble. Let us suppose that the power is limited to S not at every
instant of time, but only at the sample points. The maximum entropy of
the transmitted ensemble under these weakened conditions is certainly
greater than or equal to that under the original conditions. This altcred
problem can be solved easily. The maximum entropy occurs if the different
samples are independent and have a distribution function which is constant
from — \/3’ to+4/S. The entropy can be calculated as

W log 4S.
The received signal will then have an entropy less than

W log (45 + 2xeN)(1 + ¢)
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with ¢ — 0 as 1% ~— o and the channel capacity is obtained by subtracting

the entropy of the white noise, W log 2xeN

2 S+ N
W log (4S5 + 2xeN)(1 + ¢) — W log (2reN) = W log KT—— (1 4+ 9.

This is the desired upper bound to the channel capacity.

To obtain a'lower bound consider the same ensemble of functions. Let
these functions be passed through an ideal filter with a triangular transfer
characteristic. The gain is to be unity at frequency 0 and decline linearly
down to gain 0 at frequeney W. We first show that the output functions
of the filter have a peak power limitation S at all times (not just the sample
sin 2xW!

2= Wit

1 sin® * Wt
2 (xW?

points). First we note that a pulse going into the filter produces

in the output. This function is never negative. The input function (in
the general case) can be thought of as the sum of a series of shifted functions

. sin 2r Wi
2=W1

where @, the amplitude of the sample, is not greater than 4/S. Hence the
output is the sum of shifted functions of the non-negative foim above with
the same coefficients. These functions being non-negalive, the greatest
positive value for any ¢ is obtained when all the coefficients a have their
maximum positive values, i.e. /5. In this case the input function was a
constant of amplitude /S and since the filter has unit gain for D.C., the
output is the same. Hence the output ensemble has a peak power S.

The entropy of the output ensemble can be calculated from that of the
input ensemble by using the theorem dealing with such a situation. The
output entropy is equal to the input entropy plus the geometrical mean
gain of the filter;

lwloga’dj - j;wlog(wl;j)zdj = —2w

Hence the output entropy is

W log 45 — 21 = w10g‘3e§
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and the channel capacity is greater than

2 S
Wlog’_—e-‘l—v.

We now wish to show that, for small 1§V (peak signal power over average

white noise power), the channel capacity is approximately
S
= Wi 14 =1,
C=W og( + N)

More precisely C/W log (l + 1%) —1as }—3—, — 0. Since the average signal
S

power P is less than or equal to the peak S, it follows that for all W

P S
CSWlog(l+-ﬁ)_<_Wlog(l+ﬁ>.

Therefore, if we can find an ensemble of functions such that they correspond
to a rate nearly W log (1 + 1%) and are limited to band I¥ and peak S the

result will be proved. Consider the ensemble of functions of the following
type. A serics of ¢ samples have the same value, either ++/5 of —+/5,
then the next ¢ samples have the same value, etc. The value for a series
is chosen at random, probability } for ++/S and } for —4/S If this
ensemble be passed through a filter with triangular gain characteristic (unit
gain at D.C.), the output is peak limited to 5. Furthermore the average
power is nearly S and can be made to approach this by taking / sufficiently
large. The entropy of the sum of this and the thermal noise can be found
by applying the theorem on the sum of a noise and a small signal. This
theorem will apply if

S
Viy

is sufficiently small. This can be insured by taking 1§\7 small cnough (after
tis chosen). The entropy power will be S 4+ N to as close an approximation

as desired, and hence the rate of transmission as near as we wish to

W log (g_%_l) .
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PART V: THE RATE FOR A CONTINUOUS SOURCE

27. FipeLity EvaLvatioNn Funcrions

In the case of a discrete source of information we were able to determine a
definite rate of generating information, namely the entropy of the under-
lying stochastic process. With a continuous source the situation is con-
siderably morc involved. 1In the first place a continuously variable quantity
can assume an infinite number of values and requires, therefore, an infinite
number of binary digits for exact specification. This means that to transmit
the output of a continuous source with exact recovery at the receiving point
requircs, in gencral, a channel of infinite capacity (in bits per second).
Since, ordinarily, channels have a certain amount of noise, and therefore a
finite capacity, exact transmission is impossible.

This, however, evades the real issue. Practically, we are not interested
in exact transmission when we have a continuous source, but only in trans-
mission to within a certain tolerance. The question is, can we assign a
definite rate to a continuous source when we require only a certain fidelity
of recovery, measured in a suitable way. Of course, as the fidelity require-
ments are increased the rate will increase. It will be shown that we can, in
very general cases, definc such a rate, having the property that it is possible,
by properly encoding the information, to transmit it over a channel whose
capacity is equal to the rate in question, and satisfy the fidelity requirements.
A channel of smaller capacity is insufficient.

It is first necessary to give a general mathematical formulation of the idea
of fidelity of transmission. Consider the set of messages of a long duration,
say T seconds. The source is described by giving the probability density,
in the associated space, that the source will select the message in question
P(x). A given communication system is described (from the external point
of view) by giving the conditional probability P.(y) that if message x is
produced by the source the recovercd message at the receiving point will
be y. The system as a whole (including source and transmission system)
is described by the probability function P(x, y) of having message x and
final output y. If this function is known, the complete characteristics of
the system from the point of view of fidelity are known. Any evaluation
of fidelity must correspond mathematically to an operation applied to
P(x, ). This operation must at least have the properties of a simple order-
ing of .systems; i.e. it must be possible to say of two systems represented by
P)(x, y) and Py(x, y) that, according to our fidelity criterion, either (1) the
first has higher fidelity, (2) the second has higher fidelity, or (3) they have
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equal fidelity. This means that a criterion of fidelity can be represented by
a numerically valued function:

v(P(x, )
whose argument ranges over possible probability functions P(x, y).

We will now show that under very general and reasonable assumptions
the function v(P(x, y)) can be written in a seemingly much more specialized
form, namely as an average of a function p(x, y) over the set of possible values
of x and y:

PGz, ) = [ [ Pla,3) otz 5) dx dy

To obtain this we need only assume (1) that the source and system are
ergodic so that a very long sample will be, with probability nearly 1, typical
of the ensemble, and (2) that the evaluation is “‘reasonable” in the sense
that it is possible, by observing a typical input and output 2 and y, to
form a tentative evaluation on the basis of these samples; and if these
samples are increased in duration the tentative evaluation will, with proba-
bility 1, approach the exact evaluation based on a full knowledge of P(x, y).
Let the tentative evaluation be p(x, y). Then the function p(z, y) ap-
proaches (as T — ) a constant for almost all (x, y) which are in the high
probability region corresponding to the system:

P(xv }’) - v(P(xy }'))
and we may also write

o(x,9) = [ [ Pz, 3)e(z, ) dx, dy

since

ffP(x,y)dxdy =1

This establishes the desired result.

The function p(x, y) has the general nature of a ‘‘distance” between x
and y." It measures how bad it is (according to our fidelity criterion) to
receive ¥ when x is transmitted. The general result given above can be
restated as follows: Any reasonable evaluation can be represented as an
average of a distance function over the set of messages and recovered mes-
sages ¥ and y weighted according to the probability P(x, y) of getting the
pair in question, provided the duration T of the messages be taken suffi-
ciently large.

_ "It is not a ““metric’ in the strict sense, however, since in general it does not satisfy
cither p(x, y) = p(y, x) or p(x, 3) + o(y,2) 2 p(x, 2).
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The following are simple examples of evaluation functions:
1. RM.S. Criterion.

v = (x()) — ()’

In this very commonly used criterion of fidelity the distance function
p(x, y) is (apart from a constant factor) the square of the ordinary
euclidean distance between the points x and y in the associated function
space,

e, ) = 4 [ 10 = 01 a

2. Frequency weighted R.M.S. criterion. More generally one can apply
different weights to the different frequency components before using an
R.M.S. measure of fidelity. This is equivalent to passing the difference
x(t) — y() through a shaping filter and then determining the average
power in the output. Thus let

e() = x() — y(v)

and
10 = [ et = 5) ar
then
1 7 ., ..
o) = 7 [ 107 a.
3. Absolute error criterion,

e ) = 7 [ 150 = 50 | a

4. The structure of the ear and brain determine implicitly an evaluation, or
rather a number of evaluations, appropriate in the case of speech or music
transmission. There is, for example, an “intelligibility” criterion in
which p(x, y) is equal to the relative frequency of incorrectly interpreted
words when message x() is received as y(f). Although we cannot give
an explicit representation of p(x, y) in these cases it could, in principle,
be determined by sufficient experimentation. Some of its properties
follow from well-known experimental results in hearing, c.g., the car is
relatively insensitive to phase and the sensitivity to amplitude and fre-
quency is roughly logarithmic.

5. The discrete case can be considered as a specialization in which we have
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tacitly assumed an evaluation based on the frequency of errors. The
function p(z, y) is then defined as the number of symbols in the sequence
y differing from the corresponding symbols in x divided by the total num-
ber of symbols in x.

28. THE RATE FOR A SOURCE RELATIVE TO A FIDELITY EVALUATION

We are now in a position to define a rate of generating information for a
continuous source. We are given P(x) for the source and an evaluation v
determined by a distance function p(x, y) which will be assumed continuous
inbothxandy. With a particular system P(x, y) the quality is measured by

p = ff o(x, y) P(x,y) dedy.

Furthermore the rate of flow of binary digits corresponding to P(x, y) is

- : P(x, y)
R = ff P(x, y) logmdx dy.

We define the rate R, of generating information for a given quality v of
reproduction to be the minimum of R when we keep v fixed at v, and vary
P.(y). That is:

= Mi P(z, y)
R = %::‘, ff P(x, y) log PG )P( )dx dy

subject to the constraint:

- j j P(x, y)o(x, y) dx dy.

This means that we consider, in effect, all the communication systems that
might be used and that transmit with the required fidelity. The rate of
transmission in bits per second is calculated for each one and we choose that
having the least rate. This latter rate is the rate we assign the source for
the fidelity in question.

The justification of this definition lies in the following result:

Theorem 21: If a source has a rate R, for a valuation 7, it is possible to
encode the output of the source and transmit it over a channel of capacity C
with fidelity as near v, as desired provided R, £ C. This is not possible
if R > C.

The last statement in the theorem follows immediately from the definition
of R, and previous results. If it were not true we could transmit more than
C bits per second over a channel of capacity C. The first part of the theorem
is proved by a method analogous to that used for Theorem 11. We may, in
the first place, divide the (z, y) space into a large number of small cells and
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represent the situation as a discrete case. This will not change the evalua-
tion function by more than an arbitrarily small amount (when the cells are
very small) because of the continuity assumed for p(x, y). Suppose that
Py(x, y) is the particular system which minimizes the rate and gives R,. We
choose from the high probability y’s a set at random containing

2('31 +ar

members where ¢ — 0 as T — . With large T each chosen point will be
connected by a high probability line (as in Fig. 10) to a set of x’s. A calcu-
lation similar to that used in proving Theorem 11 shows that with large T
almost all x’s are covered by the fans from the chosen y points for almost
all choices of the ¥’s. The communication system to be used operates as
follows: The selected points are assigned binary numbers. When a message
a is originated it will (with probability approaching 1 as T'— ) lie within
one at least of the fans. The corresponding binary number is transmitted
(or onc of them chosen arbitrarily if there are several) over the channel by
suitable coding means to give a small probability of error. Sincce R, £ C
this is possible. At the receiving point the corresponding y is reconstructed
and used as the recovered message.

The cvaluation v for this system can be made arbitrarily closc to by
taking T sufficiently large. This is due to the fact that for each long sample
of message a(!) and recovered message y(/) the evaluation approaches 1,
(with probability 1).

It is interesting to note that, in this system, the noise in the recovered
message is actually produced by a kind of general quantizing at the trans-
mitter and is not produced by the noisc in the channel. It is more or less
analogous to the quantizing noise in P.C.M.

29. THE CALCULATION OF RATES

The definition of the rate is similar in many respects to the definition of
channel capacity. In the former

P(x, y)

= Min f P(x, y) log —~2=2 P&PG)

Pe(y)

dx dy

with P(z) and v, = f P(x, y)p(x, ¥) dx dy fixed. 1In the latter

Pz, y)
PP(y)

with P;(y) fixed and possibly one or more other constraints (c.g., an average
power limitation) of the form K = s P(x, y) A(x, y) dx dy.

C = Maxf P(x, y) log

P(=2)

dx dy
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A partial solution of the general maximizing problem for determining the
rate of a source can be given. Using Lagrange’s method we consider
),
ff [P(x, y) log I_g(i-_;.,l’% + u P(x, y)o(x, y) + v(x)P(x, y)] dx dy
The variational cquation (when we take the first variation on P(x, y))
leads to
P,(2) = Bx)

where \ is determined to give the required fidelity and B(x) is chosen to
satisfy

f B(x)e ™M"Y dx = 1

This shows that, with best encoding, the conditional probability of a cer-
tain cause for various received y, Py(x) will decline exponentially with the
distance function p(x, y) between the x and y is question.

In the special case where the distance function p(x, ¥) depends only on the
(vector) difference between 2 and y,

p(x, ) = p(x — )

we have

fB(x)c—”('"') dx = 1.

Hence B(x) is constant, say «, and
P,(x) = ac "7V

Unfortunately thesc formal solutions are difficult to cvaluate in particular
cases and seem o be of little value. In fact, the actual calculation of rates
has been carricd out in only a few very simple cases.

If the distance function p(x, y) is the mecan square discrepancy between
x and y and the message ensemble is white noise, the rate can be determined.
In that case we have

R = Min [l1(x) — H,(x)] = H(x) — Max ()

with N = (x — 9)*. But the Max I7,(x) occurs when y — a is a white noise,
and is equal to I, log 2re N where IV, is the bandwidth of the message en-
semble. Therefore

R = W, log 2zeQ — IV, log 2weN
LY
N

where Q is the average message power. This proves the following:

= W, log
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Theorem 22: The rate for a white noisc source of power Q and band I,
relative to an R.M.S. measure of fidelity is

R = Wl lOg'I%

where N is ti.e allowed mean square error between original and recovered
messages.

More generally with any message source we can obtain incqualities bound-
ing the rate relative to a mean square error criterion.

Theorem 23: The rate for any source of band W, is bounded by

W, log% S R S W, logI%
where Q is the average power of the source, () its entropy power and N the
allowed mean square error.

The lower bound follows from the fact that the max II,(x) for a given
(x — y)* = N occurs in the white noisc case. The upper bound results if we
place the points (used in the proof of Theorem 21) not in the best way but
at random in a sphere of radius /0 — N.
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APPENDIX 5

Let S be any measurable subset of the g ensemble, and S3 the subset of
the f ensemble which gives S) under the operation I. Then

Sl = TSz.

Let II* be the operator which shifts all functions in a set by the time A.
Then

'S, = H'TS: = TH'S,

since T is invariant and therefore commutes with II*. Hence if m[S] is the
probability measure of the set §

m{H'S,) = m[TH'S)] = m[HS,]
= m[Sa] = m[S]
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where the second equality is by definition of measure in the g space the
third since the f ensemble is stationary, and the last by definition of g meas-
ure again.

To prove that the ergodic property is preserved under invariant operations,
let S; be a subset of the g ensemble which is invariant under H*, and let S,
be the set of all functions f which transform into S;. Then

'S, = H'TS, = TII'S, = §,
so that IS, is included in S, for all\. Now, since
m{I'Ss} = m(S)]
this implics
'S, =S,
for all X with m[S2] > 0, 1. This contradiction shows that S, does not exist.

APPENDIX 6

The upper bound, N3 < N, + N,, is due to the fact that the maximum
possible entropy for a power N, 4- N occurs when we have a white noisc of
this power. In this case the entropy power is N, -+ N,

To obtain the lower bound, suppose we have two distributions in 7 dimen-
sions p(x;) and g(x;) with entropy powers Ny and N;. What form should
? and ¢ have to minimize the entropy power N; of their convolution r(x,):

r(x) = f p(ydgxs — yi) dys.
The entropy H, of r is given by
Hy = — f r(x) log r(x;) dx;.
We wish to minimize this subject to the constraints

H = — f p(x) log p(x,) dx:

H = — f q(x;) log q(x;) dx; .
We consider then

U= - f Ir(x) log r(x) 4+ Ap(x) log p(x) + nq(x) log g(x)] dx

U = — f (11 4 log r(x)lér(x) + A1 + log p(x)16p(x)
+ ull 4 log g(x)sg(x)]} dx.
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If p(x) is varied at a particular argument x; = s;, the variation in r(x) is
or(x) = g(x; — s)
and
U = —f q(x; — s4) log () dxi — Nlog p(s)) = 0

and similarly when ¢ is varied. Hence the conditions for a minimum are

f q(x; — s3) log r(x;) = —\ log p(s)

—u log q(s,).

f plxi — 5:) log r(a;)

If we multiply the first by p(s,) and the second by ¢(s;) and integrate with
respect Lo s we obtain

113 = —\ 111
Iy = —pll,

or solving for A and p and replacing in the equations

I, f glx; — 5;) log r(xy) dxg = — 115 log p(sy)

I, f Pz — 5 log r(xy) dx; = — 113 log p(sy).

Now suppose p(x;) and g(x;) are normal

‘Aii inl2 .
pay) = Ty exp — 3ZAxix;
n/2
q(x) = | Bei [ exp — $ZB;jxx;.

(21)"”

Then r(x;) will also be normal with quadratic form C;;. If the inverses of
these forms are a,;, b;;, c;j then

cij = ai; + by;.
We wish to show that these functions satisfy the minimizing conditions if

and only if a;; = Kb;; and thus give the minimum I1; under the constraints.
First we have

i
log r(x) = glog 7 [Ciil — 1ZCijxix;

i

n

fq(x; - S.') lOg r(x.-) glog lC.’jl - %EC.’,‘S;S,’ bt %ECﬁb.-;.
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This should equal
I, 1 iAo
EEWzMJ*““d

which requires A,; = g—' Cij.
3

In this case 4;; = ;15 B,; and both equations reduce to identities.
2

APPENDIX 7

The following will indicate a more general and more rigorous approach to
the central definitions of communication theory. Consider a probability
measure space whose elements are ordered pairs (x, y). The variables x, y
are to be identificd as the possible transmitted and received signals of some
long duration T. Lect us call the sct of all points whose x belongs to a subset
St of x points the strip over Si, and similarly the set whosc y belongs to S
the strip over S2. We divide x and y into a collection of non-overlapping
measurable subsets X; and ¥, approximate to the rate of transmission R by

1 o P(X:, V)
&'T;”&”Mwmmﬂm
where

P(X,) is the probability measure of the strip over X;
P(V,) is the probability mcasure of the strip over V;
P(X,, V) is the probability measure of the intersection of the strips.

A further subdivision can ncver decrease R;. For let X be divided into

X1 = X1+ X{ and let

P(Vy) =a P(Xy)=b+c¢
P(X1) = b P(Xy, V) =d
P(X{)=c¢ P(XY, V) =¢

P(X], }"1) =d+e
Then. in the sum we have replaced (for the X, ¥, interscction)

d+ e d e
(d+e)logm—5 by dlog;i)-i—clog;&.

It is easily shown that with the limitation we have on 8, ¢, d, ¢,

[d+ e]d-ﬂ < ddcc
b+ ¢ =t
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and consequently the sum is increased. Thus the various possible subdivi-
sions form a directed set, with R monotonic increasing with refinement of
the subdivision. We may define R unambiguously as the least upper bound
for the Ry and write it

R= %ffP(x,y) logl—%)i’l%;—)dxdy.

This integral, understood in the above sense, includes both the continuous
and discrete cases and of course many others which cannot be represented
in either form. It is trivial in this formulation that if x and « are in one-to-
one correspondence, the rate from u to y is equal to that fromx toy. If »
is any function of y (not necessarily with an inverse) then the rate from x to
y is greater than or equal to that from x to v since, in the calculation of the
approximations, the subdivisions of y are essentially a finer subdivision of
those for ». More generally if y and v are related not functionally but
statistically, i.e., we have a probability measure space (y, v), then R(z, v) <
R(x, y). This means that any operation applied to the received signal, even
though it involves statistical elements, does not increase R.

Another notion which should be defined precisely in an abstract formu-
lation of the theory is that of “dimension rate,” that is the average number
of dimensions required per second to specify a member of an ensemble. In
the band limited case 2W numbers per second are sufficient. A general
definition can be framed as follows. Let f.(¢) be an ensemble of functions
and let pr{fa(t), f5(¢)) be a metric measuring the “distance” from f, to Jfs
over the time T (for example the R.M.S. discrepancy over this interval.)
Let N(e, 8, T) be the least number of elements f which can be chosen such
that all elements of the ensemble apart from a set of measure & are within
the distance e of at least one of those chosen. Thus we are covering the
space to within e apart from a set of small measure 8. We define the di-
mension rate A for the ensemble by the triple limit

A = Lim Lim Lim 8Y( 8 T)
30 (0 Tow I loge
This is a generalization of the measure type definitions of dimension in
topology, and agrees with the intuitive dimension rate for simple ensembles
where the desired result is obvious.



Communication Theory of Secrecy Systems*
By C. E. SHANNON

1. INTRODUCTION AND SUMMARY

HE problems of cryptography and secrecy systems furnish an interest-

ing application of communication theory.! In this paper a theory of
secrecy systems is developed. The approach is on a theoretical level and is
intended to complement the treatment found in standard works on cryp-
tography.? There, a detailed study is made of the many standard types of
codes and ciphers, and of the ways of breaking them. We will be more con-
cerned with the general mathematical structure and properties of secrecy
systems.

The treatment is limited in certain ways. First, there are three general
types of secrecy system: (1) concealment systems, including such methods
as invisible ink, concealing a message in an innocent text, or in a fake cover-
ing cryptogram, or other methods in which the existence of the message is
concealed from the enemy; (2) privacy systems, for example speech inver-
sion, in which special equipment is required to recover the message; (3)
‘““true” secrecy systems where the meaning of the message is concealed by
cipher, code, etc., although its existence is not hidden, and the enemy is
assumed to have any special equipment necessary to intercept and record
the transmitted signal. We consider only the third type—concealment
systems are primarily a psychological problem, and privacy systems a
technological one.

Secondly, the treatment is limited to the case of discrete information,
where the message to be enciphered consists of a sequence of discrete sym-
bols, each chosen from a finite set. These symbols may be letters in a lan-
guage, words of a language, amplitude levels of a ““quantized” speech or video
signal, etc., but the main emphasis and thinking has been concerned with
the case of letters.

The paper is divided into three parts. The main results will now be briefly
summarized. The first part deals with the basic mathematical structure of
secrecy systems. As in communication theory a language is considered to

* The material in this paper appeared originally in a confidential report “A Mathe-
matical Theory of Cryptography’ dated Sept. 1, 1945, which has now been declassified.

! Shannon, C. E., “A Mathematical Theory of Communication,” Bell System Technical
Journal, July 1948, p. 379; Oct. 1948, p. 623.

2 See, for example, H. F. Gaines, “Elementary Cryptanalysis,” or M. Givierge, “Cours
de Cryptographie.”
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be represented by a stochastic process which produces a discrete sequence of
symbols in accordance with some system of probabilities. Associated with a
language there is a certain parameter D which we call the redundancy of
the language. D measures, in a sense, how much a text in the language can
be reduced in length without losing any information. As a simple example,
since u always follows g in English words, the # may be omitted without loss.
Considerable reductions are possible in English due to the statistical struc-
ture of the language, the high frequencies of certain letters or words, etc.
Redundancy is of central importance in the study of secrecy systems.

A secrecy system is defined abstractly as a set of transformations of one
space (the set of possible messages) into a second space (the set of possible
cryptograms). Each particular transformation of the set corresponds to
enciphering with a particular key. The transformations are supposed rever-
sible (non-singular) so that unique deciphering is possible when the key
is known.

Each key and therefore each transformation is assumed to have an @
priori probability associated with it—the probability of choosing that key.
Similarly each possible message is assumed to have an associated a priori
probability, determined by the underlying stochastic process. These prob-
abilities for the various keys and messages are actually the enemy crypt-
analyst’s a priori probabilities for the choices in question, and represent his
a priori knowledge of the situation.

To use the system a key is first selected and sent to the receiving point.
The choice of a key determines a particular transformation in the set
forming the system. Then a message is selected and the particular trans-
formation corresponding to the selected key applied to this message to
produce a cryptogram. This cryptogram is transmitted to the receiving point
by a channel and may be intercepted by the “enemy*.” At the receiving
end the inverse of the particular transformation is applied to the cryptogram
to recover the original message.

If the enemy intercepts the cryptogram he can calculate from it the
a posteriori probabilities of the various possible messages and keys which
might have produced this cryptogram. This set of a posteriori probabilities
constitutes his knowledge of the key and message after the interception.
“Knowledge” is thus identified with a set of propoesitions having associated
probabilities. The calculation of the a posteriori probabilities is the gen-
eralized problem of cryptanalysis.

As an example of these notions, in a simple substitution cipher with ran-
dom key there are 26! transformations, corresponding to the 26! ways we

*The word “‘enemy,” stemming from military applications, is commonly used in cryp-
tographic work to denote anyone who may intercept a cryptogram.
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can substitute for 26 different letters. These are all equally likely and each
thereforc has an @ priori probability 1/26!. If this is applied to ‘‘normal
English” the cryptanalyst being assumed to have no knowledge of the
message source other than that it is producing English text, the a priori
probabilities of various messages of N letters are merely their relative
frequencies in normal English text.

If the enemy intercepts NV letters of cryptogram in this system his prob-
abilities change. If N is large enough (say 50 letters) there is usually a single
message of a posleriori probability nearly unity, while all others have a total
probability nearly zero. Thus there is an essentially unique “solution” to
the cryptogram. For .V smaller (say .V = 15) there will usually be many
messages and keys of comparable probability, with no single one nearly
unity. In this case there are muitiple “solutions’ to the cryptogram.

Considering a secrecy system to be represented in this way, as a set of
transformations of one set of elements into another, there are two natural
combining operations which produce a third system from two given systems.
The first combining operation is called the product operation and cor-
responds to enciphering the message with the first secrecy system R and
enciphering the resulting cryptogram with the second system S, the keys for
R and S being chosen independently. This total operation is a secrecy
system whose transformations consist of all the products (in the usual sense
of products of transformations) of transformations in S with transformations
in R. The probabilities are the products of the probabilities for the two
transformations.

The second combining operation is “ weighted addition.”

T = pR + ¢S p4g=1

It corresponds to making a preliminary choice as to whether system R or
S is to be used with probabilities p and ¢, respectively. When this is done
R or S is used as originally defined.

It is shown that secrecy systems with these two combining operations
form essentially a “linear associative algebra” with a unit element, an
algebraic variety that has been extensively studied by mathematicians.

Among the many possible secrecy systems there is one type with many
special properties. This type we call a “pure” system. A system is pure if
all keys are equally likely and if for any three transformations T,, T;, T,
in the set the product

T.T,~'T,

is also a transformation in the set. That is enciphering, deciphering, and
enciphering with any three keys must be equivalent to enciphering with
some key.
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With a pure cipher it is shown that all keys are essentially cquivalent—
they all lead to the same set of a posteriori probabilities. Furthermore, when
a given cryptogram is intercepted there is a set of messages that might have
produced this cryptogram (a ‘“‘residue class”) and the a posteriori prob
abilitics of messages in this class are proportional to the a priori probabilities.
All the information the enemy has obtained by intercepting the cryptogram
is a specification of the residue class. Many of the common ciphers are pure
systems, including simple substitution with random key. In this case the
residue class consists of all messages with the same pattern of letter repeti-
tions as the intercepted cryptogram.

Two systems R and S are defined to be *“similar” if there exists a fixed
transformation A with an inverse, A, such that

R = AS.

If R and S are similar, a one-to-one correspondence between the resuiting
cryptograms can be set up leading to the same a posteriori probabilities.
The two systems are crypt analytically the same.

The second part of the paper deals with the problem of “theoretical
secrecy.”’ How secure is a system against cryptanalysis when the enemy has
unlimited time and manpower available for the analysis of intercepted
cryptograms? The problem is closely related to questions of communication
in the presence of noise, and the concepts of entropy and equivocation
developed for the communication problem find a direct application in this
part of cryptography.

“Perfect Secrecy” is defined by requiring of a system that after a crypto-
gram is intercepted by the enemy the a posterior: probabilities of this crypto-
gram representing various messages be identically the same as the a priori
probabilities of the same messages before the interception. It is shown that
perfect secrecy is possible but requires, if the number of messages is finite,
the same number of possible keys. If the message is thought of as being
constantly generated at a given “rate’” R (to be defined later), key must be
generated at the same or a greater rate.

If a secrecy system with a finite key is used, and N letters of cryptogram
intercepted, there will be, for the enemy, a certain set of messages with
certain probabilities, that this cryptogram could represent. As N increases
the field usually narrows down until eventually there is a unique “solution”
to the cryptogram; one message with probability essentially unity while all
others are practically zero. A quantity H(N) is defined, called the equivoca-
tion, which measures in a statistical way how near the average cryptogram
of N letters is to a unique solution; that is, how uncertain the enemy is of the
original message after intercepting a cryptogram of N letters. Various
properties of the equivocation are deduced—for example, the equivocation
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of the key never increases with increasing N. This equivocation is a theo-
retical secrecy index—theoretical in that it allows the enemy unlimited time
to analyse the cryptogram.

The function H(X) for a certain idealized type of cipher called the random
cipher is determined. With certain modifications this function can be applied
to many cases of practical interest. This gives a way of calculating approxi-
mately how much intercepted material is required to obtain a solution to a
secrecy system. It appears from this analysis that with ordinary languages
and the usual types of ciphers (not codes) this “unicity distance” is approxi-
mately H(K)/D. Here H(K) is a number measuring the ‘“‘size” of the key
space. If all keys are a priori equally likely H(K) is the logarithm of the
number of possible keys. D is the redundancy of the language and measures
the amount of “statistical constraint” imposed by the language. In simple
substitution with random key H(K) is logys 26! or about 20 and D (in decimal
digits per letter) is about .7 for English. Thus unicity occurs at about 30
letters.

It is possible to construct secrecy systems with a finite key for certain
“languages” in which the equivocation does not approach zero as N — «.
In this case, no matter how much material is intercepted, the enemy still
does not obtain a unique solution to the cipher but is left with many alter-
natives, all of reasonable probability. Such systems we call ideg! systems.
It is possible in any language to approximate such behavior—i.e., to make
the approach to zero of H(N) recede out to arbitrarily large N. However,
such systems have a number of drawbacks, such as complexity and sensi-
tivity to errors in transmission of the cryptogram.

The third part of the paper is concerned with “practical secrecy.” Two
systems with the same key size may both be uniquely solvable when N
letters have been intercepted, but differ greatly in the amount of labor
required to effect this solution. An analysis of the basic weaknesses of sec-
recy systems is made. This leads to methods for constructing systems which
will require a large amount of work to solve. Finally, a certain incompat-
ibility among the various desirable qualities of secrecy systems is discussed.

PART 1
MATHEMATICAL STRUCTURE OF SECRECY SYSTEMS

2. SECRECY SYSTEMS

As a first step in the mathematical analysis of cryptography, it is neces-
sary to idealize the situation suitably, and to define in a mathematically
acceptable way what we shall mean by a secrecy system. A “‘schematic”
diagram of a general secrecy system is shown in Fig. 1. At the transmitting



Communication Theory of Secrecy Systems 89

end there are two information sources—a message source and a key source.
The key source produces a particular key from among those which are
possible in the system. This key is transmitted by some means, supposedly
not interceptible, for example by messenger, to the receiving end. The
message source produces a message (the “clear”) which is enciphered and
the resulting cryptogram sent to the receiving end by a possibly inter-
ceptible means, for example radio. At the receiving end the cryptogram and
key are combined in the decipherer to recover the message.

ENEMY
CRYPTANALYST
€

MESSAGE | MESSACE ENCIPHERER | CRYPTOGRAM DECIPHERER) MESSAGE
SOURCE v} Ty € E ™ Y]

KEY

K KEY K

KEY
SOURCE

Fig. 1—Schematic of a general secrecy system.

Evidently the encipherer performs a functional operation. If M is the
message, K the key, and E the enciphered message, or cryptogram, we have

E =~ {(M, K)

that is E is a function of M and K. It is preferable to think of this, however,
not as a function of two variables but as a (one parameter) family of opera-
tions or transformations, and to write it

E = T.‘M.

The transformation T'; applied to message M produces cryptogram E. The
index ¢ corresponds to the particular key being used.

We will assume, in general, that there are only a finite number of possible
keys, and that each has an associated probability p, . Thus the key source is
represented by a statistical process or device which chooses one from the set
of transformations T, T3, ---, T with the respective probabilities p, ,
P, "+, pm. Similarly we will generally assume a finite number of possible
messages My, My, ---, M, with associated a priori probabilities ¢, ¢,
+++, ga . The possible messages, for example, might be the possible sequences
of English letters all of length N, and the associated probabilities are then
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the relative frequencies of occurrence of these sequences in normal English
text.

At the receiving end it must be possible to recover M, knowing E and K.
Thus the transformations T in the family must have unique inverses
T7" such that T.T;" = I, the identity transformation. Thus:

M = T;'E.

At any rate this inverse must exist uniquely for every -E which can be
obtained from an M with key i. Hence we arrive at the definition: A secrecy
system is a family of uniquely reversible transformations T; of a set of
possible mssages into a set of cryptograms, the transformation T; having
an associated probability p:. Conversely any set of entities of this type will
be called a “secrecy system.” The set of possible messages will be called,
for convenience, the “message space’” and the set of possible cryptograms
the “cryptogram space.”

Two secrecy systems will be the same if they consist of the same set of
transformations T';, with the same message and cryptogram space (range
and domain) and the same probabilities for the keys.

A secrecy system can be visualized mechanically as a machine with one
or more controls on it. A sequence of letters, the message, is fed into the
input of the machine and a second series emerges at the output. The par-
ticular setting of the controls corresponds to the particular key being used.
Seme statistical method must be prescribed for choosing the key from all
the possible ones.

To make the problem mathematically tractable we shall assume that
the enemy knows the system being used. That is, he knows the family of trans-
formations T;, and the probabilities of choosing various keys. It might be
objected that this assumption is unrealistic, in that the cryptanalyst often
does not know what system was used or the probabilities in question. There
are two answers to this objection:

1. The restriction is much weaker than appears at first, due to our broad
definition of what constitutes a secrecy system. Suppose a cryptog-
rapher intercepts a message and does not know whether a substitution,
transposition, or Vigenére type cipher was used. He can consider the
message as being enciphered by a system in which part of the key is the
specification of which of these types was used, the next part being the
particular key for that type. These three different possibilities are
assigned probabilities according to his best estimates of the a priori
probabilities of the encipherer using the respective types of cipher.

2. The assumption is actually the one ordinarily used in cryptographic
studies. It is pessimistic and hence safe, but in the long run realistic,
since one must expect his system to be found out eventually. Thus,
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even when an entirely new system is devised, so that the enemy cannot
assign any a priori probability to it without discovering it himself,
one must still live with the expsctation of his eventual knowledge.

The situation is similar to that occurring in the theory of games® where it
is assumed that the opponent “finds out” the strategy of play being used.
In both cases the assumption serves to delineate sharply the opponent’s
knowledge.

A second possible objection to our definition of secrecy systems is that no
account is taken of the common practice of inserting nulls in a message and
the use of multiple substitutes. In such cases there is not a unique crypto-
gram for a given message and key, but the encipherer can choose at will
from among a number of different cryptograms. This situation could be
handled, but would only add complexity at the present stage, without sub-
stantially altering any of the basic results.

If the messages are produced by a Markoff process of the type described
in (') to represent an information source, the probabilities of various mes-
sages are determined by the structure of the Markoff process. For the present,
however, we wish to take a more general view of the situation and regard
the messages as merely an abstract set of entities with associated prob-
abilities, not necessariy composed of a sequence of letters and not neces-
sarily produced by a Markoff process.

It should be emphasized that throughout the paper a secrecy system
means not one, but a set of many transformations. After the key is chosen
only one of these transformations is used and one might be led from this to
define a secrecy system as a single transformation on a language. The
enemy, however, does not know what key was chosen and the “might have
been’’ keys are as important for him as the actual one. Indeed it is only the
existence of these other possibilities that gives the system any secrecy.
Since the secrecy is our primary interest, we are forced to the rather elabor-
ate concept of a secrecy system defined above. This type of situation, where
possibilities are as important as actualities, occurs frequently in games of
strategy. The course of a chess game is largely controlled by threats which
are no! carried out. Somewhat similar is the “virtual existence” of unrealized
imputations in the theory of games.

It may be noted that a single operation on a language forms a degenerate
type of secrecy system under our definition—a system with only one key of
unit probability. Such a system has no secrecy—the cryptanalyst finds the
message by applying the inverse of this transformation, the only one in the
system, to the intercepted cryptogram. The decipherer and cryptanalyst
in this case possess the same information. In general, the only difference be-
tween the decipherer’s knowledge and the enemy cryptanalyst’s knowledge

3See von Neumann and Morgenstern “The Theory of Games,” Princeton 1947,
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is that the decipherer knows the particular key being used, while the crypt-
analyst knows only the a priori probabilities of the various keys in the set.
The process of deciphering is that of applying the inverse of the particular
transformation used in enciphering to the cryptogram. The process of crypt-
analysis is that of attempting to determine the message (or the particular
key) given only the cryptogram and the a priori probabilities of various
keys and messages.

There are a number of difficult epistemological questions connected with
the theory of secrecy, or in fact with any theory which involves questions of
probability (particularly e priori probabilities, Bayes’ theorem, etc.) when
applied to a physical situation. Treated abstractly, probability theory can
be put on a rigorous logical basis with the modern measure theory ap-
proach.*® As applied to a physical situation, however, especially when
“subjective’” probabilities and unrepeatable experiments are concerned,
there are many questions of logical validity. For example, in the approach
to secrecy made here, @ priori probabilities of various keys and messages
are assumed known by the enemy cryptographer—how can one determine
operationally if his estimates are correct, on the basis of his knowledge of the
situation?

One can construct artificial cryptographic situations of the “urn and die”
type in which the a priori probabilities have a definite unambiguous meaning
and the idealization used here is certainly appropriate. In other situations
that one can imagine, for example an intercepted communication between
Martian invaders, the a priori probabilities would probably be so uncertain
as to be devoid of significance. Most practical cryptographic situations lie
somewhere between these limits. A cryptanalyst might be willing to classify
the possible messages into the categories ‘“‘reasonable,” “possible but un-
likely” and “unreasonable,” but feel that finer subdivision was meaningless.

Fortunately, in practical situations, only extreme errors in g priori prob-
abilities of keys and messages cause significant errors in the important
parameters. This is because of the exponential behavior of the number of
messages and cryptograms, and the logarithmic measures employed.

3. REPRESENTATION OF SYSTEMS

A secrecy system as defined above can be represented in various ways.
One which is convenient for illustrative purposes is a line diagram, as in
Figs. 2 and 4. The possible messages are represented by points at the left
and the possible cryptograms by points at the right. If a certain key, say key
1, transforms message M, into cryptogram E, then M, and E, are connected

4See J. L. Doob, “Probability as Measure,” Annals of Math. Slat., v. 12, 1941, pp.
206-214.

® A. Kolmogoroff, “Grundbegriffe der Wahrscheinlichkeits rechnung,” Ergebnisse der
Mathematic, v. 2, No. 3 (Berlin 1933).
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by a line labeled 1, etc. From each possible message there must be exactly
one line emerging for each different key. If the same is true for each
cryptogram, we will say that the system is closed.

A more common way of describing a system is by stating the operation
one performs on the message for an arbitrary key to obtain the cryptogram.
Similarly, one defines implicitly the probabilities for various keys by de-
scribing how a key is chosen or what we know of the enemy’s habits of key
choice. The probabilities for messages are implicitly determined by stating
our a priori knowledge of the enemy’s language habits, the tactical situatio::
(which will influence the probable content of the message) and any special
information we may have regarding the cryptogram.

€
1
M
F]
2 tg
M,
F)
LY
CLOSED SYSTEM NOT CLOSED

Fig. 2—Line drawings for simple systems.

4. SOME EXAMPLES OF SECRECY SYSTEMS

In this section a number of examples of ciphers will be given. These will
often be referred to in the remainder of the paper for illustrative purposes.

1. Simple Substitution Cipher.

In this cipher each letter of the message is replaced by a fixed substitute,
usually also a letter. Thus the message,

M= MMMy ©

where m, , my, - -+ are the successive letters becomes:
E = 31626164' ..
= flmy)f(ma)f(ma)f(my) - - -

where the function f(m) is a function with an inverse. The key is a permuta-
tion of the alphabet (when the substitutes are letters) eg. XGU AC D
TBFHRSLMQVYZWIEJOKN P. The first letter X is the
substitute for 4, G is the substitute for B, etc.
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2. Transposiiion (Fixed Pcriod d).

The message is divided into groups of length d and a permutation applied
to the first group, the same permutation to the second group, etc. The per-
mutation is the key and can he represented by a permutation of the first d
integers. Thus, for d = 5, we might have 23 1 54 as the permutation.
This means that:

my Mg My My iy My M My My My - - - becomes
M2 My My Mg My M7 Mg Mg Mg Mg *+~ .

Sequential application of two or more transpositions will be called compound
transposition. If the periods are dy, d; , - -, d, it is clear that the result is

a transposition of period d, where d is the least common multiple of d; ,
da, -, d,.

3. Vigenére, and Varialivzs,

In the Vigenére cipher the key consists of a series of d letters. These are
written repeatedly below the message and the two added modulo 26 (con-
sidering the alphabet numbered from 4 = 0 to Z = 25, Thus

e = m; -+ k; (mod 26)

where &, is of period d in the index i. For example, with the key G 4 H,
we obtain

message NOWI STHE---
repeatedkey G AHGAHGA ---
cryptogram TODOSANE...

The Vigenére of period 1 is called the Caesar cipher. It is a simple substi-
tution in which each letter of M is advanced a fixed amount in the alphabet.
This amount is the key, which may be any number from O to 25. The so-
called Beaufort and Variant Beaufort are similar to the Vigenére, and en-
cipher by the equations

& = kg—- ” (mod 26)
and
e; = m; — k; (mod 26)

respectively. The Beaufort of period one is called the reversed Caesar
cipher.

The application of two or more Vigenéres in sequence will be called the
compound Vigenére. It has the equation

ecm= mi+ ke+ I+ -+ + s (mod 26)
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where &;, l;, -+, 5; in general have diffcrent periods. The period of their
sum,

R

as in compound transposition, is the least common multiple of the individual
periods.

\When the Vigenére is used with an unlimited key, never repeating, we
have the Vernam system,® with

e, = m; + k; (mod 26)

the k; being chosen at random and independently among O, 1, ---, 25. If
the key is a meaningful text we have the “running key” cipher.

4. Digram, Trigram, and N-gram substitution.

Rather than substitute for letters one can substitute for digrams, tri-
grams, etc. General digram substitution requires a key consisting of a per-
mutation of the 26? digrams. It can be represented by a table in which the
rew corresponds to the first letter of the digram and the column to the second
letter, entries in the table being the substitutes (usually also digrams).

S. Single Mixed Alphadel Vigenére.
This is a simpie substitution followed by a Vigenére.

e = fim) + ki
mi = f"e: — k)

The “inverse™ of this system is a Vigenere followed by simple substituticn

ei = glmi + k)
mi=ge) — ki

6. Matrix System.?

One method of n-gram substitution is to operate on successive n-grams
with a matrix having an inverse. The letters are assumed numbered from
0 to 25, making them elements of an algebraic ring. From the n-gram m, m,
-+ mn of message, the matrix a,; gives an n-gram of cryptogram

n
e.-=Za.—,~m,~ i=l,---,n
i=1

8 G. S. Vernam, “Cipher Printing Telegraph Systems for Secret Wire and Radio Tele-
graphic Communications,” Journal American Institute of Electrical Engineers, v. XLV,
pp. 109-115, 1926.

7See L. S. Hill, “Cryptography in an Algebraic Alphabet,” American Math. Monthly,
v. 36, No. 6, 1, 1929, pp. 306-312; also “Concerning Certain Linear Transformation
Apparatus of Cryptography,” v. 38, No. 3, 1931, pp. 135-154.
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The matrix a,; is the key, and deciphering is performed with the inverse
matrix. The inverse matrix will exist if and only if the determinant | a;; |
has an inverse element in the ring.

7. The Playfair Cipher.

This is a particular type of digram substitution governed by a mixed 25
letter alphabet written in a 5 x 5 square. (The letter J is often dropped in
cryptographic work—it is very infrequent, and when it occurs can be re-
placed by I.) Suppose the key square is as shown below:

XBTEW

The substitute for a digram AC, for example, is the pair of letters at the
other corners of the rectangle defined by 4 and C, i.e., LO, the L taken first
since it is above A. If the digram letters are on a horizontal line as RJ, one
uses the letters to their right DF; RF becomes DR. If the letters are on a
vertical line, the letters below them are used. Thus PS becomes UW. If
the letters are the same nulls may be used to separate them or one may be
omitted, etc.

8. Mulliple Mixed Alphabet Substitution.
In this cipher there are a set of d simple substitutions which are used
in sequence. If the period d is four

my My M3 My My Mg =~

becomes

film) f(ma) fi(ms) fu(m) fi(me) fr(ma) - - -
9. Aulokey Cipher.

A Vigenére type system in which either the message itself or the resulting
cryptogram is used for the “‘key” is called an autokey cipher. The encipher-
ment is started with a “‘priming key” (which is the entire key in our sense)
and continued with the message or cryptogram displaced by the length of
the priming key as indicated below, where the priming key is COMET.
The message used as “key":

Message SENDSUPPLIES ---
Key COMETSENDSUP:--
Cryptogram USZOLMTCOAYH
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The cryptogram used as ‘“‘key"”:?

Message SENDSUPPLIES
Key COMETUSZHLOH .-
Cryptogram USZHLOHOSTS

10. Fractional Ciphers.

In these, each letter is first enciphered into two or more letters or num-
bers and these symbols are somehow mixed (e.g. by transposition). The
result may then be retranslated into the original alphabet. Thus, using a
mixed 25-letter alphabet for the key, we may translate letters into two-digit
quinary numbers by the table:

LNV T L I )

MR N O
WO QN=
NRRZON
M~ w
SRS IR

Thus B becomes 41. After the resulting series of numbers is transposed in
some way they are taken in pairs and translated back into letters.

11. Codes.

In codes words (or sometimes syllables) are replaced by substitute letter
groups. Sometimes a cipher of one kind or another is applied to the result.

S. VALUATIONS OF SECRECY SYSTEMS

There are a number of different criteria that should be applied in esti-
mating the value of a proposed secrecy system. The most important of
these are:

1. Amount of Secrecy.

There are some systems that are perfect—the enemy is no better off after
intercepting any amount of material than before. Other systems, although
giving him some information, do not yield a unique “solution” to intercepted
cryptograms. Among the uniquely solvable systems, there are wide varia-
tions in the amount of labor required to eflect this solution and in the
amount of material that must be intercepted to make the solution unique.

® This system is trivial from the secrecy standpoint since, with the exception of the
first d letters, the enemy is in possession of the entire *key.”
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2. Size of Key.
The key must be transmitted by non-interceptible means from transmit-

ting to receiving points. Sometimes it must be memorized. It is therefore
desirable to have the key as small as possible.

3. Complexity of Enciphering and Deciphering Operations.

Enciphering and deciphering should, of course, be as simple as possible.
If they are done manually, complexity leads to loss of time, errors, etc. If
done mechanically, complexity leads to large expensive machines.

4. Propagation of Errors.

If certain types of ciphers an error of one letter in enciphering or trans-
mission leads to a large number of errors in the deciphered text. The errors
are spread out by the deciphering operation, causing the loss of much in-
formation and frequent need for repetition of the cryptogram. It is naturally
desirable to minimize this error expansion.

5. Expansion of Message.

In some types of secrecy systems the size of the message is increased by
the enciphering process. This undesirable effect may be seen in systems
where one attempts to swamp out message statistics by the addition of
many nulls, or where multiple substitutes are used. It also occurs in many
“concealment” types of systems (which are not usually secrecy systems in
the sense of our definition).

6. THE ALGEBRA OF SECRECY SYSTEMS

If we have two secrecy systems T and R we can often combine them in
various ways to form a new secrecy system S. If T and R have the same
domain (message space) we may form a kind of “weighted sum,”

S = 9T + ¢R

where p + ¢ = 1. This operation consists of first making a preliminary
choice with probabilities p and g determining which of T and R is used.
This choice is part of the key of S. After this is determined T or R is used as
originally defined. The total key of S must specify which of T and R is used
and which key of T (or R) is used.

If T consists of the transformations 1), ---, T, with probabilities p, ,
-+ +, pmand R consists of Ry, - - -, Ry with probabilities ¢, , - - -, g then § =
pT + ¢R consists of the transformations Ty, T2, -+, T, Ry, ---, R
with probabilities pp: , pp2, -+, ppm, 901, 992, - - -, qqe Tespectively.

More generally we can form the sum of a number of systems.
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S=pT+ pR+ - + pulU 2i=1
We note that any system T can be written as a sum of fixed operations
T=phi+ph+ -+ + pnln

T, being a definite enciphering operation of T corresponding to key choice
1, which has probability ..

A second way of combining two secrecy systems is by taking the “prod-
uct,” shown schematically in Fig. 3. Suppose T and R are two systems and
the domain (language space) of R can be identified with the range (crypto-
gram space) of 7. Then we can apply first T to our language and then R

T R tA R ed T

LY LF]

Fig. 3—Product of two systems S = RT.

to the result of this enciphering process. This gives a resultant operation S
which we write as a product

S = RT

The key for S consists of both keys of T and R which are assumed chosen
according to their original probabilities and independently. Thus, if the
m keys of T are chosen with probabilities

and the 1 keys of R have probabilities
7 ! ’
?l P2 ot Pn ’

then S has at most mn keys with probabilities p:p; . In many cases some of
the product transformaions R;T; will be the same and can be grouped to-
gether, adding their probabilities.

Product encipherment is often used; for example, one follows a substi-
tution by a transposition or a transposition by a Vigenére, or applies a code

to the text and enciphers the result by substitution, transposition, frac-
tionation, etc.
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It may be noted that multiplication is not in general commutative, (we
do not always have RS = SR), although in special cases, such as substitu-
tion and transposition, it is. Since it represents an operation it is definition-
ally associative. That is R(ST) = (RS)T = RST. Furthermore we have
the laws

pP'T + ¢R) + ¢S = pp'T + pg'R + ¢S
(weighted associative law for addition)

T(pR + ¢S) = pTR + ¢TS
(pR + ¢S)T = pRT + ¢ST

(right and left hand distributive laws)
and

nT + T + paR = (pr + p2)T + PR

It should be emphasized that these combining operations of addition
and multiplication apply to secrecy systems as a whole. The product of two
systems TR should not be confused with the product of the transformations
in the systems TR, , which also appears often in this work. The former TR
is a secrecy system, i.e., a set of transformations with associated prob-
abilities; the latter is a particular transformation. Further the sum of two
systems pR + ¢7T is a system—the sum of two transformations is not de-
fined. The systems T and R may commute without the individual T; and R;
commuting, e.g., if R is a Beaufort system of a given period, all keys equally
likely,

R.R; & R;R;
in general, but of course RR does not depend on its order; actually
RR =V

the Vigenére of the same period with random key. On the other hand, if
the individual 7; and R; of two systems T and R commute, then the sys-
tems commute.

A system whose M and E spaces can be identified, a very common case
as when letter sequences are transformed into letter sequences, may be
termed endomorphic. An endomorphic system T may be raised to a power I™ .

A secrecy system T whose product with itself is equal to T, i.e., for which

TT =T,
will be called idempotent. For example, simple substitution, transposition

of period p, Vigenére of period p (all with each key equally likely) are
idempotent.
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The set of all endomorphic secrecy systems defined in a fixed message

space constitutes an ‘‘algebraic variety,” that is, a kind of algebra, using
the operations of addition and multiplication. In fact, the properties of
addition and multiplication which we have discussed may be summarized
as follows:
The set of endomorphic ciphers wilh the same message space and the two com-
bining operations of weighled addilion and mulliplication form a linear associ-
ative algebra with a unil element, apari from the fact that the coefficienis in a
weighted addition must be non-negalive and sum to unity.

The combining operations give us ways of constructing many new types
of secrecy systems from certain ones, such as the examples given. We may
also use them to describe the situation facing a cryptanalyst when attempt-
ing to solve a cryptogram of unknown type. He is, in fact, solving a secrecy
system of the type

T=pAd+pB+ - +pS+pX p=1

where the 4, B, -- -, § are known types of ciphers, with the p; their a priori
probabilities in this situation, and p’X corresponds to the possibility of a
completely new unknown type of cipher.

7. PURE AND M1xEDp CIPHERS

Certain types of ciphers, such as the simple substitution, the transposi-
tion of a given period, the Vigentre of a given period, the mixed alphabet
Vigentre, etc. (all with each key equally likely) have a certain homogeneity
with respect to key. Whatever the key, the enciphering, deciphering and
decrypting processes are essentially the same. This may be contrasted with
the cipher

S+ ¢qT

where § is a simple substitution and T a transposition of a given period.
In this case the entire system changes for enciphering, deciphering and de-
cryptment, depending on whether the substitution or transposition is used.

The cause of the homogeneity in these systems stems from the group
property—we notice that, in the above examples of homogeneous ciphers,
the product 7.T; of any two transformations in the set is equal to a third
transformation T in the set. On the other hand 7S; does not equal any
transformation in the cipher

S + ¢qT

which contains only substitutions and transpositions, no products.
We might define a “pure” cipher, then, as one whose T; form a group.
This, however, would be too restrictive since it requires that the E space
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be the same as the M space, i.e. that the system be endomorphic. The
fractional transposition is as homogeneous as the ordinary transposition
without being endomorphic. The proper definition is the following: A cipher
T is pure if for every T, T;, T} there is a T, such that

TT7T. = T,

and every key is equally likely. Otherwise the cipher is mixed. The systems of

Fig. 2 are mixed. Fig. 4 is pure if all keys are equally likely.

Theorem 1: In a pure cipher the operations T; T; which transform the message
space inlo itself form a group whose order is m, the number of
different keys.

For

T T T T; = 1

so that each element has an inverse. The associative law is true since these
are operations, and the group property follows from

T3 T5' T = TR T = T7'T,

using our assumption that T5'T; = T7,'T, for some s.

The operation T'T; means, of course, enciphering the message with key
j and then deciphering with key i which brings us back to the message space.
If T is endomorphic, i.e. the T; themselves transform the space y into itself
(as is the case with most ciphers, where both the message space and the
cryptogram space consist of sequences of letters), and the T'; are a group and
equally likely, then T is pure, since

TT7T. =TT, = T..

Theorem 2: The product of two pure ciphers which commute is pure.
For if T and R commute T:R; = R,T,, for every 4, § with suitable /, m, and

T:R{(T\R) TRy = T:R;R7'T%' TR,
= RUR:IRWT rT:lT ¢
= RiT,.

The commutation condition is not necessary, however, for the product to
be a pure cipher.

A system with only one key, i.e., a single definite operation T, is pure
since the only choice of indices is

NI =T.

Thus the expansion of a general cipher into a sum of such simple trans-
formations also exhibits it as a sum of pure ciphers.
An examination of the example of a pure cipher shown in Fig. 4 discloses
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certain properties. The messages fall into certain subsets which we will call
residue classes, and the possible cryptograms are divided into corresponding
residue classes. There is at least one line from each message in a class to
each cryptogram in the corresponding class, and no line between classes
which do not correspond. The number of messages in a class is a divisor of
the total number of keys. The number of lines ““in parallel” from a message
M to a cryptogram in the corresponding class is equal to the number of
keys divided by the number of messages in the class containing the message
(or cryptogram). It is shown in the appendix that these hold in general for
pure ciphers. Summarized formally, we have:

MESSAGE CRYPTOGRAM
RESIDUE RESIDUE
CLASSES - CLASSES
r My ] €
4
M, : E,
< o 3 c)
3 € 3
M,y €,
- M, ] Eg -
€2 ¢ Ca
M [
L ¢ ! E. J

alwe=—" 19

PURE SYSTEM
Fig. 4—Pure system.

Theorem 3: In a pure sysiem the messages can be divided into a set of *‘residue
classes” Cy ,Cy, -+, C, and the cry?tograms inlo a corresponding
set of residue classes Cy , C , - - -, C, with the following properties:
(1) The message residue classes are mutually exclusive and col-

lectively comtain all possible messages. Similarly for the
cryptogram residue classes.

(2) Enciphering any message in C; with any key produces a
cryplogram in Ci. Deciphering any cryptogram in Ci with
any key leads to a message in C. .

(3) The number of messages in C: , say ¢i , is equal to the number
of cryptograms in Ci and is a divisor of k the number of keys.



104 C. E. Shannon

(4) Each message in C; can be enciphered inlo each cryplogram

in C; by exactly k/ i different keys. Similarly for decipherment.

The importance of the concept of a pure cipher (and the reason for the
name) lies in the fact that in a pure cipher all keys are essentially the same.
Whatever key is used for a particular message, the a posteriori probabilities
of all messages are identical. To see this, note that two different keys ap-
plied to the same message lead to two cryptograms in the same residue class,

say C;. The two cryptograms therefore could each be deciphered by f;

keys into each message in C; and into no other possible messages. All keys
being equally likely the @ posteriori probabilities of various messages are
thus

P(M)Pu(E) _  P(M)Pu(E) - }_’_(y_)_
P(E)y  ZuP(M)P.(E) P(C)

where M is in C;, E is in C; and the sum is over all messages in C; . If E
and M are not in corresponding residue classes, Pg(M) = 0. Similarly it
can be shown that the a posieriori probabilities of the different keys are
the same in value but these values are associated with different keys when
a different key is used. The same set of values of Ps(KX) have undergone a
permutation among the keys. Thus we have the result
Theorem 4: In a pure system the a posteriori probabilities of various messages
Pg(M) are independent of the key that is chosen. The a posteriori
probabilities of the keys Px(K) are the same in value but undergo
a permulalion with a different key choice.

Roughly we may say that any key choice leads to the same cryptanalytic
problem in a pure cipher. Since the different keys all result in cryptograms
in the same residue class this means that all cryptograms in the same residue
class are cryptanalytically equivalent—they lead to the same a posteriori
probabilities of messages and, apart from a permutation, the same prob-
abilities of keys.

As an example of this, simple substitution with all keys equally likely is
a pure cipher. The residue class corresponding to a given cryptogram E is
the set of all cryptograms that may be obtained from E by operations
T,T3'E. In this case T,T7 isitself a substitution and hence any substitution
on E gives another member of the same residue class. Thus, if the crypto-
gram is

PI(M) =

E=XCPPGCFQQ
then

E=RDHHGDSN

Ek=ABCCDBEF
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etc. are in the same residue class. It is obvious in this case that these crypto-
grams are essentially equivalent. All that is of importance in a simple sub-
stitution with random key is the paitern of letter repetitions, the actual
letters being dummy variables. Indeed we might dispense with them en-
tirely, indicating the pattern of repetitions in E as follows:

This notation describes the residue class but eliminates all information as
to the specific member of the class. Thus it leaves precisely that information
which is cryptanalytically pertinent. This is related to one method of attack-
ing simple substitution ciphers—the method of pattern words.

In the Caesar type cipher only the first differences mod 26 of the crypto-
gram are significant. Two cryptograms with the same Ae; are in the same
residue class. One breaks this cipher by the simple process of writing down
the 26 members of the message residue class and picking out the one which
makes sense.

The Vigenére of period ¢ with random key is another example of a pure
cipher. Here the message residue class consists of all sequences with the
same first differences as the cryptogram, for letters separated by distance d.
For d = 3 the residue class is defined by

my — My = € — &
Mg — My = €3 — €5
Mmyg — Mg = €3 — €8
My — My = €4 — €7

where E = ¢, ez, - -- is the cryptogram and m, , ma, --- is any M in the
corresponding residue class.

In the transposition cipher of period d with random key, the residue class
consists of all arrangements of the ¢; in which no e, is moved out of its block
of length d, and any two e; at a distance d remain at this distance. This is
used in breaking these ciphers as follows: The cryptogram is written in
successive blocks of length d, one under another as below (d = 5):

&1 6 € € &
€ €1 €3 &9 €10
en 6y
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The columns are then cut apart and rearranged to make meaningful text.

When the columns are cut apart, the only information remaining is the

residue class of the cryptogram.

Theorem 5: If T is pure then TT7'T = T where T:T; are any lwo Irans-
formations of T. Conversely if this is true for any TT; in a syslem
T then T is pure.

The first part of this theorem is obvious from the definition of a pure
system. To prove the second part we note first that, if T.T;'T = T, then
T .~T,~"T, is a transformation of T It remains to show that all keys are equi-
probable. We have T = 2. #.T,and

2 0TI = 3 puT..

The term in the left hand sum with s = j yields p;T:. The only term in T,
on the right is p,T¢. Since all coefficients are nonncgative it follows that

pi < pi.
The same argument holds with i and j interchanged and consequently

b = b

and T is pure. Thus the condition that 7,77'T = T might be used as an
alternative definition of a pure system.

8. SiMILAR SYSTEMS

Two secrecy systems R and S will be said to be similar if there exists a
transformation 4 having an inverse A~! such that

R = AS

This means that enciphering with R is the same as enciphering with S
and then operating on the result with the transformation 4. If we write
R = § to mean R is similar to S then it is clear that R & § implies S & R.
Also R~ S and § & T imply R & T and finally R & R. These are sum-
marized by saying that similarity is an equivalence relation.

The cryptographic significance of similarity is that if R & S then R and
S are equivalent from the cryptanalytic point of view. Indeed if a crypt-
analyst intercepts a cryptogram in system S he can transform it to one in
system R by merely applying the transformation 4 to it. A cryptogram in
system R is transformed to one in § by applying A~*. If R and S are ap-
plied to the same language or message space, there is a one-to-onc correspond-
ence between the resulting cryptograms. Corresponding cryptograms give
the same distribution of a posferiori probabilities for all messages.

If one has a method of breaking the system R then any system S similar
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to R can be broken by reducing to R through application of the operation 4.
This is a device that is frequently used in practical cryptanalysis.

As a trivial example, simple substitution where the substitutes are not
letters but arbitrary symbols is similar to simple substitution using letter
substitutes. A second example is the Caesar and the reversed Caesar type
ciphers. The latter is sometimes broken by first transforming into a Caesar
type. This can be done by reversing the alphabet in the cryptogram. The
Vigenére, Beaufort and Variant Beaufort are all similar, when the key is
random. The “autokey” cipher (with the message used as ‘“key”) primed
with the key K; K - - K, is similar to a Vigenére type with the key alter-
nately added and subtracted Mod 26. The transformation 4 in this case is
that of “deciphering’ the autokey with a series of d 4’s for the priming key

PART II
THEORETICAL SECRECY

9. INTRODUCTION

We now consider problems connected with the ‘“‘theoretical secrecy” of
a system. How immune is a system to cryptanalysis when the cryptanalyst
has unlimited time and manpower available for the analysis of crypto-
grams? Does a cryptogram have a unique solution (even though it may
require an impractical amount of work to find it) and if not how many rea-
sonable solutions does it have? How much text in a given system must be in-
tercepted before the solution becomes unique? Are there systems which never
become unique in solution no matter how much enciphered text is inter-
cepted? Are there systems for which no information whatever is given to
the enemy no matter how much text is intercepted? In the analysis of these
problems the concepts of entropy, redundancy and the like developed in
“A Mathematical Theory of Communication” (hereafter referred to as
MTC) will find a wide application.

10. PERFECT SECRECY

Let us suppose the possible messages are finite in number M,, ---, M,
and have a priori probabilities P(M,), ---, P(M,), and that these are en-
ciphered into the possible cryptograms E,, ---, En by

E=TM.

The cryptanalyst intercepts a particular E and can then calculate, in
principle at least, the a posteriori probabilities for the various messages,
Pg(M). It is natural to define perfect secrecy by the condition that, for all E
the a posteriori probabilities are equal to the a priori probabilities inde-
pendently of the values of these. In this case, intercepting the message has



108 C. E. Shannon

given the cryptanalyst no information.® Any action of his which depends on
the information contained in the cryptogram cannot be altered, for all of
his probabilities as to what the cryptogram contains remain unchanged. On
the other hand, if the condition is nol satisfied there will exist situations in
which the enemy has certain a priori probabilities, and certain key and
message choices may occur for which the enemy’s probabilities do change.
This in turn may affect his actions and thus perfect secrecy has not been
obtained. Hence the definition given is necessarily required by our intuitive
ideas of what perfect secrecy should mean.

A necessary and sufficient condition for perfect secrecy can be found
as follows: We have by Bayes’ theorem

P(M)P,(E)
in which:
P(M) = a priori probability of message M.
Pu(E) = conditional probability of cryptogram E if message M is
chosen, i.e. the sum of the probabilities of all keys which pro-
duce cryptogram E from message M.
P(E) = probability of obtaining cryptogram E from any cause.

Pg(M) = a posieriori probability of message M if cryptogram E is
intercepted.
For perfect secrecy Px(M) must equal P(M) for all E and all M. Hence
either P(M) = 0, a solution that must be excluded since we demand the
equality independent of the values of P(M), or

Py(E) = P(E)
for every M and E. Conversely if Pu(E) = P(E) then
Px(M) = P(M)

and we have perfect secrecy. Thus we have the result:
Theorem 6: A necessary and sufficient condition for perfect secrecy is tha!

Py(E) = P(E)

for all M and E. That is, Py(E) must be independent of M.
Stated another way, the total probability of all keys that transform M,

¥ A purist might object that the enemy has obtained some information in that he knows
a message was sent. This may be answered by having among the messages a “blank”
corresponding to “no message.” If no message is originated the blank is enciphered and
sent as a cryptogram. Then even this modicum of remaining information is eliminated.
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into a given cryptogram E is equal to that of all keys transforming M;
into the same E, for all M., M; and E.

Now there must be as many E’s as there are M’s since, for a fixed 4, T
gives a one-to-one correspondence between all the M’s and some of the E's.
For perfect secrecy Pu(E) = P(E) # O for any of these E's and any M.
Hence there is at least one key transforming any M into any of these E's.
But all the keys from a fixed M to different E’s must be different, and
therefore the number of different keys is at least as great as the number of M’s.
It is possible to obtain perfect secrecy with only this number of keys, as

Fig. S—Perfect system.

one shows by the following example: Let the M be numbered 1 to n# and
the E; the same, and using »n keys let

TiMi = Eu

where s = i + j (Mod n). In this case we see that Pg(M) = 1; = P(E)
and we have perfect secrecy. An example is shown in Fig. 5 with s =
i+ j — 1 (ModS5).

Perfect systems in which the number of cryptograms, the number of
messages, and the number of keys are all equal are characterized by the
properties that (1) each M is connected to each E by exactly one line, (2)
all keys are equally likely. Thus the matrix representation of the system
is a “Latin square.”

In MTC it was shown that information may be conveniently measured
by means of entropy. If we have a set of possibilities with probabilities
P, P2, -+, Pa, the entropy H is given by:

H = — 2 p:log pu.
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In a secrecy system there are two statistical choices involved, that of the
message and of the key. We may measure the amount of information pro-
duced when a message is chosen by H(M):

H(M) = — X P(M) log P(M),

the summation being over all possible messages. Similarly, there is an un-
certainty associated with the choice of key given by:

H(K) = — X P(K) log P(K).

In perfect systems of the type described above, the amount of informa-
tion in the message is at most log n (occurring when all messages are equi-
probable). This information can be concealed completely only if the key un-
certainty is at least log #n. This is the first example of a general principle
which will appear frequently: that there is a limit to what we can obtain
with a given uncertainty in key—the amount of uncertainty we can intro-
duce into the solution cannot be greater than the key uncertainty.

The situation is somewhat more complicated if the number of messages
is infinite. Suppose, for example, that they are generated as infinite se-
quences of letters by a suitable Markoff process. It is clear that no finite key
will give perfect secrecy. We suppose, then, that the key source generates
key in the same manner, that is, as an infinite sequence of symbols. Suppose
further that only a certain length of key Lg is needed to encipher and de-
cipher a length Ly of message. Let the logarithm of the number of letters
in the message alphabet be Ry and that for the key alphabet be Rx. Then,
from the finite case, it is evident that perfect secrecy requires

RuLy < RxLk.

This type of perfect secrecy is realized by the Vernam system.

These results have been deduced on the basis of unknown or arbitrary
a priori probabilities for the messages. The key required for perfect secrecy
depends then on the total number of possible messages.

One would expect that, if the message space has fixed known statistics,
so that it has a definite mean rate R of generating information, in the sense
of MTC, then the amount of key needed could be reduced on the average
in just this ratio R£ , and this is indeed true. In fact the message can be

M
passed through a transducer which eliminates the redundancy and reduces
the expected length in just this ratio, and then a Vernam system may be
applied to the result. Evidently the amount of key used per letter of message

is statistically reduced by a factor X and in this case the key source and
M

information source are just matched—a bit of key completely conceals a
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bit of message information. It is easily shown also, by the methods used in
MTC, that this is the best that can be done.

Perfect secrecy systems have a place in the practical picture—they may be
used either where the greatest importance is attached to complete secrecy—
e.g., correspondence between the highest levels of command, or in cases
where the number of possible messages is small. Thus, to take an extreme
example, if only two messages “yes” or ‘“no” were anticipated, a perfect
system would be in order, with perhaps the transformation table:

M K y 4B

yes 01t
no 1 0

The disadvantage of perfect systems for large correspondence systems
is, of course, the equivalent amount of key that must be sent. In succeeding
sections we consider what can be achieved with smaller key size, in par-
ticular with finite keys.

11. EQuIvoCATION

Let us suppose that a simple substitution cipher has been used on English
text and that we intercept a certain amount, N letters, of the enciphered
text. For N fairly large, more than say 50 letters, there is nearly always a
unique solution to the cipher; i.e., a single good English sequence which
transforms into the intercepted material by a simple substitution. With a
smaller N, however, the chance of more than one solution is greater; with
N = 135 there will generally be quite a number of possible fragments of text
that would fit, while with ¥ = 8 a good fraction (of the order of 1/8) of
all reasonable English sequences of that length are possible, since there is
seldom more than one repeated letter in the 8. With N = 1 any letter is
clearly possible and has the same a posteriori probability as its e priori
probability. For one letter the system is perfect.

This happens generally with solvable ciphers. Before any material is
intercepted we can imagine the a priori probabilities attached to the vari-
ous possible messages, and also to the various keys. As material is inter-
cepted, the cryptanalyst calculates the @ posteriori probabilities; and as N
increases the probabilities of certain messages increase, and, of most, de-
crease, until finally only one is left, which has a probability nearly one,
while the total probability of all others is nearly zero.

This calculation can actually be carried out for very simple systems. Table
I shows the a posteriori probabilities for a Caesar type cipher applied to
English text, with-the key chosen at random from the 26 possibilities. To
enable the use of standard letter, digram and trigram frequency tables, the
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text has been started at a random point (by opening a book and putting
a pencil down at random on the page). The message sclected in this way
begins “creases to . ..” starting inside the word increascs. If the message
were known to start a sentence a different set of probabilities must be uscd,
corresponding to the frequencies of letters, digrams, etc., at the beginning
of seniences.

TABLE 1
A Posteriori Probabilities for a Cacsar Type Cryptlogram

Decipherments N=1 ;\L:l N=3 Nwy Nws§
CREAS .028 0377 BIES! .3673 1
DS FBT .038 .0314

ETGCU 31 .0881

Foanpyv .029 .0189

GVI EW .020

UHWJ F X .053 L0063

I XKGY .06 L0126

JYLIZ .00t

KZ MI A .004

LANJB .034 L1321 .2500

MBOKC 023 .0222

NCPLD 071 L1195

ODQ ME .080 L0377

PERNTF .020 .0818 .4389 .6327
QFSOCGC .001

RGTPH . 068 0126

SnHuve1! . 061 .0881 .0056

TI] VRIJ . 105 .2830 . 1667

UJ ws K .025

VKXTL .009

WLYUM 01§ .0056

XMZVN .002

YNAWO .020

ZoBXpep .001

APCYQ .082 .0503

BQDZR .014
I (decimal digits) 1.2425 .9686 L6034 .285 0

The Cacsar with random key is a pure cipher and the particular key chosen
does not affect the a posteriori probabilities. To determine these we need
merely list the possible decipherments by all keys and calculate their a
priori probabilities. The a posferiori probabilities are these divided by their
sum. These possible decipherments are found by the standard process of
“running down the alphabet” from the message and are listed at the left.
These form the residue class for the message. For one intercepted letter the
a posleriori probabilities are equal to the a priori probabilities for letters!®
and are shown in the column headed N = 1. For two intercepted letters
the probabilities are those for digrams adjusted to sum to unity and these
are shown in the column N = 2

1 The probabilities for this table were taken from frequency tables given by Fletcher

Pratt in a book “‘Secret and Urgent’’ published by Biue Ribbon Books, New York, 1939.
Although not complete, they are sufficient for present purposes.
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Trigram frequencies have also been tabulated and these are shown in the
column N = 3. For four- and five-letter sequences probabilities were ob-
tained by multiplication from trigram frequencies since, roughly,

pijkl) = p(igk)pu(l).

Note that at three letters the field has narrowed down to four messages
of fairly high probability, the others being small in comparison. At four
there are two possibilities and at five just one, the correct decipherment.

In principle this could be carried out with any system but, unless the key
is very small, the number of possibilities is so large that the work involved
prohibits the actual calculation.

This set of a posteriori probabilities describes how the cryptanalyst’s
knowledge of the message and key gradually becomes more precise as
enciphered material is obtained. This description, however, is much too
involved and difficult to obtain for our purposes. What is desired is a sim-
plified description of this approach to uniqueness of the possible solutions.

A similar situation arises in communication theory when a transmitted
signal is perturbed by noise. It is necessary to set up a suitable measure of
the uncertainty of what was actually transmitted knowing only the per-
turbed version given by the received signal. In MTC it was shown that a
natural mathematical measure of this uncertainty is the conditional en-
tropy of the transmitted signal when the received signal is known. This
conditional entropy was called, for convenience, the equivocation.

From the point of view of the cryptanalyst, a secrecy system is almost
identical with a noisy communication system. The message (transmitted
signal) is operated on by a statistical element, the enciphering system, with
its statistically chosen key. The result of this operation is the cryptogram
(analogous to the perturbed signal) which is available for analysis. The
chief differences in the two cases are: first, that the operation of the en-
ciphering transformation is generally of a more complex nature than the
perturbing noise in a channel; and, second, the key for a secrecy system is
usually chosen from a finite set of possibilities while the noise in a channel
is more often continually introduced, in effect chosen from an infinite set.

With these considerations in mind it is natural to use the equivocation
as a theoretical secrecy index. It may be noted that there are two signifi-
cant equivocations, that of the key and that of the message. These will be
denoted by Hx(K) and Hx(M) respectively. They are given by:

He(K) = Z‘r P(E, K) log Ps(K)

171:(M)

'2; P(E, M) log Ps(K)
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in which E, M and X are the cryptogram, message and key and

P(E, K) is the probability of key K and cryptogram E

Pz(K) is the a posteriori probability of key K if cryptogram E is

intercepted

P(E, M) and Pg(M) are the similar probabilities for message instead

of key.

The summation in Hx(K) is over all possible cryptograms of a certain length
(say N letters) and over all keys. For Hx(M) the summation is over all
messages and cryptograms of length N. Thus He(K) and Hg(M) are both
functions of N, the number of intercepted letters. This will sometimes be
indicated explicitly by writing Hx(K, N) and Hs(M, N). Note that these
are “total” equivocations; i.e., we do not divide by N to obtain the equiv-
ocation rate which was used in MTC.

The same general arguments used to justify the equivocation as a measure
of uncertainty in communication theory apply here as well. We note that
zero equivocation requires that one message (or key) have unit prob-
ability, all others zero, corresponding to complete knowledge. Considered
as a function of N, the gradual decrease of equivocation corresponds to
increasing knowledge of the original key or message. The two equivocation
curves, plotted as functions of &, will be called the equivocation charac-
teristics of the secrecy system in question.

The values of Hs(K, N) and He(M, N) for the Caesar type cryptogram
considered above have been calculated and are given in the last row of
Table 1. Hx(K, N) and Hz(M, N) are equal in this case and are given in
decimal digits (i.e. the logarithmic base 10 is used in the calculation). It
should be noted that the equivocation here is for a particular cryptogram,
the summation being only over M (or K), not over E. In general the sum-
mation would be over all possible intercepted cryptograms of length N
and would give the average uncertainty. The computational difficulties
are prohibitive for this general calculation.

12. PROPERTIES OF EQUIVOCATION

Equivocation may be shown to have a number of interesting properties,
most of which fit into our intuitive picture of how such a quantity should
behave. We will first show that the equivocation of key or of a fixed part
of a message decreases when more enciphered material is intercepted.
Theorem 7: The equivocation of key Hs(K, N) is a non-increasing function

of N. The equivocation of the first A letters of the message is a
non-increasing funclion of the number N whick have been inter-
cepted. If N letters have been intercepted, the equivocation of the
first N letlers of message is less than or equal to that of the key.
These may be writlen:
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H'(K) S) S IIU(Kv N) S _>_ N)
He(M,S) < Hgy(M,N) S > N (H for first A letters of text)
He(M, N) < Hy(K, N)

The qualification regarding A4 letters in the second result of the theorem
is so that the equivocation will not be calculated with respect to the amount
of message that has been intercepted. If it is, the message equivocation may
(and usually does) increase for a time, due merely to the fact that more
letters stand for a larger possible range of messages. The results of the
theorem are what we might hope from a good secrecy index, since we would
hardly expect to be worse off on the average after intercepting additional
material than before. The fact that they can be proved gives further justi-
fication to our use of the equivocation measure.

The results of this theorem are a consequence of certain properties of con-
ditional entropy proved in MTC. Thus, to show the first or second state-
ments of Theorem 7, we have for any chance events 4 and B

H(B) 2 H(B).
If we identify B with the key (knowing the first S letters of cryptogram)
and A with the remaining N — § letters we obtain the first result. Similarly
identifying B with the message gives the second result. The last result fol-
lows from
Heg(M) < He(K, M) = Hg(K) + Hg x(M)
and the fact that Hs k(M) = 0 since K and E uniquely determine M.
Since the message and key are chosen independently we have:
H(M, K) = H(M) + H(K).
Furthermore,
H(M, K) = H(E, K) = H(E) + Hs(K),

the first equality resulting from the fact that knowledge of M and K or of
E and K is equivalent to knowledge of all three. Combining these two we
obtain a formula for the equivocation of key:

Hx(K) = HM) + H(K) — H(E).
In particular, if H(M) = H(E) then the equivocation of key, He(K), is
equal to the a priori uncertainty of key, H(K). This occurs in the perfect
systems described above.

A formula for the equivocation of message can be found by similar means.
We have:
H(M, E) = H(E) + He(M) = H(M) + Hu(E)
Hy(M) = H(M) + Hu(E) — H(E).
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If we have a product system S = TR, it is to be expected that the second
enciphering process will not decrease the equivocation of message. That this
is actually true can be shown as follows: Let M, E, , E, be the message and
the first and second encipherments, respectively. Then

Pglg’(M) = Pgi(M)
Consequently
H"l"z(M) = Hll(M)'

Since, for any chance variables, x, ¥, 3, Hz,(3) < Hy(3), we have the desired
result, Hg,(M) 2> Hg,(M).
Theorem 8: The equivocation in message of a product system S = TR is not
less than that when only R is used.
Suppose now we have a system T which can be written as a weighted sum
of several systems R, S, ---, U

T=pR+PS+ - +pU pi=1

and that systems R, S, ---, U have equivocations H,, Hz, H;, -+, Hm.
Theorem 9: The equivocation H of a weighted sum of systems is bounded
by the inequalities

S pH: < HSY pHi— Y, pilog pi.

These are best limils possible. The H’s may be eguivocalions
either of key or message.

The upper limit is achieved, for example, in strongly ideal systems (to
be described later) where the decomposition is into the simple transforma-
tions of the system. The lower limit is achieved if all the systems R, S,
..., U go to completely different cryptogram spaces. This theorem is also
proved by the general inequalities governing equivocation,

H(B) < H(B) < H(4) + H4(B).

We identify A with the particular system being used and B with the key
or message.

There is a similar theorem for weighted sums of languages. For this we
identify A with the particular language.
Theorem 10: Suppose a system can be applied to languages Ly, L., -+, Lm

and has equivocation characleristics Hy, Hy, ---, Hm. When
applied to the weighted sum > piLi, the equivocation H is
bounded by

Z pH: < H < Z piH: — Z pi log pi.
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These limits are the best possible and the equivocations in ques-
tion can be either for key or message.
The total redundancy Dy for N letters of message is defined by

= log G — H(M)

where G is the total number of messages of length N and H(M) is the un-
certainty in choosing one of these. In a secrecy system where the total
number of possible cryptograms is equal to the number of possible messages
of length N, H(E) < log G. Consequently

He(K) = H(K) + H(M) — H(E)
> H(K) — [log G — H(M)].

Hence
H(K) — Hg(K) < Dy

This shows that, in a closed system, for example, the decrease in equivoca-
tion of key after NV letters have been intercepted is not greater than the
redundancy of N letters of the language. In such systems, which comprise
the majority of ciphers, it is only the existence of redundancy in the original
messages that makes a solution possible.

Now suppose we have a pure system. Let the different residue classes of
messages be C,, C2,Cs, - - -, Cr, and the corresponding set of residue classes
of cryptograms be Cy, Cz, -+, C,. The probability of each E in Ci is the
same:

E a member of C;

where ¢; is the number of different messages in C;. Thus we have

T P(C.) g PC)

P(C )

H(E) =

—Y P(CJ) log

Substituting in our equation for Hz(K) we obtain:
Theorem 11: For a pure cipher

P(C.)

Hy(K) = H(K) + HM) + Z P(C) log

This result can be used to compute I7x(K) in certain cases of interest.
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13. EQUIVOCATION FOR SIMPLE SUBSTITUTION ON A Two LETTER LANGUAGE

We will now calculate the equivocation in key or message when simple
substitution is applied to a two letter language, with probabilities p and ¢
for 0 and 1, and successive letters chosen independently. We have

He(M) = Hs(K) = -2, P(E)Pe(K) log Ps(K)

The probability that E contains exactly s 0’s in a particular permutation is:

!(P’q”"‘ + qapN—a)

N
W
y

p=¥,q:"

/

HglK,N) = He(M,N) — DECIMAL DIGITS

‘\ prh.q="

0 2 4 0 ) 10 12 4 16 e 20
NUMBER OF LETTERS,N
Fig. 6—Equivocation for simple substitution on (wo-letter language.

and the a posteriori probabilities of the identity and inverting substitutions
(the only two in the system) are respectively:

_ P‘l]"" PE _ pN—aqn
Pa0) we + g 0 (B¢ + g'p")

There are (Y) terms for each s and hence

N - ol
He(K, N) = — ghe .
(K, N) Z(s>p9 log GP— + ¢
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Forp=14,9=3,andfor p = }, ¢ = §, He(K, N) has been calculated and
is shown in Fig. 6.

14. Tue EqQuivocaTioN CHARACTERISTIC FOR A “‘Ranpom” CIPHER

In the preceding section we have calculated the equivocation charac-
teristic for a simple substitution applied to a two-letter language. This is
about the simplest type of cipher and the simplest language structure pos-
sible, yet already the formulas are so involved as to be nearly useless. What
are we to do with cases of practical interest, say the involved transforma-
tions of a fractional transposition system applied to English with its ex-
tremely complex statistical structure? This complexity itself suggests a
method of approach. Sufficiently complicated problems can frequently be
solved statistically. To facilitate this we define the notion of a “random”
cipher.

We make the following assumptions:

1. The number of possible messages of length N is T = 28¥ thus Ry =
log: G, where G is the number of letters in the alphabet. The number of
possible cryptograms of length X is also assumed to be T.

2. The passible messages of length IV can be divided into two groups:
one group of high and fairly uniform a priori probability, the second
group of negligibly small total probability. The high probability group
will contain § = 2*¥ messages, where R = H(M)/N, that is, R is
the entropy of the message source per letter.

3. The deciphering operation can be thought of as a series of lines, as
in Figs. 2 and 4, leading back {rom each £ to various M's. We assume
k different equiprobable keys so there will be & lines leading back from
each E. For the random cipher we suppose that the lines from each
E go back to a random sclection of the possible messages. Actually,
then, a random cipher is a whole ensemble of ciphers and the equivoca-
tion is the average equivocation for this ensemble.

The equivocation of key is defined by

Hy(K) = 3. P(E)Px(K) log Ps(K).

The probability that exactly m lines go back from a particular E to the high
probability group of messages is

() &G -9

If a cryptogram with m such lines is intercepted the equivocation is log m.
ml

The probability of such a cryptogram is 5K

since it can be produced by
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m keys from high probability messages each with probability g . Hence the

equivocation is:

: T & /e\/S\" S\
Hs(K) = ﬁn‘.v'-'x (m) (T) (l - 7,) m log m

We wish to find a simple approximation to this when £ is large. If the
expected value of m, namely m = Sk/T, is >> 1, the variation of log m
over the range where the binomial distribution assumes large values will
be small, and we can replace log m by log m. This can now be factored out
of the summation, which then reduces to . Hence, in this condition,

Hg(K) = log.;S—T{a =logS ~log T+ logk

Hg(K) = H(K) — DN,

where D is the redundancy per letter of the original language (D = Dy/N).
If m is small compared to the large %, the binomial distribution can be
approximated by a Poisson distribution:

E\,mt-m . €A™
m)P T T

where A = %{—e Hence

. 1 N o Am
Hg(K) = 5 € zz:;mm log m.

If we replace m by m + 1, we obtain:

log (m 4 1).

Am
il

¥

Hg(K) = i

This may be used in the region where A is near unity. For A < 1, the only
important term in the series is that for m = 1; omitting the others we have:

Hg(K) = eNlog 2

Alog 2
2-%Pklog 2.

To summarize: Hg(K), considered as a function of N, the number of
intercepted letters, starts off at //(K) when N = 0. It decreases linearly
with a slope —D out to the neighborhood of N = EE—)K—) . After a short

transition region, IIg(K) follows an exponential with “half life” distance



Communication Theory of Secrecy Systems 121

15 if D is measured in bits per letter. This behavior is shown in Fig. 7, to-

gether with the approximating curves.
By a similar argument the equivocation of message can be calculated.
It is
He(M) = RoN for RN < Hx(K)
H,(M) = H'(K) for RoN > Hg(K)
Hx(M) = Hg(K) — ¢(N) for RoN ~ Hx(K)

where (V) is the function shown in Fig. 7 with NV scale reduced by factor

of g . Thus, Hg(M) rises linearly with slope Ro, until it nearly intersects
0

et — e
.
”
.
.
3

[
x S
X I HelK) 2
x
) AN ¥
A\
) N
) HIK) - NO] N L—T 10" oc 2
1 T
° | I H(K) TN n(xp2
NO(DIGITS)

Fig. 7—Equivocation for random cipher.

the Hg(K) line. After a rounded transition it follows the Hx(K) curve down.

It will be seen from Fig. 7 that the equivocation curves approach zero
rather sharply. Thus we may, with but little ambiguity, speak of a point at
which the solution becomes unique. This number of letters will be called
the unicity distance. For the random cipher it is approximately H(K)/D.

15. APPLICATION TO STANDARD CIPHERS

Most of the standard ciphers involve rather complicated enciphering and
deciphering operations. Furthermore, the statistical structure of natural
languages is extremely involved. It is therefore reasonable to assume that
the formulas derived for the random cipher may be applied in such cases.
It is necessary, however, to apply certain corrections in some cases. The
main points to be observed are the following:
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1. We assumed for the random cipher that the possible decipherments
of a cryptogram are a random selection from the possible messages. While
not strictly true in ordinary systems, this becomes more nearly the case as
the complexity of the enciphering operations and of the language structure
increases. With a transposition cipher it is clear that letter frequencies
are preserved under decipherment operations. Thic means that the possible
decipherments are chosen from a more limited group, not the entire message
space, and the formula should be changed. In place of Ro one uses Ry the
entropy rate for a language with independent letters but with the regular
letter frequencies. In some other cases a definite tendency toward returning
the decipherments to high probability messages can be seen. If there is no
clear tendency of this sort, and the system is fairly complicated, then it is
reasonable to use the random cipher analysis.

2. In many cases the complete key is not used in enciphering short mes-
sages. For example, in a simple substitution, only fairly long messages
will contain all letters of the alphabet and thus involve the complete key.
Obviously the random assumption does not hold for small & in such a case,
since all the keys which differ only in the letters not yet appearing in the
cryptogram lead back to the same message and are not randomly distrib-
uted. This error is easily corrected to a good approximation by the use of
a “key appearance characteristic.” One uses, at a particular ¥, the effective
amount of key that may be expected with that length of cryptogram.
For most ciphers, this is easily estimated.

3. There are certain “end effects” due to the definite starting of the
message which produce a discrepancy from the random characteristics.
If we take a random starting point in English text, the first letter (when we
do not observe the preceding letters) has a possibility of being any letter
with the ordinary letter probabilities. The next letter is more completely
specified since we then have digram frequencies. This decrease in choice
value continues for some time. The effect of this on the curve is that the
straight line part is displaced, and approached by a curve depending on
how much the statistical structure of the language is spread out over adja-
cent letters. As a first approximation the curve can be corrected by shifting
the line over to the half redundancy point—i.e., the number of letters where
the language redundancy is half its final value.

If account is taken of these three effects, reasonable estimates of the
equivocation characteristic and unicity point can be made. The calcula-
tion can be done graphically as indicated in Fig. 8. One draws the key
appearance characteristic and the total redundancy curve Dx (which is
usually sufficiently well represented by the line ND.). The difference be-
tween these out to the neighborhood of their intersection is He(M). With
a simple substitution cipher applied to English, this calculation gave the



Communication Theory of Secrecy Systems 123

curves shown in Fig. 9. The key appearance characteristic in this case was
estimated by counting the number of different letters appearing in typical
English passages of N letters. In so far as experimental data on the simple
substitution could be found, they agree very well with the curves of Fig. 9,
considering the various idealizations and approximations which have been
made. For example, the unicity point, at about 27 letters, can be shown
experimentally to lie between the limits 20 and 30. With 30 letters there is

- - - - -
TT e
Hyp(K)  HiK)

M ()
1

D, TOTAL REDUNDANCY
t

Fig. 8—Graphical calculation of equivocation.

nearly always a unique solution to a cryptogram of this type and with 20
it is usually easy to find a number of solutions.

With transposition of period d (random key), H(K) = logd!, or about
d log d/e (using a Stirling approximation for &!). If we take .6 decimal digits
per letter as the appropriate redundancy, remembering the preservation of
letter frequencies, we obtain about 1.7d log d/e as the unicity distance
This also checks fairly well experimentally. Note that in this caseHg(M).
is defined only for integral multiples of 4.

With the Vigenere the unicity point will occur at about 2d letters, and
this too is about right. The Vigenére characteristic with the same key size
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as simple substitution will be approximately as shown in Fig. 10. The
Vigenere, Playfair and Fractional cases are more likely to follow the the-
oretical formulas for random ciphers than simple substitution and trans-
position. The reason for this is that they are more complex and give better
mixing characteristics to the messages on which they operate.

The mixed alphabet Vigenére (each of d alphabets mixed independently
and used sequentially) has a key size,

H(K) = dlog 26! = 26.3d

and its unicity point should be at about 53d letters.

These conclusions can also be put to a rough experimental test with the
Caesar type cipher. In the particular cryptogram analyzed in Table I,
section 11, the function (Hg(K, N) has been calculated and is given below,
together with the values for a random cipher.

N 0 1 2 3 4 S
H (observed) 1.41 1.24 .97 .60 .28 0
H (calculated) 1.41 1.25 98 .54 15 .03

The agreement is seen to be quite good, especially when we remember
that the observed H should actually be the average of many different cryp-
tograms, and that D for the larger values of N is only roughly estimated.

It appears then that the random cipher analysis can be used to estimate
equivocation characteristics and the unicity distance for the ordinary
types of ciphers.

16. VALIDITY OF A CRYPTOGRAM SOLUTION

The equivocation formulas are relevant to questions which sometimes
arise in cryptographic work regarding the validity of an alleged solution
to a cryptogram. In the history of cryptography there have been many
cryptograms, or possible cryptograms, where clever analysts have found
a “‘solution.” It involved, however, such a complex process, or the material
was so meager that the question arose as to whether the cryptanalyst had
“read a solution” into the cryptogram. See, for example, the Bacon-Shake-
speare viphers and the “Roger Bacon” manuscript.'?

In general we may say that if a proposed system and key solves a crypto-
gram for a length of material considerably greater than the unicity distance
the solution is trustworthy. If the material is of the same order or shorter
than the unicity distance the solution is highly suspicious.

This effect of redundancy in gradually producing a unique solution to
a cipher can be thought of in another way which is helpful. The redundancy
is essentially a series of conditions on the letters of the message, which

10 See Fletcher Pratt, loc. cit.
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insure that it be statistically rcasonable. These consistency conditions pro-
duce corresponding consistency conditions in the cryptogram. The key gives
a certain amount of freedom to the cryptogram but, as more and more
letters are intercepted, the consistency conditions use up the frecdom al-
lowed by the kcy. Eventually there is only one message and key which
satisfies all the conditions and we have a unique solution. In the random
cipher the consistency conditions are, in a sense “orthogonal” to the ‘“‘grain
of the key” and have their full effect in eliminating messages and keys as
rapidly as possible. This is the usual case. However, by proper design it
is possible to “line up’ the redundancy of the language with the “grain of
the key” in such a way that the consistency conditions are automatically
satisfied and Hg(K) does not approach zero. These “ideal” systems, which
will be considered in the next section, are of such a nature that the trans-
formations T'; all induce the same probabilities in the E space.

17. IDEAL SECRECY SYSTEMS.

We have seen thit perfect secrecy requires an infinite amount of key if
we allow messages of unlimited length. With a finite key size, the equivoca-
tion of key and message generally approaches zero, but not necessarily so.
In fact it is possible for Hz(K) to remain constant at its initial value H(K).
Then, no matter how much material is intercepted, there is not a unique
solution but many of comparable probability. We will define an ‘“‘ideal”
system as one in which Hg(K) and /7¢(M) do not approach zero as N — .
A “strongly ideal” system is one in which He(K) remains constant
at H(K).

An example is a simple substitution on an artificial language in which
all letters are equiprobable and successive letters independently chosen.
It is easily seen that Hg(K) = H(K) and IT¢(M) rises linearly along a line
of slope log G (where G is the number of letters in the alphabet) until it
strikes the line H(K), after which it remains constant at this value.

With natural languages it is in general possible to approximate the ideal
characteristic—the unicity point can be made to occur for as large N as is
desired. The complexity of the system needed usually goes up rapidly when
we attempt to do this, however. It is not always possible to attain actually
the ideal characteristic with any system of finite complexity.

To approximate the ideal equivocation, one may first operate on the
message with a transducer which removes all redundancies. After this almost
any simple ciphering system—substitution, transposition, Vigenére, etc.,
is satisfactory. The more elaborate the transducer and the nearer the
output is to the desired form, the more closely will the secrecy system ap-
proximate the ideal characteristic.
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Theorem 12: A necessary and sufficient condition that T be strongly ideal is
that, for any two keys, T7 T is a measure preserving transforma-
tion of Lhe message space inlo ilself.

This is true since the a posteriori probability of each key is equal to its

a priori probability if and only if this condition is satisfied.

18. ExaMpPLES OF IDEAL SECRECY SYSTEMS

Suppose our language consists of a sequence of letters all chosen inde-
pendently and with equal probabilities. Then the redundancy is zero, and
from a result of section 12, Hg(K) = H(K). We obtain the result
Theorem 13: If all letters are equally likely and independent any closed cipher

is sirongly ideal.

The equivocation of message will rise along the key appearance char-
acteristic which will usually approach H(K), although in some cases it
does not. In the cases of n-gram substitution, transposition, Vigentre, and
variations, fractional, etc., we have strongly ideal systems for this simple
language with Hg(M) — H(K) as N — .

Ideal secrecy systems suffer from a number of disadvantages.

1. The system must be closely matched to the language. This requires
an extensive study of the structure of the language by the designer. Also a
change in statistical structure or a selection from the set of possible mes-
sages, as in the case of probable words (words expected in this particular
cryptogram), renders the system vulnerable to analysis.

2. The structure of natural languages is extremely complicated, and this
implies a complexity of the transformations required to eliminate redun-
dancy. Thus any machine to perform this operation must necessarily be
quite involved, at least in the direction of information storage, since a
“dictionary” of magnitude greater than that of an ordinary dictionary is
to be expected.

3. In general, the transformations required introduce a bad propagation
of error characteristic. Error in transmission of a single letter produces a
region of changes near it of size comparable to the length of statistical effects
in the original language.

19. FurTHER REMARKS ON EQUIVOCATION AND REDUNDANCY

We have taken the redundancy of “normal English” to be about .7 deci-
mal digits per letter or a redundancy of 50%. This is on the assumption
that word divisions were omitted. It is an approximate figure based on sta-
tistical structure extending over about 8 letters, and assumes the text to
be of an ordinary type, such as newspaper writing, literary work, etc. We
may note here a method of roughly estimating this number that is of some
cryptographic interest.
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A running key cipher is a Vernam type system where, in place of a random
sequence of letters, the key is a meaningful text. Now it is known that run-
ning key ciphers can usually be solved uniquely. This shows that English
can be reduced by a factor of two to one and implies a redundancy of at
least 50%. This figure cannot be increased very much, however, for a number
of reasons, unless long range “meaning” structure of English is considered.

The running key cipher can be easily improved to lead to ciphering systems
which could not be solved without the key. If one uses in place of one English
text, about 4 different texts as key, adding them all to the message, a
sufficient amount of key has been introduced to produce a high positive
equivocation. Another method would be to use, say, every 10th letter of
the text as key. The intermediate letters are omitted and cannot be used
at any other point of the message. This has much the same effect, since
these spaced letters are nearly independent.

The fact that the vowels in a passage can be omitted without essential
loss suggests a simple way of greatly improving almost any ciphering system.
First delete all vowels, or as much of the message as possible without run-
ning the risk of multiple reconstructions, and then encipher the residue.
Since this reduces the redundancy by a factor of perhaps 3 or 4 to 1, the
unicity point will be moved out by this factor. This is one way of approach-
ing ideal systems—using the decipherer’s knowledge of English as part of
the deciphering system.

20. DISTRIBUTION oF EQUIVOCATION

A more complete description of a secrecy system applied to a language
than is afforded by the equivocation characteristics can be found by giving
the distribution of equivocation. For N intercepted letters we consider the
fraction of cryptograms for which the equivocation (for these particular
E’s, not the mean Hg(M)) lies between certain limits. This gives a density
distribution function

P(Hg(M), N) dHz(M)

for the probability that for N letters H lies between the limits H and H +
dH. The mean equivocation we have previously studied is the mean of this
distribution. The function P(Hg(M), N) can be thought of as plotted along
a third dimension, normal to the paper, on the Hx(M), N plane. If the
language is pure, with a small influence range, and the cipher is pure, the
function will usually be a ridge in this plane whose highest point follows
approximately the mean Hg(M), at least until near the unicity point. In
this case, or when the conditions are nearly verified, the mean curve gives
a reasonably complete picture of the system.
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On the other hand, if the language is not pure, but made up of a set of
pure components

L = 2 pds

having different equivocation curves with the system, then the total dis-
tribution will usually be made up of a series of ridges. There will be one for
each L; weighted in accordance with its p;, The mean equivocation char-
acteristic will be a line somewhere in the midst of these ridges and may not
give a very complete picture of the situation. This is shown in Fig. 11. A
similar effect occurs if the system is not pure but made up of several systems
with different # curves.

The effect of mixing pure languages which are near to one another in sta-
tistical structure is to increase the width of the ridge. Near the unicity

P{H,N)
Fig. 11-—Distribution of equivocation with a mixed language L = §L; + §La.

point this tends to raise the mean equivocation, since equivocation cannot
become negative and the spreading is chiefly in the positive direction. We
expect, therefore, that in this region the calculations based on the random
cipher should be somewhat low.

PART III
PRACTICAL SECRECY

21. THE WORK CHARACTERISTIC

After the unicity point has been passed in intercepted material there will
usually be a unique solution to the cryptogram. The problem of isolating
this single solution of high probability is the problem of cryptanalysis. In
the region before the unicity point we may say that the problem of crypt-
analysis is that of isolating all the possible solutions of high probability
(compared to the remainder) and determining their various probabilities.
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Although it is always possible in principle to determine these solutions
(by trial of each possible key for example), different enciphering systems
show a wide variation in the amount of work required. The average amount
of work to determine the key for a cryptogram of N letters, W(N), measured
say in man hours, may be called the work characteristic of the system. This
average is taken over all messages and all keys with their appropriate prob-
abilities. The function W(N) is a measure of the amount of “practical
secrecy”’ afforded by the system.

For a simple substitution on English the work and equivocation char-
acteristics would be somewhat as shown in Fig. 12. The dotted portion of

N

Fig. 12—Typical work and equivocation characteristics.

the curve is in the range where there are numerous possible solutions and
these must all be determined. In the solid portion after the unicity point
only one solution exists in general, but if only the minimum necessary data
are given a great deal of work must be done to isolate it. As more material
is available the work rapidly decreases toward some asymptotic value—
where the additional data no longer reduces the labor.

Essentially the behavior shown in Fig. 12 can be expected with any type
of secrecy system where the equivocation approaches zero. The scale of
man hours required, however, will differ greatly with different types of
ciphers, even when the Hg(M) curves are about the same. A Vigenére or
compound Vigenére, for example, with the same key size would have a
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much better (i.e., much higher) work characteristicc A good practical
secrecy system is one in which the W(N) curve remains sufficiently high,
out to the number of letters one expects to transmit with the key, to prevent
the enemy from actually carrying out the solution, or to delay it to such an
extent that the information is then obsolete.

We will consider in the following sections ways of keeping the function
W(N') large, even though Hx(K) may be practically zero. This is essentially
a “max min” type of problem as is always the case when we have a battle
of wits." In designing a good cipher we must maximize the minimum amount
of work the enemy must do to break it. It is not enough merely to be sure
none of the standard methods of cryptanalysis work—we must be sure that
no method whatever will break the system easily. This, in fact, has been the
weakness of many systems; designed to resist all the known methods of
solution, they Jater gave rise to new cryptanalytic techniques which rendered
them vulnerable to analysis.

The problem of good cipher design is essentially one of finding difficult
problems, subject to certain other conditions. This is a rather unusual situa-
tion, since one is ordinarily seeking the simple and easily soluble problems
in a field.

How can we ever be sure that a system which is not ideal and therefore
has a unique solution for sufficiently large NV will require a large amount of
work to break with every method of analysis? There are two approaches to
this problem; (1) We can study the possible methods of solution available to
the cryptanalyst and attempt to describe them in sufficiently general terms
to cover any methods he might use. We then construct our system to resist
this “general” method of solution. (2) We may construct our cipher in such
a way that breaking it is equivalent to (or requires at some point in the
process) the solution of some problem known to be laborious. Thus, if we
could show that solving a certain system requires at least as much work as
solving a system of simultaneous equations in a large number of unknowns,
of a complex type, then we would have a lower bound of sorts for the work
characteristic.

The next three sections are aimed at these general problems. It is difficult
to define the pertinent ideas involved with sufficient precision to obtain
results in the form of mathematical theorems, but it is believed that the
conclusions, in the form of general principles, are correct.

1 See von Neumann and Morgenstern, loc. cil. The situation between the cipher de-
signer and cryptanalyst can be thought of as a “game” of a very simple structure; a zero-
sum two-person game with complete information, and just two “moves.” The cipher
designer chooses a system for his “‘move.” Then the cryptanalyst is informed of this

choice and chooses a method of analysis. The “value” of the play is the average work re-
quired to break a cryptogram in the system by the method chosen.
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22. GENERALITIES ON THE SOLUTION OF CRYPTOGRAMS

After the unicity distance has been exceeded in intercepted material,
any system can be solved in principle by merely trying each possible key
until the unique solution is obtained—i.e., a deciphered message which
“makes sense” in the original language. A simple calculation shows that this
method of solution (which we may call complete irial and error) is totally
impractical except when the key is absurdly small.

Suppose, for example, we have a key of 26! possibilities or about 26.3
decimal digits, the same size as in simple substitution on English. This is,
by any significant measure, a small key. It can be written on a small slip of
paper, or memorized in a few minutes. It could be registered on 27 switches,
each having ten positions, or on 88 two-position switches.

Suppose further, to give the cryptanalyst every possible advantage, that
he constructs an electronic device to try keys at the rate of one each micro-
second (perhaps automatically selecting from the results by a x? test for
statistical significance). He may expect to reach the right key about half
way through, and after an elapsed time of about 2 X 10%/2 X 60% X 24 X
365 X 108 or 3 X 10'? years.

In other words, even with a small key complete trial and error will never
be used in solving cryptograms, except in the trivial case where the key is
extremely small, e.g., the Caesar with only 26 possibilities, or 1.4 digits.
The trial and error which is used so commonly in cryptography is of a
different sort, or is augmented by other means. If one had a secrecy system
which required complete trial and error it would be extremely safe. Such a
system would result, it appears, if the meaningful original messages, all say
of 1000 letters, were a random selection from the set of all sequences of 1000
letters. If any of the simple ciphers were applied to this type of language it
seems that little improvement over complete trial and error would be
possible.

The methods of cryptanalysis actually used often involve a great deal of
trial and error, but in a different way. First, the trials progress from more
probable to less probable hypotheses, and, second, each trial disposes of a
large group of keys, not a single one. Thus the key space may be divided
into say 10 subsets, each containing about the same number of keys. By at
most 10 trials one determines which subset is the correct one. This subset is
then divided into several secondary subsets and the process repeated. With
the same key size (26! = 2 X 10%) we would expect about 26 X 5 or 130
trials as compared to 10%® by complete trial and error. The possibility of
choosing the most likely of the subsets first for test would improve this result
even more. If the divisions were into two compartments (the best way to
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minimize the number of trials) only 88 trials would be required. Whereas
complete trial and error requires trials to the order of the number of keys,
this subdividing trial and error requires only trials to the order of the key
size in bits.

This remains true even when the different keys have different probabilities.
The proper procedure, then, to minimize the expected number of trials is
to divide the key space into subsets of equiprobability. When the proper
subset is determined, this is again subdivided into equiprobability subsets.
If this process can be continued the number of trials expected when each
division is into two subsets will be

B o= H(K)
log 2
If each test has § possible results and each of these corresponds to the
key being in one of .S equiprobability subsets, then

p = HE)
log S

trials will be expected. The intuitive significance of these results should be
noted. In the two-compartment test with equiprobability, each test yields
one bit of information as to the key. If the subsets have very different prob-
abilities, as in testing a single key in complete trial and error, only a small
amount of information is obtained from the test. Thus with 26! equiprobable
keys, a test of one yields only

60 -1, 260 —1, 1 1
“[ 267 °F 361 +2’67‘°gé?!]

or about 10-% bits of information. Dividing into S equiprobability subsets
maximizes the information obtained from each trial at log S, and the ex-
pected number of trials is the total information to be obtained, that is
H(K), divided by this amount.

The question here is similar to various coin weighing problems that have
been circulated recently. A typical example is the following: It is known that
one coin in 27 is counterfeit, and slightly lighter than the rest. A chemist’s
balance is available and the counterfeit coin is to be isolated by a series of
weighings. What is the least number of weighings required to do this? The
correct answer is 3, obtained by first dividing the coins into three groups of
9 each. Two of these are compared on the balance. The three possible results
determine the set of 9 containing the counterfeit. This set is then divided
into 3 subsets of 3 each and the process continued. The set of coins corre-
sponds to the set of keys, the counterfeit coin to the correct key, and the
weighing procedure to a trial or test. The original uncertainty is logs 27
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bits, and each trial yields log: 3 bits of information; thus, when there is no
“diophantine trouble,” log; 27/log. 3 or 3 trials are sufficient.

This method of solution is feasible only if the key space can be divided
into a small number of subsets, with a simple method of determining the
subset to which the correct key belongs. One does not need to assume a
complete key in order to apply a consistency test and determine if the
assumption is justified—an assumption on a part of the key (or as to whether
the key is in some large section of the key space) can be tested. In other words
it is possible to solve for the key bit by bit.

The possibility of this method of analysis is the crucial weakness of most
ciphering systems. For example, in simple substitution, an assumption on
a single letter can be checked against its frequency, variety of contact,
doubles or reversals, etc. In determining a single letter the key space is
reduced by 1.4 decimal digits from the original 26. The same effect is seen
in all the elementary types of ciphers. In the Vigenére, the assumption of
two or three letters of the key is easily checked by deciphering at other
points with this fragment and noting whether clear emerges. The com-
pound Vigenére is much better from this point of view, if we assume a
fairly large number of component periods, producing a repetition rate larger
than will be intercepted. In this case as many key letters are used in en-
ciphering each letter as there are periods. Although this is only a fraction
of the entire key, at least a fair number of letters must be assumed before
a consistency check can be applied.

Our first conclusion then, regarding practical small key cipher design, is
that a considerable amount of key should be used in enciphering each small
element of the message.

23. StaTIsTiIcAL METHODS

It is possible to solve many kinds of ciphers by statistical analysis.
Consider again simple substitution. The first thing a cryptanalyst does with
an intercepted cryptogram is to make a frequency count. If the cryptogram
contains, say, 200 letters it is safe to assume that few, if any, of the letters
are out of their frequency groups, this being a division into 4 sets of well
defined frequency limits. The logarithm of the number of keys within this
limitation may be calculated as

log 219191 6! = 14.28

and the simple frequency count thus reduces the key uncertainty by 12
decimal digits, a tremendous gain.

In general, a statistical attack proceeds as follows: A certain statistic is
measured on the intercepted cryptogram E. This statistic is such that for
all reasonable messages M it assumes about the same value, Sy, the value
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depending only on the particular key K that was used. The value thus ob-
tained serves to limit the possible keys to those which would give values of
S in the neighborhood of that observed. A statistic which does not depend
on K or which varies as much with M as with X is not of value in limiting
K. Thus, in transposition ciphers, the frequency count of letters gives no
information about K—every K leaves this statistic the same. Hence one
can make no use of a frequency count in breaking transposition ciphers.
More precisely one can ascribe a “‘solving power” to a given statistic S.
For each value of S there will be a conditional equivocation of the key
Hs(K), the equivocation when S has its particular value, and that is all
that is known concerning the key. The weighted mean of these values

2 P(S) H(K)

gives the mean equivocation of the key when S is known, P(S) being the
a priori probability of the particular value S. The key size H(K), less this
mean equivocation, measures the “solving power” of the statistic S.

In a strongly ideal cipher all statistics of the cryptogram are independent
of the particular key used. This is the measure preserving property of
T,T%" on the E space or T; T on the M space mentioned above.

There are good and poor statistics, just as there are good and poor methods
of trial and error. Indeed the trial and error testing of an hypothesis is
is a type of statistic, and what was said above regarding the best types of
trials holds generally. A good statistic for solving a system must have the
following properties:

1. It must be simple to measure.

2. It must depend more on the key than on the message if it is meant to

solve for the key. The variation with M should not mask its variation
with K.

3. The values of the statistic that can be “resolved” in spite of the
“fuzziness” produced by variation in M should divide the key space
into a number of subsets of comparable probability, with the statistic
specifying the one in which the correct key lies. The statistic should
give us sizeable information about the key, not a tiny fraction of a bit.

4. The information it gives must be simple and usable. Thus the subsets
in which the statistic locates the key must be of a simple nature in the
key space.

Frequency count for simple substitution is an example of a very good

statistic.

Two methods (other than recourse to ideal systems) suggest themselves
for frustrating a statistical analysis. These we may call the methods of
diffusion and confusion. In the method of diffusion the statistical structure
of M which leads to its redundancy is “dissipated” into long range sta-
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tistics—i.e., into statistical structure involving long combinations of letters
in the cryptogram. The effect here is that the enemy must intercept a tre-
mendous amount of material to tie down this structure, since the structure
is evident only in blocks of very small individual probability. Furthermore,
even when he has sufficient material, the analytical work required is much
greater since the redundancy has been diffused over a large number of
individual statistics. An example of diffusion of statistics is operating on a
message M = m, , my, m,, --- with an “‘averaging” operation, e.g.

L
In = z; Mnyi (mod 26)’
=
adding s successive letters of the message to get a letter y, . One can show
that the redundacy of the y sequence is the same as that of the » sequence,
but the structure has been dissipated. Thus the letter frequencies in y will
be more nearly equal than in m, the digram frequencies also more nearly
equal, etc. Indeed any reversible operation which produces one letter out for
each letter in and does not have an infinite “‘memory’” has an output with
the same redundancy as the input. The statistics can néver be eliminated
without compression, but they can be spread out.

The method of confusion is to make the relation between the simple
statistics of E and the simple description of K a very complex and involved
one. In the case of simple substitution, it is easy to describe the limitation
of K imposed by the letter frequencies of E. If the connection is very in-
volved and confused the enemy may still be able to evaluate a statistic
S, say, which limits the key to a region of the key space. This limitation,
however, is to some complex region R in the space, perhaps ‘“‘folded over”
many times, and he has a difficult time making use of it. A second statistic
S, limits K still further to R, , hence it lies in the intersection region; but
this does not help much because it is so difficult to determine just what the
intersection is.

To be more precise let us suppose the key space has certain ‘“‘natural co-
ordinates” &, , kg, -« -, kp which he wishes to determine. He measures, lct
us say, a set of statistics 5, , 52, - - -, 5. and these are sufficient to determine
the ;. However, in the method of confusion, the equations connecting these
sets of variables are involved and complex. We have, say,

fl(kl)kZ) '”1kp) =5
fl(k11k27 "'ykp) = 32

fn(klak2’ "',k,) = Sn,
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and all the f; involve all the ;. The cryptographer must solve this system
simultaneously—a difficult job. In the simple (not confused) cases the func-
tions involve only a small number of the k—or at least some of these do.
One first solves the simpler equations, evaluating some of the %; and sub-
stitutes these in the more complicated equations.

The conclusion here is that for a good ciphering system steps should be
taken either to diffuse or confuse the redundancy (or both).

24. THE ProBABLE WorRD METHOD

One of the most powerful tools for breaking ciphers is the use of probable
words. The probable words may be words or phrases expected in the par-
ticular message due to its source, or they may merely be ktommon words or
syllables which occur in any text in the language, such as the, and, tion, that,
and the like in English.

In general, the probable word method is used as follows: Assuming a
probable word to be at some point in the clear, the key or a part of the key
is determined. This is used to decipher other parts of the cryptogram and
provide a consistency test. If the other parts come out in the clear, the
assumption is justified.

There are few of the classical type ciphers that use a small key and can
resist long under a probable word analysis. From a consideration of this
method we can frame a test of ciphers which might be called the acid test.
It applies only to ciphers with a small key (less than, say, 50 decimal digits),
applied to natural languages, and not using the ideal method of gaining se-
crecy. The acid test is this: How difficult is it to determine the key or a part
of the key knowing a small sample of message and corresponding crypto-
gram? Any system in which this is easy cannot be very resistant, for the
cryptanalyst can always make use of probable words, combined with trial
and error, until a consistent solution is obtained.

The conditions on the size of the key make the amount of trial and error
small, and the condition about ideal systems is necessary, since these auto-
matically give consistency checks. The existence of probable words and
phrases is implied by the assumption of natural languages.

Note that the requirement of difficult solution under these conditions is
not, by itself, contradictory to the requirements that enciphering and
deciphering be simple processes. Using functional notation we have for
enciphering

E = f(K, M)
and for deciphering

M = g(K, E).
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Both of these may be simple operations on their arguments without the
third equation

K = h(M, E)

being simple.

We may also point out that in investigating a new type of ciphering sys-
tem one of the best methods of attack is to consider how the key could be
determined if a sufficient amount of M and E were given.

The principle of confusion can be (and must be) used to create difficulties
for the cryptanalyst using probable word techniques. Given (or assuming)
M=m,m,---,mandE=¢,ea, -, ¢ the cryptanalyst can set up
equations for the different key elements %, %, ---, kr (namely the en-
ciphering equations).

a=film,m, -~ ,m; ki, -, k)
€2=f:(m1,m¢,"',m.;k1,"' ,kr)

e:=fn(m1;'n‘ly"';ml;kly et 1k')

All is known, we assume, except the ;. Each of these equations should
therefore be complex in the %;, and involve many of them. Otherwise the
enemy can solve the simple ones and then the more complex ones by sub-
stitution.

From the point of view of increasing confusion, it is desirable to have the
fi involve several m;, especially if these are not adjacent and hence less
correlated. This introduces the undesirable feature of error propagation,
however, for then each e; will generally affect several m; in deciphering, and
an error will spread to all these.

We conclude that much of the key should be used in an involved manner
in obtaining any cryptogram letter from the message to keep the work
characteristic high. Further a dependence on several uncorrelated m; is
desirable, if some propagation of error can be tolerated. We are led by all
three of the arguments of these sections to consider ‘“mixing transforma-
tions.”

25. MIxING TRANSFORMATIONS

A notion that has proved valuable in certain branches of probability
theory is the concept of a mixing transformation. Suppose we have a prob-
ability or measure space € and a measure preserving transformation F of
the space into itself, that is, a transformation such that the measure of a
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transformed region I'R is equal to the measure of the initial region R. The
transformation is called mixing if for any function defined over the space and
any region R the integral of the function over the region /"R approaches,
as n — o, the integral of the function over the entire space @ multiplied
by the volume of R. This means that any initial region R is mixed with
uniform density throughout the entire space if F is applied a large number of
times. In general, "R becomes a region consisting of a large number of thin
filaments spread throughout 2. As n increases the filaments become finer
and their density more constant.

A mixing transformation in this precise sense can occur only in a space
with an infinite number of points, for in a finite point space the transforma-
tion must be periodic. Speaking loosely, however, we can think of a2 mixing
transformation as one which distributes any reasonably cohesive region in
the space fairly uniformly over the entire space. If the first region could be
described in simple terms, the second would require very complex ones.

In cryptography we can think of all the possible messages of length N
as the space @ and the high probability messages as the region R. This latter
group has a certain fairly simple statistical structure. If a mixing transforma-
tion were applied, the high probability messages would be scattered evenly
throughout the space.

Good mixing transformations are often formed by repeated products of
two simple non-commuting operations. Hopf'? has shown, for example, that
pastry dough can be mixed by such a sequence of operations. The dough is
first rolled out into a thin slab, then folded over, then rolled, and then
folded again, etc.

Ina good mixing transformation of a space with natural coordinates X 1,
Xz, --+, Xs the point X is carried by the transformation into a point Xi,
with

’.=f](X],X2,--~ Xa)i—_-l 2 "',S

and the functions f; are complicated, involving all the variables in a‘ sensn-
tive” way. A small variation of any one, X;, say, changes all the X con-
sxderably If X passes through its range of possible variation the point
X/ traces a long winding path around the space.

Various methods of mixing applicable to statistical sequences of the type
found in natural languages can be devised. One which looks fairly good is
to follow a preliminary transposition by a sequence of alternating substi-
tutions and simple linear operations, adding adjacent letters mod 26 for
example. Thus we might take

1 E. Hopf, “On Causality, Statistics and Probability,” Journal of Math. and Physics.
v. 13, pp. 51-102, 1934.
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F = LSLSLT
where T is a transposition, L is a linear operation, and S is a substitution.

26. CipHERS OF THE TYPE T+[I'S;

Suppose that F is a good mixing transformation that can be applied to
sequences of letters, and that T and S; are any two simple families of trans-
formations, i.e., two simple ciphers, which may be the same. For concrete-
ness we may think of them as both simple substitutions.

It appears that the cipher TFS will be a very good secrecy system from
the standpoint of its work characteristic. In the first place it is clear on
reviewing our arguments about statistical methods that no simple sta-
tistics will give information about the key—any significant statistics derived
from E must be of a highly involved and very sensitive type—the re-
dundancy has been both diffused and confused by the mixing transformation
F. Also probable words lead to a complex system of equations involving all
parts of the key (when the mix is good), which must be solved simultane-
ously.

It is interesting to note that if the cipher T is omitted the remaining
system is similar to S and thus no stronger. The enemy merely ‘‘unmixes”
the cryptogram by application of F~! and then solves. If S is omitted the
remaining system is much stronger than 7" alone when the mix is good, but
still not comparable to TFS.

The basic principle here of simple ciphers separated by a mixing trans-
formation can of course be extended. For example one could use

TWF\S;FaR;

with two mixes and three simple ciphers. One can also simplify by using the
same ciphers, and even the same keys as well as the same mixing transforma-
tions. This might well simplify the mechanization of such systems.

The mixing transformation which separates the two (or more) appear-
ances of the key acts as a kind of barrier for the enemy—it is easy to carry
a known element over this barrier but an unknown (the key) does not go
easily.

By supplying two sets of unknowns, the key for § and the key for T,
and separating them by the mixing transformation F we have “entangled”
the unknowns together in a way that makes solution very difficult.

Although systems constructed on this principle would be extremely safe
they possess one grave disadvantage. If the mix is good then the propaga-
tion of errors is bad. A transmission error of one letter will affect several
letters on deciphering.
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27. INCOMPATIBILITY OF THE CRITERIA FOR GOOD SYSTEMS

The five criteria for good secrecy systems given in section 5 appear to
have a certain incompatibility when applied to a natural language with its
complicated statistical structure. With artificial languages having a simple
statistical structure it is possible to satisfy all requirements simultaneously,
by means of the ideal type ciphers. In natural languages a compromise must
be made and the valuations balanced against one another with a view
toward the particular application.

If any one of the five criteria is dropped, the other four can be satisfied
fairly well, as the following examples show:

1. If we omit the first requirement (amount of secrecy) any simple cipher
such as simple substitution will do. In the extreme case of omitting
this condition completely, no cipher at all is required and one sends
the clear!

2. If the size of the key is not limited the Vernam system can be used.

3. If complexity of operation is not limited, various extremely compli-
cated types of enciphering process can be used.

4. If we omit the propagation of error condition, systems of the type
TFS would be very good, although somewhat complicated.

S. If we allow large expansion of message, various systems are easily
devised where the “correct” message is mixed with many “incorrect”
ones (misinformation). The key determines which of these is correct.

A very rough argument for the incompatibility of the five conditions may
be given as follows: From condition 5, secrecy systems essentially as studied
in this paper must be used; i.e., no great use of nulls, etc. Perfect and ideal
systems are excluded by condition 2 and by 3 and 4, respectively. The high
secrecy required by 1 must then come from a high work characteristic, not
from a high equivocation characteristic. If the key is small, the system
simple, and the errors do not propagate, probable word methods will gen-
erally solve the system fairly easily, since we then have a fairly simple sys-
tem of equations for the key.

This reasoning is too vague to be conclusive, but the general idea seems
quite reasonable. Perhaps if the various criteria could be given quantitative
significance, some sort of an exchange equation could be found involving
them and giving the best physically compatible sets of values. The two most
dificult to measure numerically are the complexity of operations, and the
complexity of statistical structure of the language.

APPENDIX
Proof of Theorem 3

Sclect any message M, and group together all cryptograms that can be
obtained from A, by any enciphering operation T'; . Let this class of crypto-
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grams be Cl' . Group with M, all messages that can be obtained from M,
by T;'T;M,, and call this class C; . The same C: would be obtained if we
started with any other M in C, since

T,sT;lT.'Ml = TlMl.

Similarly the same C, would be obtained.

Choosing an M not in C; (if any such exist) we construct C, and C; in
the same way. Continuing in this manner we obtain the residue classes
with properties (1) and (2). Let M, and M be in C; and suppose

M, = T')T;'M,.
If E, is in C; and can be obtained from M, by
E, = T.M[ = TgM] = = T.,M],

then

E = T.T?T,M, = TFT_S’TIMI = ...
= TlM: = T,Mz e

Thus each M, in C, transforms into E; by the same number of keys. Simi-
larly each E; in C: is obtained from any M in C; by the same number of
keys. It follows that this number of keys is a divisor of the total number
of keys and hence we have properties (3) and (4).



Analogue of the Vernam System for Continuous Time Series*

Claude E. Shannon

Abstract

The perfect secrecy of the Vernam system is proved by probability arguments and an
analogous secrecy system for continuous functions is described.

The well-known Vernam system for obtaining secrecy in telegraphy, or more generally in
any communication system using a discrete sequence of symbols, each being a choice from a
finite number of possibilities, operates as follows. Let

Xi.X2,..., X,

be a message, where the X’'s are symbols chosen from a finite set a,,..., a,. A random
. . . |

sequence of a’s is constructed by some means, each element being chosen with probability —
n

from among the a;, and each element independent of the rest. This sequence, Y |,..., Y,
(say), which is the key to the code, is carried independently of the communication system to the
receiving point, for example by a messenger. The X’s and }’s are combined at the transmitter
by adding the a’s mod n, that is, if X; = a, and ¥; = a, thena,, where p = r + t mod n, is
sent in the ith place. At the receiver the inverse of this operation is performed to give the
original sequence X, ..., X,.

In a certain sense this type of secrecy system can be said to be theoretically perfect. To
make this precise, let us assume the following:

1. The enemy has a complete knowledge of the system used in encoding the message
including the statistics of the key (i.e., that the Y; are chosen independently and with equal
probabilities of being any of the a;).

2. The enemy has no further knowledge of the exact key used. The particular key chosen
has been kept entirely secret.

3. The enemy has some knowledge of the message statistics. For example, he may know
that it is in English, which implies certain statistical properties of the sequence of X’s. Or he
might know or think it likely that it was addressed to a certain party or dealt with some known
thing, etc. This knowledge, whatever it may be, is an a priori knowledge of the message,
which he had before intercepting the coded message, and can be represented by a probability
distribution in the space of all possible sequences X, ..., X;. Those sequences which are a
priori likely have relatively large probabilities, those which are unlikely have small
probabilities.

4. The encoded message is intercepted by the enemy without error. When the message is
intercepted the enemy can compute a posteriori probabilities of various sequences of X's in the
original message, and this process is essentially all that can be done toward breaking the code.
If the coding means used are simple (not the Vernam system), and the message long enough,

*  Bell Laboratories Memorandum, May 10, 1943.
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the a posteriori probabilities are distorted in such a way as to make it nearly certain that a
particular sequence of X, was the original message. Thus one particular sequence has an a
posteriori probability nearly equal to 1, and all others are nearly 0. If the message is short the a
posteriori probabilities are still distorted when the coding means are simple (as in a substitution
cipher), and may not give a clear-cut solution but only reduce the field of possibilities
considerably. However, in the Vernam system, no information whatever is gained about the
original message apart from the number of symbols it contains. In fact, we have the following:

Theorem. In the Vernam secrecy system the a posteriori probabilities of the original message
possibilities are equal to the a priori probabilities for messages of the same number of symbols
as the intercepted message. This is true independently of the original message statistics and of
the partial knowledge of the enemy.

That is, intercepting the message is of no help to the enemy whatever, other than telling the
number of symbols.

This theorem is a simple consequence of Bayes’ theorem in inverse probabilities, which
states that the a posteriori probability of a ‘‘cause’’ A when a ‘‘result’’ B has been observed is
given by

Py(A) = P(A)P ,(B) ,
P(B)
where P(A) is the a priori probability of A, P, (B) is the probability of B if A is known to have
occurred, and P(B) is the probability of B from any cause. In our case A is any particular
uncoded message, of the same number of symbols as the intercepted message. P(A) is the
enemy’s a priori probability of the message, P, (B) is the probability of getting the encoded
message B if A actually was the message, and P(B) the probability of getting message B by any
cause (i.e. from any original message). Our theorem states that with the Vernam system

Pg(A) = P(A). Wehave P,(B) = —IS— for any A, B since the Vernam code is equally likely
n

to transform any A into any B by its method of construction. Also P(B) = L P(A)P,(B) =
A
1

5

ZPA) = —IT since X P(A) = 1. Hence the theorem follows.
n A n A

Of course the modicum of information contained in the knowledge of the number of
symbols can be reduced by similar devices, e.g. adding dummy symbols at the end of the
message, the number of dummies being chosen by probability means. The system may also be
used continuously, with no gaps between messages, thus concealing the number of symbols in a
message.

The question arises as to the continuous analogue of this system of encoding, for use with
speech, for example. One might at first think of adding a thermal noise to the signal and
subtracting it at the receiver, but theoretically this is not appropriate, and it is known
experimentally that it takes a large noise to drown a speech signal; if they are of the same order
of magnitude it is possible to understand the speech merely by listening to the combination.

Actually the proper generalization of the Vernam system is as follows. Let us assume that
the signal is band- and amplitude-limited, so that it contains no frequencies over f; and no
amplitudes outside the range — 1 to + 1. Construct a thermal noise with unit RMS value and
with flat spectrum out to f; and no power at higher frequencies, for example by passing
ordinary flat noise through an ideal low-pass filter. Pass this noise through a non-linear device
with a characteristic f given by the integrated error curve doubled and with unity subtracted
(Figs. 1,3):
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The ensemble of functions obtained in this way has the property that the values of the
amplitude are uniformly distributed between — 1 and + 1, since before passing through the non-
linear device the amplitudes were distributed normally with unit standard deviation. Also the
values at intervals of 1/(2f,) have zero correlation coefficient, since the autocorrelation of flat

thermal noise band limited to fy is zero for r = + 1/(2fy), £ 2/(2fy), £

3/(2fy) ».... Add

this output Y to the signal in a circular manner: if S(¢) is the signal, form S(r) + Y(r) + 1
according as §(#) + Y(t) is negative or positive.

X

Nonlinear Device

Figure 3
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Figure 4

Saw Tooth Device

This circular addition can be performed, as J. R. Pierce has pointed out, by merely adding §
and Y and passing the result through a saw tooth non-linear device (with characteristic shown in
Fig. 4). Pierce has designed a simple electronic circuit for realizing this saw tooth
characteristic. The output of this device can be sampled at periods 1/(2fy) and the resulting
impulses passed through a low-pass filter, or first it may be passed through a device with the
inverse of characteristic of Fig. 4. In the latter case the output signal is statistically a flat
thermal noise. It can be shown that in either case this system gives perfect secrecy in the same
sense as the ordinary Vernam system. In fact the original message, being of limited frequency
fo- can be represented by giving its values every 1/(2f,) seconds. The non-linear operation on
the thermal noise gives a wave whose values every 1/(2f,) seconds are independent and are
uniformly distributed between the values — 1 and + 1. Adding these in a circle is then precisely
analogous to the Vernam modulo n addition. The result is thus still uniformly distributed
between these limits and successive values are independent. The theorem is then proved in a
similar fashion, the discrete probabilities being replaced by distribution functions in a high-
dimensional space (of dimension 2f,7T, where T is the time of transmission), and the
summation replaced by an integration over this space, using the continuous generalization of
Bayes’ theorem.

At the receiver the message is recovered with the inverse operations indicated in Fig. 2.



The Best Detection of Pulses*

Claude E. Shannon

Abstract

The form of puise detector which best differentiates two types of pulses of known shape
distorted by a thermal noise of known power spectrum is determined, where ‘‘best”” means
with least probability of erroneous reading.

In telegraphy, teletype, P.C.M. and other communication systems it is necessary to
determine which of two types of pulses was sent at the transmitter when the received signal is
distorted by noise. We consider the problem of how best to accomplish this when by the
*‘best’” method we mean the one giving the least probability of an erroneous determination.

Suppose the two types of pulses are ¢ (¢) and y (¢) and the distorting noise is a ‘‘normal”’
noise; i.e., statistically equivalent to a thermal noise which has passed through a linear filter
giving it a power spectrum P(w). The problem can be thought of geometrically as follows.
The two types of pulses ¢ and y represent points in function space, and the noise added to the
transmitted signal gives a received signal which is also a point in function space. The ensemble
of noise added to the signal gives a probability distribution in function space. The problem in
differentiating the two types of pulses is to divide functions space into two regions R, and R, ,
such that if the received signal is in R, the probability that the transmitted signal was ¢ exceeds
/5 ifitis in R, the probability that it was y exceeds /.

The general problem for infinite dimensional function space can best be approached by
analogy with a finite dimensional case. We suppose there are two signals represented by
vectors in an n-dimensional vector space; the signals being given in tensor notation by o’ and
B’. These are distorted in transmission by a normal (gaussian) error X' whose associated
quadratic form is a;, i.e., the probability distribution function for the error is given by

\Haijl

exp —%a,—,»X'X’ ,
(m)

using the Einstein summation convention.

Let the a priori probability of 0.’ be p and of ' be ¢ = 1 — p. The vector space must be
divided into two regions R, and Ry as before, and the dividing surface will be such that on it
the a posteriori probabilities (when a signal lying on the surface has been received) of the
transmitted signal being o or 3 are equal. Using Bayes’ theorem this requires that

Pa(S)P(a) Pa(S)P(P)
PGSy  P(S)

’

where the vector S lies on the surface and

* Bell Laboratories Memorandum, June 22, 1944,
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P (o) = p = a priori probability of o,
P(B)=g=1 — p=a priori probability of 3,

P, (S) = probability of receiving § if o was sent,
P (S) = probability of receiving S if B was sent,

P(S) = probability of receiving S.
All these are actually probability densities. Hence we have

Vlia;l

p —— exp - % a,-j(S‘ -a')s - al))
(2n) =
2
=gq Nlaul exp [~ ¥ a;;(S" - B')S - B .
(21:)—;—

Taking logarithms, we have for the equation of the dividing surface

a;[(5" —a)(S —al) ~ (S =B NS ~-BH] =2 % ,

or, by collecting terms and manipulating indices,
2a,(0' - B)S = ay(a’a’ - BB) +2In i(’]— .

This is the equation of a hyperplane in /. If we rotate the axes of our coordinate system to line
up with the principal axes of the quadratic form a;; we obtain the equation

254, -B)F =A@ -B ) +2mpig,

where the barred letters are transformed coordinates and the A, are the eigenvalues of a,;. In
case these A ; are all equal we notice that the dividing plane is normal to the line joining o' and
B’. Otherwise an affine transformation will make them equal and bring about this
orthogonality.

To determine which signal was sent one should therefore perform on the received signal the
linear operation

aj(a’ - B)S

and if this quantity exceeds a certain threshold value the most probable signal was o, while if it
is less than the threshold the most probable signal was B. The threshold is given by the right
members of the last two equations. If p = ¢ = 1/2 the threshold is proportional to the
operator when the noise amplitude varies; thus no change in the operation is required. If we
make o' = — B’ the threshold is zero and the operation is independent of both noise and
signal amplitudes. This selection is also best from the point of view of signal power for a given
frequency of errors.

The case of pulses ¢ (¢) and y (¢) is a direct generalization of these results. The equation
of the plane of separation becomes
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2“/’(&))" [®(0) - ¥ (0)]S(0)do
= [VP(@) " [¥(0)’ - y(®)  Jdo + 2 In % .

Here ®(w) and W(w) are the spectra of the two pulses and S(w) is the spectrum of the
received signal. This means that we must modulate the received signal with a gating pulse

whose spectrum is given by
VP(0)™' [® () - ¥ (0)]

and integrate this product function. If the integral exceeds the above threshold the most
probable pulse is ¢, otherwise .

These results can be easily generalized to the separation of more than two pulses. In the
case of three pulses ¢, y, 0 there are three hyperplanes obtained by setting the probabilities
equal in pairs. These planes have a hyperline in common and divide the space into six regions.
One pair of adjacent regions corresponds to ¢, another to W and the third to 8. To mechanize
this system three gating integrating operations can be performed, and the numerical results

compared.



The Philosophy of PCM*

B. M. OLIVERY,

Summary—Recent paperst describe experiments in trans-
mitting speech by PCM (pulse code modulation). This paper shows
in & general way some of the advantages of PCM, and distinguishes
between what can be achieved with PCM and with other broadband
systems, such as large-index FM. The intent is to expiain the various
points simply, rather than to elaborate them in detail. The paper is
for those who want to find out about PCM rather than for those who
want to design a system. Many important factors will arise in the
design of a system which are not considered in this paper.

I. PCM AND Its FEATURES

HERE ARE SEVERAL important elements of a
TPCM (pulse-code modulation) system. These will

be introduced, and the part each plays in PCM
will be explained in this section.

Sampling

In general, the object of a transmission system is to
reproduce at the output any function of time which ap-
pears at the input. In any practical system only a cer-
tain class of functions, namely, those limited to a finite
frequency band, are admissible inputs. A signal which
contains no frequencies greater than W, cps cannot as-
sume an infinite number of independent values per sec-
ond. It can, in fact, assume exactly 2W; independent
values per second, and the amplitudes at any set of
points in time spaced 7o seconds apart, where 7o =1/2W,,
specify the signal completely. A simple proof of this is
given in Appendix 1. Hence, to transmit a band-limited
signal of duration T, we do not need to send the entire
continuous function of time. It suffices to send the finite
set of 2W,T independent values obtained by sampling
the instantaneous amplitude of the signal at a regular
rate of 2W, samples per second.

If it surprises the reader to find that 2W,T pieces of
data will describe a continuous function completely over
the interval T, it should be remembered that the 2W,T
coefficients of the sine and cosine terms of a Fourier se-
ries do just this, if, as we have assumed, the function
contains no frequencies higher than W,

Reconstruction

I.et us now proceed to the receiving end of the system,
and assume that, by some means, the sample values rep-

* Decinal classification: R148.6. Original manuscript received by
the Institute, May 24, 1948
t Bell Telephone Labhoratories, Inc., New York, N. Y.
tAWV. M. Goodall, “Telephony by pulse code modulation,”
Sys. Tech. Jour., vol. 26, pp. 395-409; July, 1947,
t . D. Grieg, “Pulse count modulation system,” Tele-Tech., vol.
6, Pp: 48-52; Scptember, 1947,
3N, N. Grieg, “Pulse count modulation,” Elec. Commun., vol. 24,
pp. 287-296: September, 1947.
¢H. S. Black and ]. O. Edson, “PCM equipment,” Elec. Eng.,
vol. 66, pp. 1123-25; November, 1947
* A. C. Clavier, D. D. Grieg, and P F. Panter, “PCM distortion
analysis,” Elec. Eng., vol. 66, pp. 1110-1122; November 1947
“1.'A. Meacham and [ Peterson, “An experlmcnlal “multi-
channel pulse code modulation system of toll quality,” Bell Sys
Tech. Jour., vol. 27, pp. 1-43; January, 1948.
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resenting the signal are there and available in proper
time sequence, and can be used at the regular rate 2W,.
To reconstruct the signal it is merely necessary to gene-
rate from each sample a proportional impulse, and to
pass this regularly spaced series of impulses through an
ideal low-pass filter of cutoff frequency Wy. The output
of this filter will then be (except for an over-all time de-
lay and possibly a constant of proportionality) identical
to the input signal. Since the response of an ideal low-
pass filter to an impulse is a sinx/x pulse, and since the
total output is the linear sum of the responses to all in-
puts, this method of reconstruction is simply the physi-
cal embodiment of the method indicated in Appendix I.

Ideally, then, we could achieve perfect reproduction
of a signal if we could transmit information giving us ex-
actly the instantaneous amplitude of the signal at inter-
vals spaced 1/2W, apart in time.

Quantization

It is, of course, impossible to transmit the exact am-
plitude of a sample. The amplitude of a sample is often
transmitted as the amplitude of a pulse, or as the time
position of a pulse. Noise, distortion, and crosstalk be-
tween pulses will disturb the amplitude and position,
and hence cause errors in the recovered information
concerning the size of the sample. Ordinarily the error
becomes greater as the signal is amplified by successive
repeaters, and hence the accumulation of noise sets a
limit to the distance a signal can be transmitted even
with enough amplification.

It is possible, however, to allow only certain discrete
levels of amplitude or position of the transmitted pulse.
Then, when the signal is sampled, the level nearest the
true signal level is sent. When this is received and am-
plified, it will have a level a little different from any of
the specified levels. If the noise and distortion are not
too great, we can surely tell which level the signal was
supposed to have. Then the signal can be reformed, or a
new signal created, which again has the level originally
sent.

Representing the signal by certain discrete allowed
levels only is called quantizing. It inherently introduces
an initial error in the amplitude of the samples, giving
rise to quantization noise. But once the signal is in a quan-
tized state, it can be relayed for any distance without
further loss in quality, provided only that the added
noise in the signal received at each repeater is not too
great to prevent correct recognition of the particular
level each given signal is intended to represent. By quan-
tizing we limit our “alphabet.” If the received signal
lies between @ and b, and is closer (say) to b, we guess
that & was sent. If the noise is small enough, we shall
always be right.
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TABLE 1

Amplitude
Represented

Code

NN W= O

000
001
010
011
100
101
110
11

Coding

A quantized sample could be sent as a single pulse
which would have certain possible discrete amplitudes,
or certain discrete positions with respect to a reference
position. However, if many allowed sample amplitudes
are required, one hundred, for example, it would be dif-
ficult to make circuits to distinguish these one from an-
other. On the other hand, it is very easy to make a cir-
cuit which will tell whether or not a pulse is present.
Suppose, then, that several pulses are used as a code
group to describe the amplitude of a single sample. Each
pulse can be on (1) or off (0). If we have three pulses, for
instance, we can have the combinations representing the
amplitudes shown in Table I.

The codes are, in fact, just the numbers (amplitudes)
at the left written in binary notation. In this notation,
the place-values are 1, 2, 4, 8,—; i.e., a unit in the right-
hand column represents 1, a unit in the middle (second)
column represents 2, a unit in the left (third) column
represents 4, etc. We see that with a code group of n
on-off pulses we can represent 2* amplitudes. For ex-
ample, 7 pulses yield 128 sample levels.

It is possible, of course, to code the amplitude in terms
of a number of pulses which have allowed amplitudes of
0, 1, 2 (base 3 or ternary code), or 0, 1, 2, 3 (base 4 or
quaternary code), etc., instead of the pulses with allowed
amplitudes 0, 1 (base 2 or binary code). If ten levels
were allowed for each pulse, then each pulse in a code
group would be simply a digit of an ordinary decimal
number expressing the amplitude of the sample. If n is
the number of pulses and b is the base, the number of
quantizing levels the code can express is b*.

Decoding

To decode a code group of the type just described, one
must generate a pulse which is the linear sum of all the
pulses in the group, each multiplied by its place value
(1,5,8% 8, ...)in the code. This can be done in a num-
ber of ways. Perhaps the simplest way which has been
used involves sending the code group in “reverse” order,
i.e., the “units” pulse first, and the pulse with the high-
est place value last. The pulses are then stored as
charge on a capacitor-resistor combination with a time
constant such that the charge decreases by the factor 1/b
between pulses. After the last pulse, the charge (volt-
age) is sampled.

A Complete PCM System

A PCM system. embodies all the processes just de-
scribed. The input signal is band-limited to exclude any
frequencies greater than W,. This signal is then sampled
at the rate 2W, The samples are then quantized
and encoded. Since only certain discrete code groups
are possible, the selection of the nearest code group
automatically quantizes the sample, and with cer-
tain types of devices it is therefore not necessary to
quantize as a separate, prior operation. The code groups
are then transmitted, either as a time sequence of pulses
(time division) over the same channel, or by frequency
division, or over separate channels. The code groups are
regenerated (i.e., reshaped) at intervals as required. At
the receiver the (regenerated) code groups are decoded to
form a series of impulses proportional to the original
samples (except quantized), and these impulses are
sent through a low-pass filter of bandwidth W, to re-
cover the signal wave.

I1. TRANSMISSION REQUIREMENTS FOR PCM

Suppose we consider what requirements exist, ideally,
on the channel which is to carry the encoded PCM sig-
nal; that is, ruling out physically impossible devices, but
allowing ideal components such as ideal filters, ideal
gates, etc.

Bandwidth

If a channel has a bandwidth W cps, it is possible to
send up to 2W independent pulses per second over it.
We can show this very simply. Let the pulses occur (or
not occur) at the time =0, 7, 27, -, mr where 7=
1/2W, and let each pulse as received be of the form

T
sin — (¢t — mr)
T
V=V, . (1)

Z(t = mr)

The shape of this pulse is shown in Fig. 1. It will be seen
that the pulse centered at time mr will be zero at t =kr
where k#m. Thus, if we sample the pulse train at the
time £ =mr, we will see only the pulse belonging to that
time and none of the others.
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TABLE 11
Signal
to Noise Probability This Is About
. of Error One Error Every
N
13.3db 10—t 1073 sec
17.4db 10— 10~! sec
19.6db 10— 10 sec
21.0db 10-¢ 20 min
22.0db 1010 1 day
23.0db 10—t 3 months

Further, the pulse given by (1) contains no frequen-
cies higher than W. It is the pulse one would get out of
an ideal low-pass filter of cutofl W, on applying a very
short impulse to the input.

Now, to send a signal of bandwidth Wo by PCM, we
must send 2W, code groups per second and each code
group contains (say) » pulse places. We must be pre-
pared, therefore, to send 2nW, pulses per second, and
this requires a bandwidth W =nW,. The pulses may be
sent in time sequence over one channel or by frequency
division. In either case the total bandwidth will be the
same. Of course, if double-sideband transmission is
used in the frequency-division case, or if the time-divi-
sion signal is sent as double-sideband rf pulses, the total
bandwidth will be 2nW,.

In short, the bandwidth required for PCM is, in the
ideal case, n times as great as that required for direct
transmission of the signal, where n is the number of
pulses per code group.

Threshold Power

To detect the presence or absence of a pulse reliably
requires a certain signal-to-noise ratio. If the pulse power
is too low compared to the noise, even the best possible

\ ,V,M,

sin (t‘@:

Fig. 1—Pulse of the form V,
wt/r

detector will make mistakes and indicate an occasional
pulse when there is none, or vice versa. Let us assume
that we have an ideal detector, i.e., one which makes
the fewest possible mistakes. If the received pulses are of
the form (1), and if the noise is “white” noise (i.e., noise
with a uniform power spectrum and gaussian amplitude
distribution as, for example, thermal noise), ideal detec-
tion could be achieved by passing the signal through an
ideal low-pass filter of bandwidth W (=nW,in the ideal
case) and sampling the output at the pulse times kr.
If the signal when sampled exceeds V,/2, we say a pulse
is present; if less than V,/2, we say there is no pulse.
The result will be in error if the noise at that instant
exceeds Vo/2 in the right direction. With gaussian noise,
the probability of this happening is proportional to the
complementary error function’ of

Vo JF
20 4N

where

o =rms noise amplitude
P, =signal (pulse) “power” = V,?
N =noise power in bandwidth W =0

As the signal power P, is increased, this function de-
creases very rapidly, so that if P,/N is large enough to
make the signal intelligible at all, only a small increase
will make the trahsmission nearly perfect. An idea of
how rapidly this improvement occurs may be had from
Table I1. The last column in the table assumes a pulse
rate of 10% per second.

Clearly, there is a fairly definite threshold (at about 20
db, say) below which the interference is serious, and
above which the interference is negligible. Comparing
this figure of 20 db with the 60- to 70-odd db required for
high-quality straight AM transmission of speech, it will
be seen that PCM requires much less signal power, even
though the noise power is increased by the n-fold in-
crease in bandwidth.

The above discussion has assumed an on-off (base 2)
system. In this system pulses will be present half the
time, on the average, and the average signal power? will

? Complementary error function of z-l/\/i;f.'e""ﬁdx‘
¢ See Appendix II.
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be P,/2. If a balanced base 2 system were used, i.e.,
one in which 1 is sent as a + pulse (say) and 0 as a
— pulse, the peak-to-peak signal swing would have to be
the same as in the on-off system for the same noise
margin, and this swing would be provided by pulses of
only half the former amplitude. Since either a + or
— pulse would always be present, the signal power
would be P,/4.

If pulses are used which have & different amplitude
levels (i.e., a base b system), then a certain amplitude
separation must exist between the adjacent levels to
provide adequate noise margin. Call this separation K.
where K =a constant. (From the preceding discussion
we see that K is about 10.) The total amplitude range is
therefore Ko(b—1). The signal power will be least if this
amplitude range is symmetrical about zero, i.e., from
—Ko(b—1)/2 to +Ko(b—1)/2. The average signal
power S, assuming all levels to be equally likely, is
then?

B -1

12

-1
12

S = K?*

K?N . )]

It will be noticed that the required signal power in-
creases rapidly with the base b.

Regeneration: The Pay-Off

In most transmission systems, the noise and distor-
tion from the individual links cumulate. For a given
quality of over-all transmission, the longer the system,
the more severe are the requirements on each link. For
example, if 100 links are to be used in tandem, the noise
power added per link can only be one-hundredth as
great as would be permissible in a single link.

Because the signal in a PCM system can be regen-
erated as often as necessary, the effects of amplitude and
phase and nonlinear distortions in one link, if not too
great, produce no effect whatever on the regenerated
input signal to the next link. If noise in a single link
causes a certain fraction p of the pulses to be regenerated
incorrectly, then after m links, if p<«1, the fraction in-
correct will be approximately mp. However, to reduce
P to a value p’ =p/m requires only a slight increase in
the power in each link, as we have seen in the section on
threshold power. Practically, then, the transmission
requirements for a PCM link are almost independent of
the total length of the system. The importance of this
fact can hardly be overstated.

II1. PERFORMANCE OF A PCM SysTEM

We have seen that PCM requires more bandwidth
and less power than is required with direct transmission
of the signal itself, or with straight AM. We have, in a
sense, exchanged bandwidth for power. Has the ex-
change been an efficient one? Are good signal-to-noise
ratios in the recovered signal feasible in PCM? And
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how sensitive to interference is PCM? We shall now try
to answer these questions.

Channel Capacity

A good measure of the bandwidth efficiency is the in-
formation capacity of the system as compared with
the theoretical limit for a channel of the same band-
width and power. The information capacity of a sys-
tem may be thought of as the number of independ-
ent symbols or characters which can be transmitted
without error in unit time. The simplest, most ele-
mentary character is a binary digit, and it is con-
venient to express the information capacity as the
equivalent number of binary digits per second, C, which
the channel can handle. Shannon and others have shown
that an ideal system has the capacity®

C= Wlng,(l-}-liv)-) 3

where

W =bandwidth

P =average signal power

N =white noise power.
Two channels having the same C have the same ca-
pacity for transmitting information, even though the
quantities W, P, and N may be different.

In a PCM system, operating over the threshold so
that the frequency of errors is negligible,

C =sm

where
s =sampling rate =2W,
m=equivalent number of binary digits per code
group.
If there are ! quantizing levels, the number of binary
digits required per code group is given by I=2", while
the actual number of (base 3) digits n will be given by

l=pm
Thus,
2m = jn»
m = n log, b
and g2
C = sn log; b.

Now sn is the actual pulse frequency, and is ideally
twice the system bandwidth W.
Therefore,

C=2Wlog, b
= W log, b2,

*C. E. Shannon, “A mathematical theory of communication,”
Bell Sys. Tech. Jour., vol. 21, July, October, 1948.
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Substituting for b the power required for this base (from

(2)), we have
125)
KN/

Comparing (4) with (3), we see they are identical if
S=(K?*/12)P. In other words, PCM requires K*/12 (or
about 8) times the power theoretically required to realize
a given channel! capacity for a given bandwidth.
Perhaps the most important thing to notice about (4)
is that the form is right. Power and bandwidth are
exchanged on a logarithmic basis, and the channel
capacity is proportional'® to W. In most broadband
systems, which improve signal-to-noise ratio at the ex-
pense of bandwidth, C is proportional only to log W.

C=W logz(l + 4)

Stgnal-to-Noise Ratio

There are two types of noise introduced by a PCM
system. One of these is the quantizing noise mentioned
in the section on quantization. This is a noise intro-
duced at the transmitting end of the system and
nowhere else. The other is false pulse noise caused by
the incorrect interpretation of the intended amplitude
of a pulse by the receiver or by any repeater. This noise
may arise anywhere along the system, and is cumula-
tive. However, as we have seen earlier, this noise de-
creases so rapidly as the signal power is increased above
threshold that in any practical system it would be made
negligible by design. As a result, the signal-to-noise
ratio in PCM systems is set by the gquantizing noise
alone.

If the signal is large compared with a single quantiz-
ing step, the errors introduced in successive samples
by quantizing will be substantially uncorrelated. The
maximum error which can be introduced is one-half of
one quantizing step in either direction. All values of
error up to this maximum value are equally likely. The
rms error introduced is, therefore,1/2+/3 times the height
of a single quantizing step.® When the signal is recon-
structed from the decoded samples (containing this
quantizing error), what is obtained is the original signal
plus a noise having a uniform frequency spectrum out
to We and an rms amplitude of 1/2+/3 times a quantiz-
ing step height. The ratio of peak-to-peak signal to rms
noise is, therefore,

R =23 b,

since b~ is the number of levels. Expressing this ratio in
db, we have

20 loge R = 20 logio 24/3 + (20 logy, b)

= 10.8 + ”(20 IOglo b).
In a binary system, =2, and

20 logw R = 10.8 + 6n.

(5)

1 Provided S is increased in proportion to W to compensate for
the similar increase in N.
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In examining (5) let us remember that », the number
of digits, is a factor relating the total bandwidth used in
transmission to the bandwidth of the signal to be trans-
mitted, i.e., W=nW, It is something like the index of
modulation in FM. Now, for every increment of W,
added to the bandwidth used for transmission, # may
be increased by one, and this increases the signal-to-
noise ratio by a constant number of db. In other words,
in PCM, the signal-to-noise ratio ¢n db varies linearly with
the number of digits per code group, and hence with the
bandwidth. Of course, as the bandwidth is increased the
noise power increases, and a proportional increase in
signal power is required to stay adequately above
threshold.

A binary PCM system using ten times the bandwidth
of the original signal will give a 70-db signal-to-noise
ratio. Higher base systems will require less bandwidth..

Ruggedness

One important characteristic of a transmission system
is its susceptibility to interference. We have seen that
noise in a PCM circuit produces no effect unless the
peak amplitude is greater than half the separation be-
tween pulse levels. In a binary (on-off) system, this is
half the pulse height. Similarly, interference such as
stray impulses, or pulse crosstalk from a near-by channel,
will produce no effect unless the peak amplitude of this
interference plus the peak noise is half the pulse height.
The presence of interference thus increases the thresh-
old required for satisfactory operation. But, if an ade-
quate margin over threshold is provided, compara-
tively large amounts of interference can be present with-
out affecting the performance of the circuit at all. A
PCM system, particularly an on-off (binary) system, is
therefore quite “rugged.”

When a number of radio communication routes must
converge on a single terminal, or follow similar routes
between cities, the ruggedness of the channels is a par-
ticularly important consideration. If the susceptibility
of the channels to mutual interference is high, many
separate frequency bands will be required, and the total
bandwidth required for the service will be large. Al-
though PCM requires an initial increase of bandwidth
for each channel, the resulting ruggedness permits
many routes originating from, or converging toward, a
single terminal to occupy the same frequency band.
Different planes of polarization for two channels over
the same path can often be used, and the directivities
of practical antennas are such that only a small differ-
ence in direction of arrival will separate two routes
on the same frequency. As a result, the frequency oc-
cupancy of PCM is exceptionally good, and its other
transmission advantages are then obtained with little,
if any, increase in tola! bandwidth.

IV. ComparisoN oF PCM anp FM

One feature of PCM is that the signal-to-noise ratio
can be substantially improved by increasing the trans-
mission bandwidth. This is an advantage shared with
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certain other pulse systems and with FM. As FM is the
best known of these other systems, it is interesting to
compare PCM and FM.

Broadband Gain

In going to high-deviation FM, the gain in signal-to-
noise voltage ratio over AM (with the same power and
the same noise per unit bandwidth) is proportional to
the deviation ratio, or to the ratio of half the bandwidth
actually used in transmission to the bandwidth of the
signal to be transmitted. This ratio corresponds to 1 in
our notation. If noise power is uniformly distributed
with respect to frequency, and if one desires to provide
the same margin over threshold in FM with various
bandwidths, the transmitter power must be propor-
tional to bandwidth (to n). If we so vary the power in
varying the bandwidth of wide-deviation FM, the
signal-to-noise voltage ratio will vary as n(n''?), where
the factor n#!/3 comes about through the increased signal
voltage. Thus the signal-to-noise ratio R will be given
by

R = (const)n¥’?
20 log,e R = 30 logye # + const. (6)

For binary (on-off) PCM we have, from (5), for the
same simultaneous variation of bandwidth and power

20 lOglo R = 6n + 10.8.
Or, for ternary (base 3) PCM,

20 logye R = 9.54n + 10.8.

We see that, asthe bandwidth (proportional to n) isin-
creased in FM, the signal-to-noise ratio varies as log n,
while in PCM it varies as n. Thus, as bandwidth is in-
creased, PCM is bound to exhibit more improvement in
the end. Further, a more elaborate analysis shows that,
ideally at least, PCM can provide, for any bandwidth,
nearly as high a signal-to-noise ratio as is possible with
any system of modulation.

Why is PCM so good in utilizing bandwidth to in-
crease the signal-to-noise ratio? A very clear picture of
the reason can be had by considering a simple PCM
system in which four binary digits are transmitted on
four adjacent frequency bands with powers just sufficient
to over-ride noise. In Fig. 2(a) the signals in these four
channels B,, Bs, B,, B, are shown versus time. A black
rectangle represents a pulse; a white rectangle, the
absence of a pulse. The rectangles are 7= (1/2W,) long.
The particular sequence of code groups shown in the
figure represents a quantized approximation to a linear
change of amplitude with time, as shown in Fig. 2(b).

Now suppose, instead, that we confine ourselves to
sending a pulse in only one channel at a time, as shown
in Fig. 2(c). The best quantized representation of the
signal we can get is shown in Fig. 2(d). Here the num-
ber of levels is four, while in Fig. 2(b) there are sixteen.
In other words, Fig. 2(b) represents four times as good
a signal-to-noise amplitude ratio as Fig. 2(d).

B. M. Oliver, J. R. Pierce, and C. E. Shannon
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Fig. 2—The signals in channels Bi, By, By, and B,. (a) Signal in a
frequency-division PCM system. (b) Amplitudes corresponding
to (a). {c) Signal in a quantized FM system. (d) Amplitudes cor-
responding to (c).
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The total energy transmitted is in each case repre-
sented by the total black area; we see that on the aver-
age twice as much power is used in Fig. 2(a) as in Fig.
2(c). Thus we obtain a 12-db increase in signal-to-noise
ratio with a power increase of only 3 db by sending the
signal according to Fig. 2(a) rather than Fig. 2(c). If we
had started out with six channels instead of four, we
would have obtained a signal-to-noise improvement of
21 db for 4.77 db more average power. The greater the
number of channels, and hence the wider the frequency
band used, the better the method of transmission repre-
sented by Fig. 2(a) as compared to that represented by
Fig. 2(c).

Now Fig. 2(a) represents PCM, while Fig. 2(c) repre-
sents what is essentially quantized FM with sampling.
The signal in Fig. 2(c) varies with frequency according
to the amplitude of the signal. Hence, we have compared
PCM and a sort of FM, to the obvious advantage
of PCM.

The trouble with the FM type of signal of Fig. 2(c)
is that only a few of the possible signals which might be
sent in the four bands B,-B, are ever produced; all the
others, those for which there is a signal in more than one
band at a time, are wasted. Ideally, PCM takes ad-
vantage of every possible signal which can be trans-
mitted over a given band of frequencies with pulses hav-
ing discrete amplitudes.!!

The relation between FM and PCM is closely analo-
gous to the relation between the two types of computing
machines: the so-called analogue machines and the
digital machines. In analogue machines the numbers
involved are represented as proportional to some physi-
cal quantity capable of continuous variation. Typical
examples are the slide rule, network analyzers, and the
differential analyzer. An increase in precision requires,
in general, a proportional increase in the range of
physical variables used to represent the numbers.
Furthermore, small errors tend to accumulate and can-
not be eliminated. In digital machines the numbers are
expressed in digital form, and the digits are represented
by the states of certain physical parts of the machine
which can assume one of a finite set of possible states.
Typical digital machines are the abacus, ordinary desk
computers, and the Eniac. In this type of machine the
precision increases exponentially with the number of
digits, and hence with the size of the machine. Small
errors, which are not large enough to carry any part
from one state to another state, have no effect and do
not cumulate.

In FM (analogue), the amplitude of the audio signal
is measured by the radio frequency. To improve the pre-
cision by 2 to 1 requires roughly a 2 to 1 increase in
the frequency swing, and hence the bandwidth. In PCM
doubling the bandwidth permits twice the number of

1t It might be objected that one could have signals with a finer
structure in the frequency direction than those shown in Fig. 2(a).
This is possible only il r is made larger, so that the pulses representing
samples occur less frequently, are broader, and have narrower spec-
tra. This means reducing W.
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digits, and therefore squares rather than doubles the
number of distinguishable levels.

Other Factors

There are other considerations in a comparison be-
tween PCM and ordinary, unquantized FM, however.
For instance, PCM allows the use of regenerative re-
peaters, and FM does not. PCM lends itself, like other
pulse systems, to time-division multiplex. On the other
hand, when the received signal rises considerably above
threshold during good reception, the signal-to-noise
ratio improves with FM but not with PCM. When we
come to consider transmitters and receivers, we find
that, for high signal-to-noise ratios at least, an FM
transmitter and receiver will be somewhat less compli-
cated than those for PCM are at present.

V. CONCLUSIONS

PCM offers a greater improvement in signal-to-noise
than other systems, such as FM, which also depend
upon the use of wide bands.

By using binary (on-off) PCM, a high quality signal
can be obtained under conditions of noise and interfer-
ence so bad that it is just possible to recognize the
presence of each pulse. Further, by using regenerative
repeaters which detect the presence or absence of pulses
and then emit reshaped, respaced pulses, the initial
signal-to-noise ratio can be maintained through a long
chain of repeaters.

PCM lends itself to time-division multiplex.

PCM offers no improvement in signal-to-noise ratio
during periods of high signal or low noise.

PCM transmitters and receivers are somewhat more
complex than are those used for some other forms of
modulation.

In all, PCM seems ideally suited for multiplex mes-
sage circuits, where a standard quality and high reli-
ability are required.

ApPENDIX |

We wish to show that a function of time f(¢) which
contains no frequency components greater than Wy cps
is uniquely determined by thc values of f{t) at any set
of sampling points spaced 1/2W, seconds apart. Let
F(w) be the complex spectrum of the function, i.e.,

Plw) = f " ey,

By assumption, F(w)=0 for [wl >2rW,. F(w) can be
expanded in the interval —27W, to +27W, in a Fourier
series having the coefficients

Ay =

2xWyo
f F(w)e—vi(unﬂwo)dw. (1)

2«Wo

41I'W0
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Now, since F(w) is the Fourier transform of f(). f(¢) is
the inverse transform of F(w).

1 w "
f(t) = ;f—”F(w)e‘ dw

1 2xWo
= —f F(w)e“"'dw,
n —

2xW,

since F(w) is zero outside these limits.
If we let t=n/2W,, we have

n l 2xWo
-— F(w)e'en™ody, (2
f(zwl)) 21r f—ZxWa (w) ¢ ( )

Comparing (1) and (2), we see that

1 —n
(@)
2We™ \2W,

Thus, if the function f(f) is known at the sam-
pling points, - - - ~(2/2W,), 1/2W,, 0, 1/2W,,
2/2W, - + -, then the coefficients a, are determined.
These coefficients determine the spectrum F(w) and
F(w) determines f(¢) for all values of ¢. This shows that
there is exactly one function containing no frequencies
over W, and passing through a given set of amplitudes
at sampling points 1/2W, apart.

To reconstruct the function, given these amplitudes,
we note that

a, =

F(w) = ) ane@m?™™o for || < 20W,
F(w)*=0 for |w| > 2xW,.

Taking the inverse transform, we have

i 2Wyt
2We Z . sin #(2Wyl 4+ n)
n 1r(2Wot + n)

n \sin 1QWol + n)
B Z":f(— 2Wo) 2(2Wot + n)

_ Zf(_ﬁ_)sin 1(2Wot— n) .

~\2w,/ x(2Wet — n)

f@®

In other words, the function f() may be thought of as
the sum of a series of elementary functions of the form
sin x/x centered at the sampling points, and each having
a peak value equal to f(¢) at the corresponding sampling
point. To reconstruct the function f(t), then, we merely
need to generate a series of sin x/x pulses proportional
to the samples and add the ensemble.

B. M. Oliver, J. R. Pierce, and C. E. Shannon

ApPENDIX 11

We wish to find the average power in a series of pulses
of the form

. s
sin ¥ —

) = —

T —
T

occurring at the regular rate 1/r.
The signal wave may then be written

v(2) = i Vif(t — k)

where Vi =peak amplitude of pulse occurring at the time
t=kr. The average “power” (i.e., mean-square ampli-
tude) .S of the signal will then be

S=2=lim— | o2dt
n—wo HTJ _y
l " 0
= lim —[ > szf 2t — kr)di
n—w 1T k=1 —0

n

+ Z > Vika"f(z — i f( - kf),u]

=1 k=l

jntk

For the assumed pulse shape, the first integral is equal
to 7, while the second integral is equal to zero. Thus

1 n
S = lim — 2 V)2

n—eeo N jel

S is simply the mean-square value of the individual
pulse peak amplitudes, and may also be written

S =f=V2p(V)dV

where

p(V)dV =probability that pulse amplitude lies be-
tween Vand V4dV.

Suppose the pulses have b discrete amplitude levels
Ko apart, ranging from 0 to (b—1)Ko. Each pulse then
has an amplitude a Ko where g is an integer. The average
power will be

e=b—1

S = K* 3 p(a)a?

a={

where p(a) =probability of level a. If all levels are
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equally likely, p(e) =1/b, and Obviously, ro <r, so that the average power will be least if
b1 the average amplitude is zero. S will be least if the
S = K??— Z a? pulse amplitude range is from —Ko(b—1)/2 to

| +Ko(b—1)/2, and will then be given by

b—1)(2b -1 _ . _
S = K’a’g———)S——) . S = K2”2[(b 1)(26 — 1) _ (b 1)2]
6 2
The quantity

b — 1
1 b S = X% ——

— Y a? 12

. . ) This may also be written
is the square of the radius of gyration (i.e., the mean-

square radius) about one end of a linear array of & A (b
points separated by unit distance. The average power S = 6+ 1)
of any amplitude distribution is the average of the 12 (b—1)
squares of the amplitudes and is therefore proportional
to the square of the radius of gyration of the distribu-

¢ ] L ‘the where A =total amplitude range=(b—-1)Ko. As b— oo,
tion. The radius of gyration about any point is

A?
r? = ro? 4 d2 S——.
12
where
r =radius of gyration about chosen point Thus, if all amplitude levelsin a range A are possible
ro=radius of gyration about center of gravity and equally likely, the rms amplitude of the distribution

d =distance to center of gravity from chosen point. will be V3 =(A4/2V3).



Communication in the Presence of Noise*
CLAUDE E. SHANNONY{, MEMBER, IRE

Summary—A method is developed for representing any com-
munication system geometrically. Messages and the cotresponding
signals are points in two “‘function spaces,” and the modulation
process is a mapping of one space into the other. Using this repre-
sentation, a number of results in communication theory are deduced
concerning expansion and compression of bandwidth and the
threshold effect. Formulas are found for the maximum rate of trans-
mission of binary digits over a system when the signal is perturbed
by various types of noise. Some of the properties of ‘‘ideal” aystems
which transmit at this maximum rate are discussed. The equivalent
number of binary digits per second for certain information sources
is calculated.

1. INTRODUCTION
3 GENERAL COMMUNICATIONS system is

shown schematically in Fig. 1. It consists essen-
tially of five elements.

1. An information source. The source selects one mes-
sage from a set of possible messages to be transmitted to
the receiving terminal. The message may be of various
types; for example, a sequence of letters or numbers, as
in telegraphy or teletype, or a continuous function of
time f(¢), as in radio or telephony.

2. The transmitter. This operates on the message in
some way and produces a signal suitable for transmis-
sion to the receiving point over the channel. In teleph-
ony, this operation consists of merely changing sound
pressure into a proportional electrical current. In teleg-
raphy, we have an encoding operation which produces a
sequence of dots, dashes, and spaces corresponding to
the letters of the message. To take a more complex
example, in the case of multiplex PCM telephony the
different speech functions must be sampled, compressed,
quantized and encoded, and finaily interleaved properly
to construct the signal.

* Decimal classification: 621.38. Original manuscript received by
the Institute, July 23, 1940. Presented, 1948 IRE National Conven-
tion, New York, N. Y., March 24, 1948; and IRE New York Section,
New York, N. Y., November 12, 1947.

t Bell Telephone Laboratories, Murray Hill, N. J.

1 H. Nyquist, “Certain factors affecting telegraph speed,” Bell
Syst. Tech. Jour.. vol. 3. p. 324; April, 1924.

3. The channel. This is merely the medium used to
transmit the signal from the transmitting to the receiv-
ing point. It may be a pair of wires, a coaxial cable, a
band of radio frequencies, etc. During transmission, ot
at the receiving terminal, the signal may be perturbed
by noise or distortion. Noise and distortion may be dif-
ferentiated on the basis that distortion is a fixed opera-
tion applied to the signal, while noise involves statistica.
and unpredictable perturbations. Distortion can, ir
principle, be corrected by applying the inverse opera-
tion, while a perturbation due to noise cannot always be
removed, since the signal does not always undergo the
same change during transmission.

4. The receiver. This operates on the received signa
and attempts to reproduce, from it, the original mes
sage. Ordinarily it will perform approximately the math
ematical inverse of the operations of the transmitter, al
though they may differ somewhat with best design i1
order to combat noise.

S. The destination. This is the person or thing fo
whom the message is intended.

Following Nyquist! and Hartley,? it is convenient ts
use a logarithmic measure of information. If a device ha
n possible positions it can, by definition, store logy 7 unit
of information. The choice of the base b amounts to .
choice of unit, since logy n =log, ¢ log. n. We will use th
base 2 and call the resulting units binary digits or bits
A group of m relays or flip-flop circuits has 2™ possibl
sets of positions, and can therefore store logs 2™ =m bit:

If it is possible to distinguish reliably M different sig
nal functions of duration T on a channel, we can sa
that the channel can transmit logs M bits in time 7. Th
rate of transmission is then loga M/T. More precisely
the channel capacity may be defined as

. logg M
im ———

Tow

(

' R. V. L. Hartley, “The transmission of information,” Bell Sys.
Tech. Jour., vol. 3, p. 535-564; July, 1928.

INFORMATION
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Fig. 1—General conununications system.
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A precise meaning will be given later to the requirement
of reliable resolution of the M signals.

Il. THE SAMPLING THEOREM

Let us suppose that the channel has a certain band-
width W in cps starting at zero frequency, and that we
are allowed to use this channel for a certain period of
time T. Without any further restrictions this would
mean that we can use as signal functions any functions
of time whose spectra lie entirely within the band W,
and whose time functions lie within the interval T. Al-
though it is not possible to fulfill both of these condi-
tions exactly, it is possible to keep the spectrum within
the band W, and to have the time function very small
outside the interval T. Can we describe in a more useful
way the functions which satisfy these conditions? One
answer is the following:

TreEOREM 1: If a function f(t) contains no frequencies
higher than W cps, it is completely determined by giving
its ordinates at a sertes of points spaced 1/2W seconds
apart.

This is a fact which is common knowledge in the com-
munication art. The intuitive justification is that, if f(¢)
contains no frequencies higher than W, it cannot
change to a substantially new value in a time less than
one-half cycle of the highest frequency, thatis, 1/2W. A
mathematical proof showing that this is not only ap-
proximately, but exactly, true can be given as follows.
Let F(w) be the spectrum of f(¢). Then

1 © ot
10 = f P %)

+2rW

Flw)edw,  (3)

27I' —2xW

since F(w) is assumed zero outside the band W. If we
let

”
{ = —
2w

where n is any positive or negative integer, we obtain

n 1 p+ow .
—_— = — F iwzw d X
f<2 W) 2r f—?rW W ¢

On the left are the values of f(¢) at the sampling points.
The integral on the right will be recognized as essen-
tially the nth coefficient in a Fourier-series expansion of
the function F{w), taking the interval —Wto +Wasa
fundamental period. This means that the values of the
samples f(n/2W) determine the Fourier coefficients in
the series expansion of F(w). Thus they determine F(w),
since F(w) is zero for frequencies greater than W, and for
lower frequencies F(w) is determined if its Fourier co-
efficients are determined. But F(w) determines the origi-

4)

&)
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nal function f(¢f) completely, since a function is deter-
mined if its spectrum is known. Therefore the original
samples determine the function f(t) completely. There
is one and only one function whose spectrum is limited
to a band W, and which passes through given values at
sampling points separated 1/2W seconds apart. The
function can be simply reconstructed from the samples
by using a pulse of the type

sin 27 Wt

(6)
2r Wt
This function is unity at £ =0 and zero at t=n/2W, i.e.,
at all other sample points. Furthermore, its spectrum is
constant in the band W and zero outside. At each sam-
ple point a pulse of this type is placed whose amplitude
is adjusted to equal that of the sample. The sum of these
pulses is the required function, since it satishes the con-
ditions on the spectrum and passes through the sampled
values.
Mathematically, this process can be described as fol-
fows. Let x, be the nth sample. Then the function f(¢)
is represented by

i sin 7(2Wt — n)
IO=2 = wm

n=—a0

(7)

A similar result is true if the band W does not start at
zero frequency but at some higher value, and can be
proved by a linear translation (corresponding physically
to single-sideband modulation) of the zero-frequency
case. In this case the elementary pulse is obtained from
sin x/x by single-side-band modulation.

If the function is limited to the time interval T and
the samples are spaced 1/2W seconds apart, there will
be a total of 2T W samples in the interval. All samples
outside will be substantially zero. To be more precise,
we can define a function to be limited to the time inter-
val T if, and only if, all the samples outside this interval
are exactly zero. Then we can say that any function lim-
ited to the bandwidth W and the time interval T can be
specified by giving 2T W numbers.

Theorem 1 has been given previously in other forms
by mathematicians® but in spite of its evident impor-
tance seems not to have appeared explicitly in the litera-
ture of communication theory. Nyquist,*® however, and
more recently Gabor,® have pointed out that approxi-
mately 2T W numbers are sufficient, basing their argu-

3 J. M. Whittaker, “Interpolatory Function Theory,” Cambridge
Tracts in Mathematics and Mathematical Physics, No. 33, Cam-
bridge University Press, Chapt. IV; 1935. . R

¢ H. Nyquist, “Certain topics in telegraph transmission theory,
A.I.E.E. Transactions, p. 617; April, 1928.

s W. R. Bennett, “%ime division multiplex systems,” Bell Sys.
Tech. Jour., vol. 20, p. 199; April, 1941, where a result similar to
Theorem 1 is established, but on a steady-state basis.

¢ D. Gabor, “Theory of communication,” Jour. I.E.E. (London),
vol. 93; part 3, no. 26, p. 429; 1946.
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ments on a Fourier series expansion of the function over
the time interval T'. This gives T'W sine and (TW+1)
cosine terms up to frequency W. The slight discrepancy
is due to the fact that the functions obtained in this way
will not be strictly limited to the band W but, because
of the sudden starting and stopping of the sine ana co-
sine components, contain some frequency content out-
side the band. Nyquist pointed out the fundamental
importance of the time interval 1/2W seconds in con-
nection with telegraphy, and we will call this the Ny-
quist interval corresponding to the band W.

The 2T'W numbers used to specify the function need
not be the equally spaced samples used above. For ex-
ample, the samples can be unevenly spaced, although, if
there is considerable bunching, the samples must be
known very accurately to give a good reconstruction of
the function. The reconstruction process is also more
involved with unequal spacing. One can further show
that the value of the function and its derivative at every
other sample point are sufficient. The value and first and
second derivatives at every third sample point give a
still different set of parameters which uniquely deter-
mine the function. Generally speaking, any set of 2T W
independent numbers associated with the function can
be used to describe it.

I1I. GEOMETRICAL REPRESENTATION OF
THE SIGNALS

A set of three numbers x1, x2, x3, regardless of their
source, can always be thought of as co-ordinates of a
point in three-dimensional space. Similarly, the 2T'W
evenly spaced samples of a signal can be thought of as
co-ordinates of a point in a space of 2T W dimensions.
Each particular selection of these numbers corresponds
to a particular point in this space. Thus there is exactly
one point corresponding to each signal in the band W
and with duration T

The number of dimensions 2T W will be, in general,
very high. A 5-Mc television signal lasting for an hour
would be represented by a point in a space with 2X5
X 105X 60?=3.6 X 10 dimensions. Needless to say,
such a space cannot be visualized. It is possible, how-
ever, to study analytically the properties of n-dimen-
sional space. To a considerable extent, these properties
are a simple generalization of the properties of two- and
three-dimensional space, and can often be arrived at
by inductive reasoning from these cases. The advantage
of this geometrical representation of the signals is that
we can use the vocabulary and the results of geometry
in the communication problem. Essentially, we have re-
placed a complex entity (say, a television signal) in a
simple environment (the signal requires only a plane for
its representation as f(¢)) by a simple entity (a point) in
a complex environment (2T'W dimensional space).

If we imagine the 2T'W co-ordinate axes to be at right
angles to each other, then distances in the space have a
simple interpretation. The distance from the origin to a
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point is analogous to the two- and three-dimensional
cases

20
d = /‘/ Z a2 (8)
n=|\

where x, is the nth sample. Now, since

oW sin #(2Wt — n)

OEIDIEN , 9)

nml m(2WL — n)

we have

(10)

* 1
Dl = — X2,
f—mf( ) 2w E
using the fact that

f“' sia #(2W1 — m) sin #(2W1 — n)
dil
—~  T(2WL — m) (Wi — n)

0 m (11)
= 1

—n =

2W

Hence, the square of the distance to a point is 2W times
the energy (more precisely, the energy into a unit resist-
ance) of the corresponding signal

at = 2WE
= 2WTP

where P is the average power over the time 7. Similarly,
the distance between two points is v/2W7 times the
rms discrepancy between the two corresponding signals.

If we consider only signals whose average power is less
than P, these will correspond to points within a sphere
of radius

I

(12)

r=/2WTP. (13)

If noise is added to the signal in transmission, it
means that the point corresponding to the signal has
been moved a certain distance in the space proportional
to the rms value of the noise. Thus noise produces a
small region of uncertainty about each point in the
space. A fixed distortion in the channel corresponds to
a warping of the space, so that each point is moved, but
in a definite fixed way.

In ordinary three-dimensional space it is possible to
set up many different co-ordinate systems. This is also
possible in the signal space of 2T'W dimensions that we
are considering. A different co-ordinate system cor-
responds to a different way of describing the same sig-
nal function. The various ways of specifying a function
given above are special cases of this. One other way of
particular importance in communication is in terms of
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frequency components. The function f(f) can be ex-
panded as a sum of sines and cosines of frequencies 1/T
apart, and the coefficients used as a different set of co-
ordinates. It can be shown that these co-ordinates are
all perpendicular to each other and are obtained by
what is essentially a rotation of the original co-ordinate
system.

Passing a signal through an ideal filter corresponds to
projecting the corresponding point onto a certain region
in the space. In fact, in the frequency-co-ordinate sys-
tem those components lying in the pass band of the filter
are retained and those outside are eliminated, so that
the projection is on one of the co-ordinate lines, planes,
or hyperplanes, Any filter performs a linear operation on
the vectors of the space, producing a new vector lin-
early related to the old one.

IV. GEOMETRICAL REPRESENTATION
OF MESSAGES

We have associated a space of 27 W dimensions with
the set of possible signals. In a similar way one can as-
sociate a space with the set of possible messages. Sup-
pose we are considering a speech system and that the
messages consist of all possible sounds which contain no
frequencies over a certain limit W, and last for a time
7“.

Just as for the case of the signals, these messages can
be represented in a one-to-one way in a space of 2T, W,
dimensions. There are several points to be noted, how-
ever. In the first place, various different points may rep-
resent the same message, insofar as the final destination
is concerned. For example, in the case of speech, the ear
is insensitive to a certain amount of phase distortion.
Messages differing only in the phases of their compon-
ents (toa limited extent) sound the same. This may have
the effect of reducing the number of essential dimensions
in the message space. All the points which are equivalent
for the destination can be grouped together and treated
as one point. It may then require fewer numbers to
specify one of these “equivalence classes” than to spec-
ify an arbitrary point. For example, in Fig. 2 we have a
two-dimensional space, the set of points in a square. If
all points on a circle are regarded as equivalent, it re-
duces to a one-dimensional space—a point can now be
specified by one number, the radius of the circle. In the
case of sounds, if the ear were completely insensitive to

AN

Fig. 2—Reduction of dimensionality through
equivalence classes.
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phase, then the number of dimensions would be reduced
by one-half due to this cause alone. The sine and cosine
components a, and b, for a given frequency would not
need to be specified independently, but only v/a,245.2;
that is, the total amplitude for this frequency. The re-
duction in frequency discrimination of the ear as fre-
quency increases indicates that a further reduction in
dimensionality occurs. The vocoder makes use to a con-
siderable extent of these equivalences among speech
sounds, in the first place by eliminating, to a large de-
gree, phase information, and in the second place by
lumping groups of frequencies together, particularly at
the higher frequencies.

In other types of communication there may not be
any equivalence classes of this type. The final destina-
tion is sensitive to any change in the message within the
full message space of 2T, W, dimensions. This appears
to be the case in television transmission.

A second point to be noted is that the information
source may put certain restrictions on the actual mes-
sages. The space of 2T, W, dimensions contains a point
for every function of time f(¢) limited to the band W, and
of duration T';. The class of messages we wish to trans-
mit may be only a small subset of these functions. For
example, speech sounds must be produced by the human
vocal system. If we are willing to forego the transmission
of any other sounds, the effective dimensionality may be
considerably decreased. A similar effect can occur
through probability considerations. Certain messages
may be possible, but so improbable relative to the oth-
ers that we can, in a certain sense, neglect them. In a
television image, for example, successive frames are
likely to be very nearly identical. There is a fair proba-
bility of a particular picture element having the same
light intensity in successive frames. If this is analyzed
mathematically, it results in an effective reduction of
dimensionality of the message space when T is large.

We will not go further into these two effects at pres-
ent, but let us suppose that, when they are taken into
account, the resulting message space has a dimensional-
ity D, which will, of course, be less than or equal to
2T, W1 In many cases, even though the effects are pres-
ent, their utilization involves too much complication in
the way of equipment. The system is then designed on
the basis that all functions are different and that there
are no limitations on the information source. In this
case, the message space is considered to have the full
2T W, dimensions.

V. GEOMETRICAL REPRESENTATION OF THE
TRANSMITTER AND RECEIVER

We now consider the function of the transmitter from
this geometrical standpoint. The input to the transmit-
ter is a message; that is, one point in the message space.
Its output is a signal—one point in the signal space.
Whatever form of encoding or modulation is performed,
the transmitter must establish some correspondence be-
tween the points in the two spaces. Every point in the
message space must correspond to a point in the signal
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TABLE 1

Communication System

Geometrical Entity

The set of possible signals
A particular signal
Distortion in the channel
Noise in the channel

The average power of the
signal

The set of signals of power
P

The set of possible messages

The set of actual messages
distinguishable by the
destination

A message
The transmitter

The receiver

A space of 2TW dimensions

A point in the space

A warping of the space

A region of uncertainty about each
point

(2TW)™! times the square of the dis-
tance from the origin to the point

The set of points in a sphere of radius
V2TW P

A space of 2T, W, dimensions

A space of D dimensions obtained by
regarding all equivalent messages
as one point, and deleting messages
which the source could not produce

A point in this space

A mapping of the message space into
the signal space

A mapping of the signal space into
the message space
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space, and no two messages can correspond to the same
signal. If they did, there would be no way to determine
at the receiver which of the two messages was intended.
The geometrical name for such a correspondence is a
mapping. The transmitter maps the message space into
the signal space.

In a similar way, the receiver maps the signal space
back into the message space. Here, however, it is possi-
ble to have more than one point mapped into the same
point. This means that several different signals are de-
modulated or decoded into the same message. In AM,
for example, the phase of the carrier is lost in demodula-
tion. Different signals which differ only in the phase of
the carrier are demodulated into the same message. In
FM the shape of the signal wave above the limiting
value of the limiter does not affect the recovered mes-
sage. In PCM considerable distortion of the received
pulses is possible, with no effect on the output of the re-
ceiver,

We have so far established a correspondence between
a communication system and certain geometrical ideas.
The correspondence is summarized in Table I.

VI. MapPPING CONSIDERATIONS

It is possible to draw certain conclusions of a general
nature regarding modulation methods from the geo-
metrical picture alone. Mathematically, the simplest
types of mappings are those in which the two spaces
have the same number of dimensions. Single-sideband
amplitude modulation is an example of this type and an
especially simple one, since the co-ordinates in the sig-
nal space are proportional to the corresponding co-ordi-
nates in the message space. In double-sideband trans-
mission the signal space has twice the number of co-
ordinates, but they occur in pairs with equal values. 1f

there were only one dimension in the message space and.

two in the signal space, it would correspond to mapping

a line onto a square so that the point x on the line is rep-
resented by (x, x) in the square. Thus no significant use
is made of the extra dimensions. All the messages go into
a subspace having only 27, W, dimensions.

In frequency modulation the mapping is more in-
volved. The signal space has a much larger dimensional-
ity than the message space. The type of mapping can be
suggested by Fig. 3, where a line is mapped into a three-
dimensional space. The line starts at unit distance from
the origin on the first co-ordinate axis, stays at this dis-
tance from the origin on a circle to the next co-ordinate
axis, and then goes to the third. It can be seen that the
line is lengthened in this mapping in proportion to the
total number of co-ordinates. It is not, however, nearly
as long as it could be if it wound back and forth through
the space, filling up the internal volume of the sphere it
traverses.

This expansion of the line is related to the improved
signal-to-noise ratio obtainable with increased band-
width. Since the noise produces a small region of uncer-
tainty about each point, the effect of this on the recov-
ered message will be less if the map is in a large scale. To
obtain as large a scale as possible requires that the line

TO NEXT COORDINATE

Fig. 3—Mapping similar to frequency modulation.
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Fig. 4—Efficient mapping of a line into a square.

wander back and forth through the higher-dimensional
region as indicated in Fig. 4, where we have mapped a
line into a square. It will be noticed that when this is
done the effect of noise is small relative to the length of
the line, provided the noise is less than a certain critical
value. At this value it becomes uncertain at the receiver
as to which portion of the line contains the message.
This holds generally, and it shows that any system which
attempts Lo use the capacities of a wider band to the full ex-
tent possible will suffer from a threshold effect when there
£y noise. If the noise is small, very little distortion will
occur, but at some critical noise amplitude the message
will become very badly distorted. This effect is well
known in PCM.

Suppose, on the other hand, we wish to reduce di-
mensionality, i.e., to compress bandwidth or time or
both. That is, we wish to send messages of band W, and
duration T; over a channel with TW < T W,. It has al-
ready been indicated that the effective dimensionality D
of the message space may be less than 2T, W, due to the
properties of the source and of the destination. Hence we
certainly need no more than D dimension in the signal
space for a good mapping. To make this saving it is nec-
essary, of course, to isolate the effective co-ordinates in
the message space, and to send these only. The reduced
bandwidth transmission of speech by the vocoder is a
case of this kind.

The question arises, however, as to whether further
reduction is possible. In our geometrical analogy, is it
possible to map a space of high dimensionality onto one
of lower dimensionality? The answer is that it is pos i-
ble, with certain reservations. For example, the points of
a square can be described by their two co-ordinates
which could be written in decimal notation

X = .a18283 * - *
y .b]bzba v

From these two numbers we can construct one number
by taking digits alternately from x and y:

(14)

3 = .dlblagbzd;;b;; v

(15)
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A knowledge of x and y determines z, and z determines
both x and 3. Thus there is a one-to-one correspondence
between the points of a square and the points of a line,

This type of mapping, due to the mathematizian
Cantor, can easily be extended as far as we wish in the
direction of reducing dimensionality. A space of n di-
mensions can be mapped in a one-to-one way into a
space of one dimension. Physically, this means that the
frequency-time product can be reduced as far as we wish
when there is no noise, with exact recovery of the origi-
nal messages.

In a less exact sense, a mapping of the type shown in
Fig. 4 maps a square into a line, provided we are not too
particular about recovering exactly the starting point,
but are satisfied with a near-by one. The sensitivity we
noticed before when increasing dimensionality now takes
a different form. In such a mapping, toreduce TW, there
will be a certain threshold effect when we perturb the
message. As we change the message a small amount, the
corresponding signal will change a small amount, until
some critical value is reached. At this point the signal
will undergo a considerable change. In topology it is
shown? that it is not possible to map a region of higher
dimension into a region of lower dimension continuously.
It is the necessary discontinuity which produces the
threshold effects we have been describing for communi-
cation systems.

This discussion is relevant to the well-known “Hartley
Law,” which states that “...an upper limit to the
amount of information which may be transmitted is set
by the sum for the various available lines of the product
of the line-frequency range of each by the time during
which it is available for use.”? There is a sense in which
this statement is true, and another sense in which it is
false. It is not possible to map the message space into
the signal space in a one-to-one, continuous manner
(this is known mathematically as a topological mapping)
unless the two spaces have the same dimensionality;
i.e., unless D=2TW. Hence, if we limit the transmitter
and receiver to continuous one-to-one operations, there
is a lower bound to the product TW in the channel.
This lower bound is determined, not by the product
W\ T, of message bandwidth and time, but by the num-
ber of essential dimension D, as indicated in Section IV.
There is, however, no good reason for limiting the trans-
mitter and receiver to topological mappings. In fact,
PCM and similar modulation systems are highly dis-
continuous and come very close to the type of mapping
given by (14) and (15). It is desirable, then, to find
limits for what can be done with no restrictions on the
type of transmitter and receiver operations. These
limits, which will be derived in the following sections,

depend on the amount and nature of the noise in the
channel, and on the transmitter power, as well as on
the bandwidth-time product.

It is evident that any system, either to compress TH’,

? W. Hurewitz and H. Waliman, “Dimension Theory,” Princeton
University Press, Princeton, N. |.; 1941,
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or to expand it and make full use of the additional vol-
ume, must be highly nonlinear in character and fairly
complex because of the peculiar nature of the mappings
involved.

VII. Toe CapraciTy OF A CHANNEL IN THE
PreseNCE oF WHITE THeErMAL Nolse

It is not difficult to set up certain quantitative rela-
tions that must hold when we change the product TH.
Let us assume, for the present, that the noise in the sys-
tem is a white thermal-noise band limited to the band
W, and that it is added to the transmitted signal to pro-
duce the received signal. A white thermal noise has the
property that each sample is perturbed independently of
all the others, and the distribution of each amplitude is
Gaussian with standard deviation ¢ =+/N where N is
the average noise power. How many different signals can
be distinguished at the receiving point in spite of the
perturbations due to noise? A crude estimate can be ob-
tained as follows. If the signal has a power P, then the
perturbed signal will have a power P+ N. The number
of amplitudes that can be rcasonably well distinguished
is

P+ N
il (16)
N
where K is a small constant in the neighborhood of unity
depending on how the phrase “reasonably well” is inter-
preted. If we require very good separation, K will be
small, while toleration of occasional errors allows K to
be larger. Since in time T there are 2T'W independent

amplitudes, the total number of reasonably distinct sig-
nals is

/"

The number of bits that can be sent in this time is
logs M, and the rate of transmission is

M = V)]

M: W10g2K2£ﬂ
T N

(18)

The difficulty with this argument, apart from its
general approximate character, lies in the tacit assump-
tion that for two signals to be distinguishable they must
differ at some sampling point by more than the expected
noise. The argument presupposes that PCM, or some-
thing very similar to PCM, is the best method of en-
coding binary digits into signals. Actually, two signals
can be reliably distinguished if they differ by only a
small amount, provided this difference is sustained over
a long period of time. Each sample of the received signal
then gives a small amount of statistical information
concerning the transmitted signal; in combination,

(bits per second).
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these statistical indications result in near certainty.
This possibility allows an improvement of about 8 db
in power over (18) with a reasonable definition of re-
liable resolution of signals, as will appear later. We will
now make use of the geometrical representation to de-
termine the exact capacity of a noisy channel.

THEOREM 2: Let P be the average transmitter power, and
suppose the noise is white thermal noise of power N in the
band W. By sufficiently complicated encoding systems it 1s
possible to transmit binar)y digils at a rate

P+ N

C = Wlogg — 19
B2 N (19)

with as small a frequency of errors as desired. It is not pos-
stble by any encoding method to send at a higher rate and
have an arbitrarily low frequency of errors.

This shows that the rate W log (P+ N)/N measures in
a sharply defined way the capacity of the channel for
transmitting information. It is a rather surprising result,
since one would expect that reducing the frequency of
errors would require reducing the rate of transmission,
and that the rate must approach zero as the error fre-
quency does. Actually, we can send at the rate C but
reduce errors by using more involvedencoding and longer
delays at the transmitter and receiver. The transmitter
will take long sequences of binary digits and represent
this entire sequence by a particular signal function of
long duration. The delay is required because the trans-
mitter must wait for the full sequence before the signal
is determined. Similarly, the receiver must wait for the
full signal function before decoding into binary digits.

We now prove Theorem 2. In the geometrical repre-
sentation each signal point is surrounded by a small re-
gion of uncertainty due to noise. With white thermal
noise, the perturbations of the different samples (or co-
ordinates) are all Gaussian and independent. Thus the
probability of a perturbation having co-ordinates
%1, %3, - - -, % (these are the differences between the
original and received signal co-ordinates) is the product
of the individual probabilities for the different co-ordi-
nates:

2TW 1

————
a1 V2m2TWN

Zn?

2TWN

l -1 2TW

PR

= ex
(2r2TWN)T® p2TW 1

Xp —

Since this depends only on

2TW

Z xn2)
1

the probability of a given perturbation depends only on
the distance from the original signal and not on the direc-
tion. In other words, the region of uncertainty is spheri-
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cal in nature. Although the limits of this region are not
sharply defined for a small number of dimensions
(2T W), the limits become more and more definite as the
dimensionality increases. This is because the square of
the distance a signal is perturbed is equal to 2T W times
the average noise power during the time 7. As T in-
creases, this average noise power must approach N.
Thus, for large T, the perturbation will almost certainly
be to some point near the surface of a sphere of radius
v/2TWN centered at the original signal point. More
precisely, by taking T sufficiently large we can insure
(with probability as near to 1 as we wish) that the per-
turbation will lie within a sphere of radius /2T W{(N+¢)
where € is arbitrarily small. The noise regions can there-
fore be thought of roughly as sharply defined billiard
balls, when 2T W is very large. The received signals have
an average power P+ N, and in the same sense must al-
most all lie on the surface of a sphere of radius
v/2TW(P+ N). How many different transmitted signals
can be found which will be distinguishable? Certainly
not more than the volume of the sphere of radius
V2TW(P+ N) divided by the volume of a sphere of
radius /2TWN, since overlap of the noise spheres re-
sults in confusion as to the message at the receiving
point. The volume of an n-dimensional sphere® of radius
ris
7r7|/2

= 7 .
(G+)
2

Hence, an upper limit for the number M of distinguish-
able signals is

MS(/‘/P+N>2TlV.
- N

Consequently, the channel capacity is bounded by:

(20)

(21)

logs M P+N
C=-——5 Wloggp ——— - 22
T = 0Bz — (22)

This proves the last statement in the theorem.

To prove the first part of the theorem, we must show
that there exists a system of encoding which transmits
W log: (P4 N)/N binary digits per second with a fre-
quency of errors less than e when ¢ is arbitrarily small.
The system to be considered operates as follows. A long
sequence of, say, m binary digits is taken in at the trans-
mitter. There are 2™ such sequences, and each corre-
sponds to a particular signal function of duration T.
Thus there are M =2~ different signal functions. When
the sequence of m is completed, the transmitter starts
sending the corresponding signal. At the receiver a per-

¢ D. M. Y. Sommerville, “An Introduction to the Geometry of N
Dimensions,” E. P. Dutton, Inc., New York, N. Y., 1929; p. 135,
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turbed signal is received. The receiver compares this
signal with each of the M possible transmitted signals
and selects the one which is nearest the perturbed signal
(in the sense of rms error) as the one actually sent. The
receiver then constructs, as its output, the correspond-
ing sequence of binary digits. There will be, therefore,
an over-all delay of 27 seconds.

To insure a frequency of errors less than ¢, the M sig-
nal functions must be reasonably well separated from
each other. In fact, we must choose them in such a way
that, when a perturbed signal is received, the nearest
signal point (in the geometrical representation) is, with
probability greater than 1 —¢, the actual original signal.

It turns out, rather surprisingly, that it is possible to
choose our M signal functions at random from the points
inside the sphere of radius +/2TWP, and achieve the
most that is possible. Physically, this corresponds very
nearly to using M different samples of band-limited
white noise with power P as signal functions.

A particular selection of M points in the sphere corre-
sponds to a particular encoding system. The general
scheme of the proof is to consider all such selections, and
to show that the frequency of errors averaged over all
the particular selections is less than e. This will show
that there are particular selections in the set with fre-
quency of errors less than e. Of course, there will be
other particular selections with a high frequency of er-
rors.

The geometry is shown in Fig. 5. This is a plane
cross section through the high-dimensional sphere de-
fined by a typical transmitted signal B, received signal
A, and the origin 0. The transmitted signal will lie very
close to the surface of the sphere of radius v/2T WP,
since in a high-dimensional sphere nearly all the volume
is very close to the surface. The received signal simi-
larly will lie on the surface of the sphere of radius
V2TW(P+ N). The high-dimensional lens-shaped re-
gion L is the region of possible signals that might have
caused A, since the distance between the transmitted
and received signal is almost certainly very close to
v/2TWN. L is of smaller volume than a sphere of radius

PN
h= “QTW PER

ITwir+n)

Fig. 5-—The geometry involved in Theorem 2.
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h. We can determine k by equating the area of the tri-
angle OA B, calculated two different ways:

1h\/2TW(P 4 N) = %\/ZTWP\/ZTWN
PN
h = 2TW ———
P4 N
The probability of any particular signal point (other
than the actual cause of 4) lying in L is, therefore, less
than the ratio of the volumes of spheres of radii
A/2TW PN/P+ N and +/2TWP, since in our ensemble
of coding systems we chose the signal points at random

from the points in the sphere of radius «/2TWP. This
ratio is

2TW
4/2TW
P+ N

N 2TWP

We have M signal points. Hence the probability p that
all except the actual cause of A are outside L is greater

than
N TWM~1
[1 - (P + N) ] '
When these points are outside L, the signal is inter-
preted correctly. Therefore, if we make P greater than

1 —¢, the frequency of errors will be less than e. This will
be true if

-G e

Now (1 —x)"is always greater than 1 —nx when n is pos-
itive. Consequently, (25) will be true if

(24)

N ™

or if
+N T™W
M-1)< 27
M — 1) ( — ) @)
or
log (M — 1) P+ N loge
— LWl .
0g —— + 7 (28)

For any fixed €, we can satisfy this by taking T suffi-
ciently large, and also have log (M —1)/T orlog M/T as
close as desired to W log P+ N/N. This shows that,
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with a random selection of points for signals, we can ob-
tain an arbitrarily small frequency of errors and trans-
mit at a rate arbitrarily close to the rate C. We can also
send at the rate € with arbitrarily small ¢, since the ex-
tra binary digits need not be sent at all, but can be filled
in at random at the receiver. This only adds another
arbitrarily small quantity to e. This completes the proof.

VI1I. DiscussioN

We will call a system that transmits without errors at
the rate C an ideal system. Such a system cannot be
achieved with any finite encoding process but can be
approximated as closely as desired. As we approximate
more closely to the ideal, the following effects occur: (1)
The rate of transmission of binary digits approaches
C=W log: (1+P/N). (2) The frequency of errors ap-
proaches zero. (3) The transmitted signal approaches a
white noise in statistical properties. This is true, roughly
speaking, because the various signal functions used
must be distributed at random in the sphere of radius
A/2TWP. (4) The threshold effect becomes very sharp.
If the noise is increased over the value for which the sys-
tem was designed, the frequency of errors increases very
rapidly. (§) The required delays at transmitter and re-
ceiver increase indefinitely. Of course, in a wide-band
system a millisecond may be substantially an infinite
delay.

In Fig. 6 the function C/W =log (1+ P/N) is plotted
with P/N in db horizontal and C/W the number of bits
per cycle of band vertical. The circles represent PCM
systems of the binary, ternary, etc., types, using posi-
tive and negative pulses and adjusted to give one error
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Fig. 6—Comparison of PCM and PPM
with ideal performance.
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in about 10° binary digits. The dots are for a PPM sys-
tem with two, three, etc., discrete positions for the pulse.?
The difference between the series of points and the ideal
curve corresponds to the gain that could be obtained by
more involved coding systems. It amounts to about §
db in power over most of the practical range. The series
of points and circles is about the best that can be done
without delay. Whether it is worth while to use more
complex types of modulation to obtain some of this
possible saving is, of course, a question of relative costs
and valuations.

The quantity TW log (14 P/N) is, for large T, the
number of bits that can be transmitted in time T It can
be regarded as an exchange relation between the differ-
ent parameters. The individual quantities 7', W, P, and
N can be altered at will without changing the amount
of information we can transmit, provided TW log
(14 P/N) is held constant. If TW is reduced, P/N must
be increased, etc.

Ordinarily, as we increase W, the noise power N in the
band will increase proportionally; N =N,W where Ny is
the noise power per cycle. In this case, we have

). (29)

If we let Wo=P/N,, i.e., Wy is the band for which the
noise power is equal to the signal power, this can be
written

C=Wlog(1t
og( t v

C w
— = — log (1+LVB>' (30)
Wo W, . W

In Fig. 7, C/ W, is plotted as a function of W/W,. As we
increase the band, the capacity increases rapidly until
the total noise power accepted is about equal to the
signal power; after this, the increase is slow, and it ap-

proaches an asymptotic value logs e times the capacity
for W= W,.

IX. ARBITRARY GAUSSIAN NOISE

If a white thermal noise is passed through a filter
whose transfer function is ¥(f), the resulting noise has
a power spectrum N(f)=K| ¥(f)|* and is known as
Gaussian noise. We can calculate the capacity of a chan-
nel perturbed by any Gaussian noise from the white-
noise result. Suppose our total transmitter power is P
and it is distributed among the various frequencies ac-
cording to P(f). Then

w
f P(f)df = P. (31)
]

* The PCM points are calculated from formulas given in “The
philosophy of PCM,” by B. M. Oliver, J. R. Pierce, and C, E. Shan-
non, Proc. 1.R.E,, vol. 36, pp. 1324-1332; November, 1948. The
PPM points are from unpublished calculations of B. McMillan, who
points out that, for very small P/N, the points approach to within
3 db of the ideal curve.
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Fig. 7—Channel capacity as a function of bandwidth.

We can divide the band into a large number of small
bands, with N(f) approximately constant in each. The
total capacity for a given distribution P(f) will then be
given by

C = fow log (1 + —;E—%)df,

since, for each elementary band, the white-noise result
applies. The maximum rate of transmission will be found
by maximizing C, subject to condition (31). This re-
quires that we maximize

fow [10g(1 + %j—;) + )\P(f):l df.  (33)

The condition for this is, by the calculus of variations,
or merely from the convex nature of the curve log

(14=%),

(32)

1
N(f) + P(f) "

or N(f)+ P(f) must be constant. The constant is ad-
justed to make the total signal power equal to P. For
frequencieswhere the noise power is low, the signal power
should be high, and vice versa, as we would expect.
The situation is shown graphically in Fig. 8. The

A =0, (34)
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Fig. 8—Best distribution of transmitter power.
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curve is the assumed noise spectrum, and the three lines
correspond to different choices of P. If P is small, we
cannot make P(f) + N(f) constant, since this would re-
quire negative power at some frequencies. It is easily
shown, however, that in this case the best P(f) is ob-
tained by making P(f)+ N(f) constant whenever possi-
ble, and making P(f) zero at other frequencies. With
low values of P, some of the frequencies will not be used
at all.

1f we now vary the noise spectrum N(f), keeping the
total noise power constant and always adjusting the
signal spectrum P(f) to give the maximum transmission,
we can determine the worst spectrum for the noise. This
turns out to be the white-noise case. Although this only
shows it to be worst among the Gaussian noises, it will
be shown later to be the worst among all possible noises
with the given power N in the band.

X. THE CHANNEL CAPACITY WITH AN ARBI-
TRARY TYPE OF NOISE

Of course, there are many kinds of noise which are not
Gaussian; for example, impulse noise, or white noise
that has passed through a nonlinear device. If the signal
is perturbed by one of these types of noise, there will
still be a definite channel capacity C, the maximum rate
of transmission of binary digits. We will merely outline
the general theory here.’®

Let x,, x2, - * -, ¥, be the amplitudes of the noise at
successive sample points, and let
dx, (35)

p(xy, %9y - - -, XL)AXy - -

be the probability that these amplitudes lie between x;,
and x;4-dx;, x; and x:+dx,, etc. Then the function p
describes the statistical structure of the noise, insofar
as n successive samples are concerned. The entropy, H, of
the noise is defined as follows. Let

L L
n
log. plx1, -+, )Xy, -+ -, (20 (36)
Then
H = lim H,. 37

This limit exists in all cases of practical interest, and can
be determined in many of them. ¥ is a measure of the
randomness of the noise. In the case of white Gaussian
noise of power N, the entropy is

H = log,+/2xeN. (38)

10 C. E. Shannon, “A mathematical theory of communication,”
Bell Sys. Tech. Jour., vol. 27, pp. 3719-424 and 623-657; July and
October, 1948.
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It is convenient to measure the randomness of an arbi-
trary type of noise not directly by its entropy, but by
comparison with white Gaussian noise. We can calculate
the power in a white noise having the same entropy as
the given noise. This power, namely,

- 1
N =—exp2d (39
2mwe

where H is the entropy of the given noise, will be called
the entropy power of the noise.

A noise of entropy power N acts very much like a
white noise of power N, insofar as perturbing the mes-
sage is concerned. It can be shown that the region of
uncertainty about each signal point will have the same
volume as the region associated with the white noise. Of
course, it will no longer be a spherical region. In proving
Theorem 1 this volume of uncertainty was the chief
property of the noise used. Essentially the same argu-
ment may be applied for any kind of noise with minor
modifications. The result is summarized in the follow-
ing:

THEOREM 3: Let a noise limited to the band W have
power N and entropy power N,. The capacity C is then
bounded by

P+ N P+ N
-———-—1§C_S_Wlogz——:;—— (40)

1 1

W 10g2

where P is the average signal power and W the bandwidth.
If the noise is a white Gaussian noise, Ny= N, and the
two limits are equal. The result then reduces to the
theorem in Section VII.
For any noise, N; <N. This is why white Gaussian
noise is the worst among all possible noises. If the noise
is Gaussian with spectrum N(f), then

1 w
Ny = W exp 7 fo log N(f)df. (41)

The upper limit in Theorem 3 is then reached when we
are above the highest noise power in Fig. 8. This is easily
verified by substitution.

In the cases of most interest, P/ N is fairly large. The
two limits are then nearly the same, and we can use
W log (P+ N)/Ni as the capacity. The upper limit is the
best choice, since it can be shown that as P/N increases,
C approaches the upper limit.

XI. DISCRETE SOURCES OF INFORMATION

Up to now we have been chiefly concerned with the
channel. The capacity C measures the maximum rate at
which a random series of binary digits can be transmit-
ted when they are encoded in the best possible way. In
general, the information to be transmitted will not be
in this form. It may, for example, be a sequence of let-
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ters as in telegraphy, a speech wave, or a television
signal. Can we find an equivalent number of bits per
second for information sources of this type? Consider
first the discrete case; i.e., the message consists of a se-
quence of discrete symbols. In general, there may be
correlation of various sorts between the different sym-
bols. If the message is English text, the letter E is the
most frequent, T is often followed by H, etc. These cor-
relations allow a certain compression of the text by
proper encoding. We may define the entropy of a dis-
crete source in a way analogous to that for a noise;
namely, let

H"::_.— Z P(i’jr"'ys)
(BRI NN
logz P(ia jy ey, S) (42)
where p(3, j, - - -, s5) is the probability of the sequence
of symbols i, j, - - -, 5, and the sum is over all sequences
of #n symbols. Then the entropy is
H = lim H,. (43)

n— o

It turns out that H is the number of bits produced by
the source for each symbol of message. In fact, the fol-
lowing result is proved in the Appendix.

THEOREM 4. It is possible to encode all sequences of n
message symbols into sequences of binary digits in such a
way that the average number of binary digits per message
symbol is approximately H, the approximation approach-
ing equality as n increases.

1t follows that, if we have a channel of capacity C and
a discrete source of entropy H, it is possible to encode
the messages via binary digits into signals and transmit
at the rate C/H of the original message symbols per
second.

For example, if the source produces a sequence of let-
ters 4, B, or C with probabilities p4=0.6, ps=0.3,
p¢=0.1, and successive letters are chosen independ-
ently, then H.=H,=-—[0.6 log; 0.6+0.3 log. 0.3
+0.1 logs 0.1]=1.294 and the information produced is
equivalent to 1.294 bits for each letter of the message.
A channel with a capacity of 100 bits per second could
transmit with best encoding 100/1.294 =77.3 message
letters per second.

XII. CoNTINUOUS SOURCES

If the source is producing a continuous function of
time, then without further data we must ascribe it an
infinite rate of generating information. In fact, merely
to specify exactly one quantity which has a continuous
range of possibilities requires an infinite number of
binary digits. We cannot send continuous information
exactly over a channel of finite capacity.

Fortunately, we do not need to send continuous
messages exactly. A certain amount of discrepancy be-
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tween the original and the recovered messages can al-
ways be tolerated. If a certain tolerance is allowed, then
a definite finite rate in binary digits per second can be
assigned to a continuous source. It must be remembered
that this rate depends on the nature and magnitude of
the allowed error between original and final messages.
The rate may be described as the rate of generating in-
formation relative to the criterion of fidelity.

Suppose the criterion of fidelity is the rms discrep-
ancy between the original and recovered signals, and
that we can tolerate a value v/N;. Then each point in
the message space is surrounded by a small sphere of
radius /21, W, N,. If the system is such that the re-
covered message lies within this sphere, the transmission
will be satisfactory. Hence, the number of different mes-
sages which must be capable of distinct transmission is
of the order of the volume V) of the region of possible
messages divided by the volume of the small spheres.
Carrying out this argument in detail along lines similar
to those used in Sections V1l and 1X leads to the fol-
lowing result:

THEOREM S: If the message source has power Q, en-
tropy power Q, and bandwidth W, the rate R of generating
information in bils per second is bounded by

W, logs g— S R < W, log, -1—3- (44)

1 1

where N, is the maximum tolerable mean square error
in reproduction. [f we have a channel with capacity C
and a source whose rate of generating information R is
less than or equal to C, it is possible to encode the source
in such a way as lo transmil over this channel with the
fideliby measured by Ny. If R>C, this is impossible.

In the case where the message source is producing
white thermal noise, 0 =Q. Hence the two bounds are
equal and R =W, log Q/N,. We can, therefore, transmit
white noise of power Q and band W, over a channel of
band W perturbed by a white noise of power N and re-
cover the original message with mean square error N;
if, and only if,

P+ N

Q
Wylog — = W log ——— 45
-gNl ey (45)

APPENDIX

Consider the possible sequences of n symbols. Let
them be arranged in order of decreasing probability,
DiZpaZpy - - - 2P, Let Pi= D " !p;. The sth message
is encoded by expanding P; as a binary fraction and us-
ing only the first ¢; places where ¢, is determined from

1 1
lng —SsSHL<l1l+4 ]0g2 ;— . (46)
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Probable sequences have short codes and improbable
ones long codes. We have

1< s1
2—-“=P-‘_§7;_—1'

(47)

The codes for different sequences will all be different.
P\, for example, differs by p; from P;, and therefore
its binary expansion will differ in one or more of the
first ¢; places, and similarly for all others. The average
length of the encoded message will be Y piti. Using
(46),

— D pilog pi S 2 piti < 2 pi(1 — log py)
(48)

C. E. Shannon

or

nH, < E pits < 14+ nH,. (49)

The average number of binary digits used per message
symbol is 1/2 3_put; and

1 1
H, s — 2, piti <— + Han. (50)
n n

As n— o, H,—H and 1/1n—0, so the average number of
bits per message symbol approaches H.



Communication Theory — Exposition of Fundamentals*

Claude E. Shannon

In any branch of applied mathematics, the vague and ambiguous concepts of a physical
problem are given a more refined and idealized meaning. In information theory, one of the
basic notions is that of the amount of information associated with a given situation.
“‘Information’’ here, although related to the everyday meaning of the word, should not be
confused with it. In everyday usage, information usually implies something about the semantic
content of a message. For the purposes of communication theory, the ‘‘meaning’’ of a message
is generally irrelevant; what is significant is the difficulty in transmitting the message from one
point to another.

From this point of view, information exists only when there is a choice of possible
messages. If there were only one possible message there would be no information; no
transmission system would be required in such a case, for this message could be on a record at
the receiving point. Information is closely associated with uncertainty. The information I
obtain when you say something to me corresponds to the amount of uncertainty I had, previous
to your speaking, of what you were going to say. If I was certain of what you were going to
say, | obtain no information by your saying it.

In general, when there are a number of possible events or messages that may occur, there
will also be a set of a priori probabilities for these messages and the amount of information,
still arguing heuristically, should depend upon these probabilities. If one particular message is
overwhelmingly probable, the amount of information or the a priori uncertainty will be small.

It turns out that the appropriate measure for the amount of information when a choice is
made from a set of possibilities with the probabilities p,;, p; .. .., p, is given by the formula

H=-7% p;logp;. (1)
i=1

Some of the reasons justifying this formula are (1) # = 0 if and only if all the p, are zero
except one which is unity, i.e., a situation with no choice, no information, no uncertainty.

(2) With a fixed n, the maximum H occurs when all the p; are equal, p; = i This is also,
n

intuitively, the most uncertain situation. H then reduces to log n. (3) H is always positive or
zero. (4) If there are two events x and y, we can consider the information H . in the composite
event consisting of a choice of both x and y:

H.(x,y) = = £ plx, y) log p(x, y) . (2)

It can be shown that this composite information is greatest when the two events, x and y, are
statistically independent. It is then the sum of the individual amounts of information.

Equation (1) is identical in form with certain formulas for entropy used in statistical
mechanics, in particular in the formulation due to Boltzmann. It is to be noted that both here
and in thermodynamics — X p; log p; is a measure of randomness: in thermodynamics, the

* IRE Transactions Information Theory, No. 1, Feb. 1950.
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random position of a representative point in a dynamical phase-space; in information theory,
the randomness in the choice of the particular message to be transmitted from an ensemble of
possible messages. We shall frequently speak of quantities having the form — £ p; log p, as
entropies because of this identity in form.

The formula (1) measures the amount of information when a single choice is made from a
finite set of possible events. In a communication system we frequently must consider messages
which are produced by a sequence of such choices. Thus the English text to be transmitted over
a telegraph system consists of a sequence of letters, spaces and punctuation. In such a case we
are concerned with the amount of information produced per symbol of text. The formula (1)
must be generalized to take account of influences between letters and the general statistical
structure of the language. We think of a language, then, as being produced by a stochastic (i.e.,
statistical) process which chooses the letters of a text one by one in accordance with certain
probabilities depending in general on previous choices that have been made.

Samples of statistical English based on such a representation of the English language have
been constructed. The following are some examples with varying amounts of the statistics of
English introduced.

1. Letter approximation (letter probabilities the same as in English)
OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI

2. Trigram approximation (probabilities for triplets of letters the same as in English)
IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID

3. Word-digram approximation (probabilities for word-pairs as in English)
THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE
CHARACTER OF THIS POINT IS THEREFORE

4. Word-tetragram approximation
THIS WAS THE FIRST. THE SECOND TIME IT HAPPENED WITHOUT HIS
APPROVAL. NEVERTHELESS IT CANNOT BE DONE. IT COULD HARDLY
HAVE BEEN THE ONLY LIVING VETERAN OF THE FOREIGN POWER HAD
STATED THAT NEVER MORE COULD HAPPEN.

The amount of information produced by a stochastic process per letter of message is defined
by formulas similar to (1). For example, one method is to calculate the amount of information
for a choice of N letters of text, divide by N to put it on a per letter basis, and then allow N to
increase indefinitely.

The fundamental reason why the entropy per letter obtained in this way forms the
appropriate measure of the amount of information is contained in what may be called the
‘‘coding theorem.’’ This states that if a language has an entropy H bits per letter (i.e., log, was
used in the calculation) then it is possible to approximate as closely as desired to a coding
system which translates the original messages into binary digits (0 to 1) in a reversible way and
uses, on the average, H binary digits in the encoded version per letter of the original language.
Furthermore there is no such system of encoding which uses less than H binary digits on the
average. In other words, speaking roughly, H measures the equivalent number of binary digits
for each letter produced in the language in question. H measures all languages by the common
yardstick of binary digits.

A closely related aspect of a language is its redundancy. This is defined as follows.
Suppose all the letters in the language were independent and equiprobable. Then the entropy
per letter would be the logarithm of the number of letters in the alphabet. The relative entropy
is the ratio of the actual entropy to this maximum possible entropy for the same alphabet. The
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redundancy is one minus the relative entropy. The redundancy determines how much a
language can be compressed when properly encoded into the same alphabet. Thus, if the
redundancy were 70 per cent, a suitable encoding of the language would reduce its length on
the average by this amount.

A number of methods have been developed for estimating the entropy and redundancy of
various stochastic processes. In the case of printed English, the most direct approach is to make
use of tables of letter, digram, trigram, etc., probabilities and to calculate from them the entropy
of the various approximations to English. Unfortunately, with the tables actually available it is
not possible to go farther than approximations including about six or eight letters. At this point,
figures of the order of 50 per cent for redundancy are obtained. They of course do not include
long range statistical influences extending over groups of words, phrases and sentences.

Another more delicate method of estimating these parameters has recently been devised. It
is based on the fact that anyone speaking a language possesses implicitly an enormous
knowledge of the statistical structure of that language. By a relatively simple experiment, it is
possible to translate this knowledge into numerical data which give upper and lower bounds for
the entropy and redundancy. The experiment is to ask a subject to guess an unknown text in the
language letter by letter. At each letter he guesses first what he considers the most probable
next letter in view of the preceding text. If he is wrong he is required to guess again, and so on
until he finally arrives at the correct next letter. In a typical experiment of this type with a text
containing 102 letters, the subject guessed right on his first guess 79 times. Eight times he was
right on the second guess, three times on the third, twice each on the fourth and fifth, and only
eight times required more than five guesses. These figures clearly indicate the great redundancy
of English. Furthermore from them one can estimate upper and lower numerical bounds for the
redundancy which take into account rather long-range structure, inasmuch as the subject made
considerable use of this structure in formulating his guesses. From the results of this work it
appears that the redundancy of printed English at 100 letters is of the order of 75 per cent, and
may well exceed this figure for still longer range structure.

So far we have been considering information only in the discrete cases. In generalizing to
the continuous case, for example a speech wave or a television signal, a number of new features
emerge. The generalization is by no means trivial. In the first place, a continuously variable
quantity is capable of assuming an infinite number of possible values, and if there were no other
considerations this would imply an infinite amount of information. Actually in practical cases
there are always features which prevent this and enable one to effectively reduce the continuous
case to a discrete case. The two facts which produce this result are the presence of perturbing
noise in the signal and the finite resolving power of any physical receiving apparatus.

One important mathematical result which expedites the analysis of continuous information
is the *‘sampling theorem.’” This states that a function of time limited in frequency
components to a band W cycles wide is determined by giving its values at a series of sample

points equally spaced in time and separated by W seconds. The knowledge of such a

function is equivalent to knowledge of a sequence of numbers, the numbers occurring at the
rate of 2W per second. If a message consists of such a band-limited function of time which
persists for substantially T seconds, it is determined by giving 27W numbers. Geometrically,
such a function can be represented by a point in a space with 2TW dimensions. Certain aspects
of communication theory can be analyzed by a consideration of the properties of mappings
(which correspond to systems of modulation) in such spaces.

The problem of measuring the amount of information in a continuous message is more
involved than a simple generalization of the entropy formula. It is necessary at this point to
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introduce a measure of the fidelity of reception of the message when it is perturbed by noise.
When a suitable measure of fidelity has been set up, it is possible to define the amount of
information (in bits per second) for a given continuous source and for a given fidelity of
transmission. As the fidelity requirements are made more stringent, the amount of information
increases. For example, in transmitting English speech, if we are satisfied with an intelligible
reproduction the amount of information per second is small; if a high fidelity reproduction is
required, preserving personal accents, etc., the information is greater.
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General Treatment of the Problem of Coding*

Claude E. Shannon

A typical communication system consists of the following five elements:

(1) An information source. This can be considered to be represented mathematically by a
suitable stochastic process which chooses one message from a set of possible messages. The
rate R of producing information is measured by the entropy per symbol of the process.

(2) An encoding or transmitting element. Mathematically this amounts to a transformation
applied to the message to produce the signal, i.e. the encoded message.

(3) A channel on which the signal is transmitted from transmitter to receiver. During
transmission the signal may be perturbed by noise.

(4) A receiving and decoding (or demodulating) device which recovers the original message
from the received signal.

(5) The destination of the information, e.g. the human ear (for telephony) or the eye (for
television). The characteristics of the destination may determine the significant elements of the
information to be transmitted. For example, with sound transmission, precise recovery of the
phases of components is not required because of the insensitivity of the ear to this type of
distortion.

The central problems to be considered are how one can measure the capacity of a channel
for transmitting information; how this capacity depends on various parameters such as
bandwidth, available transmitter power and type of noise; and what is the best encoding system
for a given information source to utilize a channel most efficiently.

Since the output of any information source can be encoded into binary digits using,
statistically, R binary digits per symbol, the problem of defining a channel capacity can be
reduced to the problem of determining the maximum number of binary digits that can be
transmitted per second over the channel.

When there is no noise in the channel, it is generally possible to set up a difference equation
whose asymptotic solution gives essentially the number of different signals of duration T when
T is large. From this, it is possible to calculate the number of binary digits that can be
transmitted in time 7 and, consequently, the channel capacity.

In a noisy system, the problem is mathematically considerably more difficult. Nevertheless,
a definite channel capacity C exists in the following sense. It is possible by proper encoding of
binary digits into allowable signal functions to transmit as closely as desired to the rate C
binary digits per second with arbitrarily small frequency of errors. There is no method of
encoding which transmits a larger number. In general, the ideal rate C can only be approached
by using more and more complex encoding systems and longer and longer delays at both
transmitter and receiver.

* IRE Transactions Information Theory, No. 1, Feb. 1950.
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The channel capacity C is given by an expression involving the difference of two entropies.
This expression must be maximized over all possible stochastic processes which might be used
to generate signal functions. The actual numerical evaluation of C is difficult and has been
carried out in only a few cases. Even when C is known, the construction of coding systems
which approach the ideal rate of transmission is often infeasible.

A simple example of a noisy channel in which the capacity and an explicit ideal code can be
found is the following. Assume the elementary signals are binary digits and that the noise
produces at most one error in a group of seven of these. The channel capacity can be calculated
as 4/7 bits per elementary signal. A code which transmits at this rate on the average is as
follows. Let a block of seven symbols be x;, x,, x3, X4, X5, Xg, X7 (each x; either O or 1). x,,
Xs, Xg and x; are used as message symbols, and x,, x, and x, are used redundantly for
checking purposes. These are chosen by the following rules:

(1) xgischosensothato = (x4 + x5 + xg + x7) = 0 mod 2
2) X, ischosen sothat B = (xy + x3 + X5 + x7) = 0 mod 2
3) xjischosensothaty = (x; + x5 + x5 + x7) =0 mod 2.
The binary number oy calculated by these same expressions from the received signal gives

the location of the error. (If zero, there was no error.) This forms a completely self-correcting
code for the assumed type of noise.

If the signal functions are capable of continuous variation we have a continuous channel. If
there were no noise whatever, a continuous channel would have an infinite capacity.
Physically, there is always some noise. With white Gaussian noise the capacity is given by

P
C=Wlog (1 + ) (1

in which
W = bandwidth in cycles per second,
P = available average transmitter power,
N = average noise power within the band W.

The equation (1) is an exchange relation among the quantities W, P, N and C. Thus the
transmitter power can be reduced by increasing the bandwidth, retaining the same channel
capacity. Conversely a smaller bandwidth can be used at the expense of a greater signal-to-
noise ratio.

If, as is usually the case, the noise power increases proportionally with bandwidth,
N = NyW, we have

C=WwI] 1+ . 2
og ( NOW) (2

As W increases, C approaches the asymptotic value
C. = NL;, log e . 3)

If the perturbing noise is Gaussian but does not have a flat spectrum, the most efficient use
of the band occurs when the sum of the transmitter power and the noise power at each
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frequency is constant,

P(w) + N(w) =K . “4)

When the noise is Gaussian, it tumms out that most efficient coding requires that the
transmitted signal have the same statistical structure as Gaussian noise.

If the perturbing noise is not Gaussian, the mathematical problems of calculating channel
capacity and ideal codes are formidable. The most that is known for the general case are upper
and lower bounds for the channel capacity, given by the following inequalities

P+ N, P+N

Wlog (————) < C < Wlog (

N, N )

where P, N and C are as before, and N | is the average power in a thermal noise having the same
entropy as the actual noise. N, is a measure of the amount of randomness in the noise. It is
intuitively reasonable that this should be a controlling term in the channel capacity since the
more predictable the noise the more it can be compensated for.

Among communication systems in actual use PCM (Pulse Code Modulation) and PPM
(Pulse Position Modulation) come reasonably close to the ideal limits of channel capacity with
white Gaussian noise. For high signal-to-noise ratios PCM is most appropriate. When the
number of quantized amplitude levels is suitably adjusted, this method of modulation requires
some eight to ten db greater power than the theoretical minimum. With low signal-to-noise
ratios, PPM requires about the same extra signal power except for extremely low P/N values, in
which case it is still closer to the ideal. Other more involved codes have been investigated,
although not yet put into practice, which are about two db closer than PCM to the ideal. Rice
has shown that certain types of codes approach the ideal roughly according to 1/Yt where T is
the delay involved in the encoding process.

The general principles of communication theory and coding have an application in the study
of secrecy systems. A secrecy system can be considered to be a communication system in
which the noise is the arbitrariness introduced by the encoding process. It can be shown under
certain assumptions that the redundancy of the original language is the fundamental factor
goveming the amount of material that must be intercepted in order to solve a cipher. These
results check reasonably well against experimentally known results for certain simple secrecy
systems.

REFERENCES

1. Shannon, C. E. and Weaver, W. ‘“The Mathematical Theory of Communication,”
University of Iliinois Press, Urbana, 1949.

2. Shannon, C. E. ‘‘Communication Theory of Secrecy Systems,’’ Bell System Technical
Journal, vol. 28, pp. 656-715, October 1949.



The Lattice Theory of Information*

Claude E. Shannon

The word *‘information’” has been given many different meanings by various writers in the
general field of information theory. It is likely that at least a number of these will prove
sufficiently useful in certain applications to deserve further study and permanent recognition. It
is hardly to be expected that a single concept of information would satisfactorily account for the
numerous possible applications of this general field. The present note outlines a new approach
to information theory which is aimed specifically at the analysis of certain communication
problems in which there exist a number of information sources simultaneously in operation. A
typical example is that of a simple communication channel with a feedback path from the
receiving point to the transmitting point. The problem is to make use of the feedback
information for improving forward transmission, and to determine the forward channel capacity
when the best possible use is made of this feedback information. Another more general
problem is that of a communication system consisting of a large number of transmitting and
receiving points with some type of interconnecting network between the various points. The
problem here is to formulate the best systems design whereby, in some sense, the best overall
use of the available facilities is made. While the analysis sketched here has not yet proceeded
to the point of a complete solution of these problems, partial answers have been found and it is
believed that a complete solution may be possible.

1. The Nature of Information

In communication theory we consider information to be produced by a suitable stochastic
process. We consider here only the discrete case; the successive symbols of the message are
chosen from a finite ‘‘alphabet’’, and it is assumed for mathematical simplicity that the
stochastic process producing the message has only a finite number of possible internal states.
The message itself is then a discrete time series which is one sample from the ensemble of
possible messages that might have been produced by the information source. The entropy H(x)
of such a source is a measure of the amount of information produced by the source per letter of
message. However, H{x) can hardly be said to represent the actual information. Thus two
entirely different sources might produce information at the same rate (same H) but certainly
they are not producing the same information.

To define a concept of actual information, consider the following situation. Suppose a
source is producing, say, English text. This may be translated or encoded into many other
forms (e.g. Morse code) in such a way that it is possible to decode and recover the original.
For most purposes of communication, any of these forms is equally good and may be
considered to contain the same information. Given any particular encoded form, any of the
others may be obtained (although of course it may require an involved computation to do so).
Thus we are led to define the actual information of a stochastic process as that which is
common to all stochastic processes which may be obtained from the original by reversible
encoding operations. It is desirable from a practical standpoint and mathematically convenient
to limit the kind of allowed encoding operations in certain ways. In particular, it is desirable to
require that the encoding be done by a transducer with a finite number of possible internal

* IRE Transactions Information Theory, No. 1, Feb. 1950.
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states. This finite memory condition prevents paradoxical situations in which information goes
into a transducer more rapidly on the average than it comes out.

Each coded version of the original process may be called a translation of the original
language. These translations may be viewed as different ways of describing the same
information, in about the same way that a vector may be described by its components in various
coordinate systems. The information itself may be regarded as the equivalence class of all
translations or ways of describing the same information.

2. The Metric, Topology and Convergent Sequences

With this definition of information, it is possible to set up a metric satisfying the usual
requirements. The metric p (x, y) measures the distance between two information elements x
and y, and is given in terms of conditional entropies. We define

p(x,y) =H(y) + H(x) =2 H(x,y) - Hx) - H(y) .

The symmetry property p (x, y) = p(y, x) is obvious from the definition. If p (x,¥) = 0,
both H,(v) and H ,(x) must be zero (since both are necessarily non-negative), and this requires
that the x sequence be calculable with probability 1 from the y sequence and vice versa. The
triangle law for a metric,

plx,y) + p(y,z) 2 p(x, 2) ,

is readily shown by expanding these terms into the various entropies and making use of known
inequalities for entropies. It may be noted that p (x,y) is independent of the particular
translations of x and y used in its calculation. This is due to the fact that # (y) and H ,(x) are
invariant under finite state encoding operations applied to x and y. »

The existence of a natural metric enables us to define a topology for a set of information
elements and in particular the notion of sequences of such elements which approach a limit. A
set of information elements x, x, , ..., x,, , ... will be said to be Cauchy convergent if

Im p(x,,x,) =0.
m — co
n —> oo
The introduction of these sequences as new elements (analogous to irrational numbers)
completes the space in a satisfactory way and enables one to simplify the statement of various
results.

3. The Information Lattice
A relation of inclusion, x > y, between two information elements x and y can be defined by

x2y=HJ((y) =0.

This essentially requires that y can be obtained by a suitable finite state operation (or limit of
such operations) on x. If x 2 y we call y an abstractionof x. If x 2 y, y 2 z, thenx 2 z. If
X 2 y, then H(x) 2 H(y). Also x > y means x 2 y, x # y. The information element, one of
whose translations is the process which always produces the same symbol, is the 0 element, and
x 2 Ofor any x.

The sum of two information elements, z = x + Yy, is the process one of whose translations
consists of the ordered pairs (x,, v, ), where x,, is the nth symbol produced by the x sequence
and similarly for y,. We have z > x, z 2 y and there is no u < z with these properties; z is the
least upper bound of x and y. The element z represents the total information of both x and y.
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The product z = x y is defined as the largest z such that z < x, z < y; that is, there is no
[ > z which is an abstraction of both x and y. The product is unique. Here z is the common
information of x and y.

With these definitions a set of information elements with all their sums and products form a
metric lattice. The lattices obtained in this way are not, in general, distributive, nor even
modular. However they can be made to be relatively complemented by the addition of suitable
elements. For x < y it is possible to construct an element z with

z+x=y,

zx=0.

The element z is not in general unique.

The lattices obtained from a finite set of information sources are of a rather general type;
they are at least as general as the class of finite partition lattices. With any finite partition
lattice it is possible to construct an information lattice which is abstractly isomorphic to it by a
simple procedure.

Some examples of simple information lattices are shown in Figs. 1 and 2.
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In Fig. | there are three independent sources. The product of any two of these elements is
zero, and the conventional lattice diagram is that shown at the right. In Fig. 2 there are two
independent sources of binary digits, x and y. The sequence z is the sum mod 2 of
corresponding symbols from x and y. In this case again the product of any two of x, y and z is
zero, but the sum of any two represents the total information in the system. In this case the
lattice is non-distributive, sincezy + zx =0 + 0 = O, whilez(x + y) = z # 0.

4. The Delay Free Group G,

The definition of equality for information based on the group G of all reversible encoding
operations allows x = y when y is for example a delayed version of x: y, = x,.,. In some
situations, when one must act on information at a certain time, a delay is not permissible. In
such a case we may consider the more restricted group G, of instantaneously reversible
translations. One may define inclusion, sum, product, etc., in an analogous way, and this also
leads to a lattice but of much greater complexity and with many different invariants.



Discussion of Preceding Three Papers*

Mr. E. C. Cherry

There is a well-known elementary way of interpreting the ‘‘selective entropy’’ expression
for the information conveyed by a symbol-sequence, which serves as an introduction to the
subject, and which should perhaps be recorded. Consider one symbol, having a known
probability of occurrence P;, in a code of n such symbols. It is reasonable to assume that the
‘‘information’” conveyed by this one symbol is the least number of selections, H, needed to
identify it amongst the »n in the code. Arrange the symbols in order of decreasing probability
P,P,..P,. .. P, (total probability = 1.0); divide into two groups (P; P, ....... ) and
(... P; ... P,) of equal total probability ¥2; again divide the group containing P, into two, of
probabilities /2. Continue such bisection H times until two groups remain, each of probability
P, one being the wanted symbol. Then

P, - 2! = total probability of the symbols in the code = 1.0,

or
H = -log, P, . nH

The average number of selections required for a complete message is then the mean of H, or

Haverage = _Z P;log, P; . (2)

This argument assumes of course that the symbols may always be divided into two groups
of equal probability; it perhaps has the merit of emphasizing the reasonable nature of the
expression (2) as representing information.

Mr. S. H. Moss

During the discussion following Dr. Shannon’s second talk, Professor Van Der Pol raised
the question of what is meant by the delay imposed on a transient waveform by a process which
at the same time distorts it.

If the process is linear, and has a finite zero-frequency response, the time lag between the
(temporal) centroid of the output transient and the centroid of the input transient is a constant,
which is a characteristic only of the system, and is independent of the wave-form of the input
transient. It is thus an appropriate measure of delay. Its value is the slope of the phase-shift
versus frequency curve at zero frequency.

For a wave-packet, considered as a sinusoidal wave of reference frequency, modulated in
amplitude and phase by a transient complex envelope, there is an acceptable sense in which the
centroid of the envelope is delayed by a constant time interval, independent of its waveform, if
the amplitude versus frequency characteristic of the system is finite and stationary at the
reference frequency. Here again its value is the slope of the phase-shift curve at the reference
frequency, the well-known expression for the group-delay. In the general case, when the

* IRE Transactions Information Theory, No. 1, Feb. 1950.
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amplitude characteristic of the process is not stationary at the reference frequency, the situation
is more complex.

Each of these results is a special case of a class of additive invariants associated with linear
systems. They are closely analogous to the cumulant statistics used to describe the properties
of a univariate statistical distribution and of its characteristic function (i.e. its Fourier
transform) in sampling theory.

Dr. Uttley

Concerning the mistakes made by an automatic computer, it is the principle of redundancy
which can contribute to a solution.

Firstly one can incorporate redundant equipment, checking-circuits for example, and in the
limit by employing two computers as mentioned by Prof. A. V. Hill. At present, however, the
designers of large computers quite reasonably are loath to take this step. As a result present
machines possess the property of a nonredundant code that a single error or change produces a
quite different result; this is intolerable.

Redundancy can be incorporated in a second way. When a number is fed into a machine,
additional redundant digits can be introduced with it; their function can be to indicate the
presence and location of errors in the number. This redundancy can be obtained at the expense
of speed of operation of the computer.

Dr. Shannon pointed out that the specialized theory of coding called by him ‘‘time
reserving theory’’ is far more important with practical aims in mind. But would he not agree
that from this practical point of view, it should be still better to deal with an unfortunately much
more difficult case — [ mean the case of a given definite time of coding operation?

Dr. L J. Good

I would like to mention very briefly a mathematical curiosity which may be of some
significance.

Consider a source of information which produces digits of N types with independent
probabilities pg, p; ,..., py_;. Imagine an infinite sequence of such digits produced and
prefixed by a decimal point (or rather an N-imal point). Then the resulting point will almost
certainly belong to a set of points of Hausdorff-Besicovitch fractional dimensional number
equal to the relative entropy of the source.

Mr. W. Lawrence

In consideration of the block schematic of Fig. 1, it has commonly been assumed that the
only function of the decoder was to restore the message to the form presented to the encoder, in
order that the message might be ‘‘understood.’”” Alternatively, the message might be restored to
some other understandable form, as when a message originally spoken is transmitted as a
telegram and presented to the receiving mind in writing. In either case the decoder operates to
increase the redundancy of the message, and it is this increase in redundancy that I wish to tatk
about.

The mind can only accept as information, material that is presented to the senses with a
considerable degree of redundancy. Random acoustical noise, or random scintillations on a
television receiver mean nothing. The more highly redundant the material presented to the
senses, the more effortlessly does the mind receive it, provided of course, that the redundancy
conforms to an agreed convention that the mind has been educated to accept.
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We can just apprehend speech presented with a 1000 c.p.s. bandwidth and a 15 db signal to
noise ratio, though to do so requires considerable mental effort. Speech with a bandwidth of
3000 c.p.s. and a 40 db noise ratio can be apprehended without appreciabie conscious mental
effort. With a bandwidth of 15,000 c.p.s. and a noise ratio of 60db we feel a marked
improvement which is especially appreciated when we are listening to something difficult to
understand, such as a philosophical lecture.

We can express the channel capacity required for these presentations in bits/sec. by
considering the P.C.M. channel that will just handle them.

The inherent information rate of spoken English is, say, 100 bits/sec. The channel
capacities required for the three presentations considered above are roughly 5000 bits/sec.,
50,000 bits/sec. and 500,000 bits/sec., representing ‘‘minimum tolerable,”” ‘good commercial”’
and ‘‘near perfect’’ presentations.

It is also interesting to consider telegraphy, presented to the senses and the mind as written
matter. The channel capacity required for the material presented to the eyes of the recipient can
be assessed by considering a P.C.M. television channel just adequate for the presentation
considered. The number of digits in the Pulse Code is controlled by the extent to which the
blacks and whites of the writing stand out from the random specularity of the background. The
number of elements in the picture is controlled by faithfulness of the reproduction of the latter
forms and the number of letters or words simultaneously visible. The number of frames per
second is controlled by the desired steadiness of the picture.

A “‘minimum tolerable’” presentation might be 3 digit P.C.M., 50 elements per letter,
5 letters simultaneously visible and 10 frames per second, which requires a channel capacity of
7500 bits/sec. A ‘‘good commercial’’ presentation, as good as a ticker tape, requires a channel
of about 10 bits/sec. and a ‘‘near perfect’ presentation, such as first class printing with a
whole page simultaneously visible, requires about 102 bits/sec. This again is the condition we
would like to have when trying to understand something really difficuit.

The higher channel capacities required for the written presentation are consistent with the
fact that we can read language faster than we can listen to it, and also with the fact that we
prefer a written presentation when the subject matter is really difficult.

I believe that the habit of only attending to redundant material is a defense mechanism that
the mind adopts to sort out information worth attending to, from the inconceivably vast volume
of information with which the senses continually bombard it.

This also clears up a paradox that used to worry me and may have worried others.
Instinctively we feel that a *‘random’’ sequence contains no information, whereas an orderly
sequence ‘‘means something.”” Communication Theory, however, says that a random sequence
contains maximum information and that a completely ordered pattern contains no information
at all. I would explain this by saying that the more nearly a sequence is random the harder it is
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for the mind to comprehend, and in the limit it contains maximum information which is,
however, totally incomprehensible.

Even a machine requires some redundancy in the signal, such as the synchronization digit in
P.C.M., before it can ‘‘comprehend’’ or ‘‘decode it. It can work with very little because it
knows just what to look for, and its attention is not distracted. Our mind and senses, which
have been evolved in a highly competitive environment, demand much more.

Mr. W, P. Anderson

1. The proposal to investigate a system in which the interference takes the form of a
random binary signal added to the wanted signal is an interesting one but such a system is a
very long way from the noisy communication channel with which the engineer is concerned.
The errors in such a system are absolute, as the errors are assumed to be in the error correcting
code described in the paper, that is to say a single element of the code is received either
correctly or incorrectly.

In a physical communication system however there are no absolute errors. From the
amplitude of the received signal element the probability that the transmitted element was a
“‘mark’’ can be computed. If the signal to noise ratio is large, this probability will almost
always either be nearly unity or nearly zero, depending on whether the transmitted element was
in fact a ““‘mark’’ or a ‘‘space’’, but if the signal to noise ratio is small it may have any value.
This probability contains all the information obtained as a result of the reception of the element,
and if the system at some stage distinguishes between only two classes of elements, those
having the greater probability of being ‘*mark’” and those having the lesser probability of being
“‘mark,’’ information is being discarded. Error detecting codes necessarily operate in this way,
hence it would appear that they must be less effective than integrating systems in which the
amplitudes of individual elements are preserved.

This conclusion is of some interest, apart from its application to error detecting codes, as
integration is equivalent to narrowing the band, and it suggests that no advantage is to be
gained by increasing the baud speed of a telegraph transmission and introducing a code
containing more than the minimum number of elements per character. It is believed that this
conclusion is correct for double current working where the energy required to transmit a
character is simply proportional to its length, but not for single current working, where the
energy required to transmit a character of given length varies over a wide range. In the latter
case increasing the speed increases the number of possible characters and the number actually
required can be selected from those requiring least power to transmit. In the limit of course as
the bandwidth is increased such a system reduces to Pulse Position Modulation, with one mark
element per character.

2. A somewhat similar loss of information arises in the process of ‘‘quantization’’ in pulse
code modulation systems and it would appear that it must always be better in principle to send
the residual amplitude or ‘‘error signal’’ instead of the least significant digit.

3. Information theory has so far dealt with signals and noise superimposed in linear
systems. In a system of great practical importance, however, long distance radio
communication involving ionospheric propagation, the transmission path itself fluctuates in a
manner which is only definable in a statistical sense. It would appear that the existence of such
fluctuations must reduce the rate at which information can be passed over the link and that the
extent of the reduction should be determinable by the methods of Information Theory. It is
hoped that some attention will be given to this problem in the further development of the theory
of information.
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Dr. C. E. Shannon (In reply)

The point raised by Dr. Uttley regarding the use of redundancy for error detection and error
correction in computing machines is certainly an important one, and will become more so as the
machines become larger and more complex. In addition to the two methods pointed out by
Dr. Uttley, redundancy in equipment and redundancy in encoding, a third may be added,
redundancy in programming (as, for example, in redoing the calculation a second time on the
same computer). The first two methods require additional equipment and the last additional
time,

The present Bell Laboratories Relay Computer as well as some of the previous designs use
both of the first two methods, the third of course being optional in any computer. All the relays
are furnished with twin contacts. In effect, this amounts to a second at least partially
independent computer, paralleled with the first one at the most critical points, the relay
contacts. Furthermore, the numbers are represented in a two-out-of-five code; each decimal
digit is represented by a group of five relays, and the code is such that exactly two of the relays
must be operated to represent a digit. If this check fails at any stage the machine is
automatically stopped. The circuit is such that any single error will be detected.

This is an example of an error-detecting scheme, which works exceptionally well. If errors
were more frequent, it might be advisable to introduce an error-correction system in such a way
that any single error would be corrected automatically by the machine, while two simultaneous
errors would be detected and cause the machine to stop. It is possible to encode a decimal digit
into seven binary digits and obtain single error correction. With eight binary digits, a code can
be found which gives single error correction and double error detection.

Concemning the points brought up by Mr. Anderson, the error-correcting system suggested
in the paper was meant particularly for applications such as computing machines where the
information is encoded into a binary system with a definite reading of zero or one. In a pulse
communication system with additive Gaussian noise a preliminary integration process followed
by a threshold device gives a binary indication of whether the pulse was there or not, and in fact
it can be shown that by proper choice of the weighting function in the integration such a
detection system divides all possible received signals properly into two classes, those for which
the a posteriori probability is in favor of a pulse and those for which it is not. Thus such a
detection system is ideal in such a case in the sense of making the fewest possible errors for
individual pulses. However, if this error frequency is still too high, it may be desirable to
introduce redundant encoding and error correction.

Information theory has by no means been limited to linear systems, although some of the
special results apply only in these cases. Statistical variations in path length, etc., must of
course be considered as a form of perturbing noise, and the channel capacity and proper
encoding systems, can in principle be calculated from the usual expressions, although such
calculations are, because of their complexity, usuaily impractical.

M. Indjoudjian has raised the question of what might be called a finite delay theory of
information. Such a theory would indeed be of great practical importance, but the
mathematical difficulties are quite formidable. The class of coding operations with a delay < T
is not closed in the mathematical sense, for if two such operations or transducers are used in
sequence the overall delay may be as much as 2T. Thus we lose the important group
theoretical property of closure which is so useful in the *‘infinite delay’” and *‘time-preserving”’
theories. Nevertheless, any results in a finite delay theory would be highly interesting, even if
they were restricted to the solution of a few special cases. Some work along this line appears in
a recent paper by S. O. Rice (Bell System Technical Journal, Vol. 29, January 1950, pp. 60-93),
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where estimates are made of the probability of errors with various delays when attempting to
transmit binary digits through white thermal noise.

Mr. Lawrence has pointed out that the brain can generally accept information only in a
highly redundant form. It seems likely that the reason for this lies in the fact that our
environments present us with highly redundant information. The scenes we view are well
organized and change reiatively slowly, and the significant sounds we hear tend to be localized
in pitch and to persist much longer than this localization required. Nature, then, would design
the nervous system in such a way as to be an efficient receptor for this type of information and
to make use of the redundancy to achieve higher resolving power and better discrimination
against noise. Experiments in psychological optics have, indeed, shown that the eye can
determine if two line segments lie in a straight line much more closely than the width of a rod
or cone, or of the diffraction pattern of the lines in question, thus showing that the eye makes
use of this redundancy to improve discrimination.

The number of nerve cells in the optic nerve is only about one per cent of the number of
rods and cones in the retina. If the time constants of both elements are about the same, this
implies that the capacity of the optic nerve for transmitting information to the brain can be only
about one per cent of the information that would be received by the retina. Thus only if this
information is highly redundant could it all be encoded into a signa! to be transmitted via the
optic nerve to the occipital lobe. At that point further abstraction of the basic information, i.e.,
elimination of redundancy, probably occurs in the connections with the related association
areas.

Mr. Good has pointed out an interesting relation which I had also noticed between entropy
and the Hausdorff-Besicovitch dimension number. While it is easy to see the reason for this
from the basic definition of Hausdorff-Besicovitch dimension number and certain properties of
entropy, I believe the root of the relation springs from the following consideration. A
dimension number to be reasonable should have the property that it is additive for product-
spaces, that is, the set of ordered pairs (A, v) should have dimension number d, + d,, where
d, is the dimension number of the set (A) and d, that for (v). Similarly, a measure of
information should be additive when we combine two independent information sources, i.e., a
stochastic process producing ordered pairs, one from each of two independent sources. These
desiderata result in the logarithmic measures which appear in both fields.
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Communication Theory

Nonmathematical analysis of present-day and possible future communications systems.

Author cites feasibility of a system for transmitting the English language at speaking rate

over a channel with 20-to-1 signal-to-noise ratio and a bandwidth of only 2.3 cycles per

By CLAUDE E. SHANNON

Bell Telephone Laboratories, Iic.
Murray Hill, New Jersey

HE NEWER SYSTEMS of modula-

tion, such as f-m, ppm (pulse
position modulation), and pcm
(pulse code modulation), have the
interesting property that it is pos-
sible to exchange bandwidth for sig-
nal-to-noise ratio; that is, we can
transmit the same information with
a smaller transmitter power pro-
vided we are willing to use a larger
bandwidth. Conversely, in pem it is
possible to use a smaller bandwidth
at the expense of an increased sig-
nal power. The discovery of these
sytsems has prompted a re-exami-
nation of the foundations of com-
munication theory. A number of
workers have contributed to this
field, among them Gabor, Wiener,
Tuller, Sullivan and the writer.

The basic ideas of communication
theory are not new. Important
pioneering work was done by Ny-
quist and Hartley in the 1920’s and
some of the roots can even be
traced back to the nineteenth
century physicist Boltzmann. The
more recent developments, however,
include factors that were ignored in
earlier treatments; in particular,
we now have a much better under-
standing of the effect of noise in
the channel and of the importance
of statistical properties of the mes-
sages to be transmitted.

In this paper the highlights of
this recent work will be described
with as little mathematics as pos-
sible, Since the subject is essen-
tially a mathematical one, this
necessitates a sacrifice of rigor; for
more precise treatments the reader
may consult the bibliography.

second

The type of communication sys-
tem that has been most extensively
investigated is shown in Fig. 1.
It consists of an information source
which produces the raw informa-
tion or message to be transmitted,
a transmitter which encodes or
modulates this information into a
form suitable for the channel, and
the channel on which the encoded
information or signal is trans-
mitted to the receiving point. Dur-
ing transmission the signal may be
perturbed by noise as indicated
schematically by the noise source.
The received signal goes to the re-
ceiver, which decodes or demodu-
lates to recover the original mes-
sage, and then to the final destina-
tion of the information.

It will be seen that this system is
sufficiently general to include the
majority of communication prob-
lems if the various elements are
suitably interpreted. In television,
for example, the information source
is the scene being televised, the
message is the output of the pick-up
tube and the signal is the output of
the transmitter.

A basic idea in communication
theory is that information can be
treated very much like a physical
quantity such as mass or energy.
The system in Fig. 1 is roughly
analogous to a transportation sys-
tem; for example, we can imagine
a lumber mill producing lumber at
a certain point and a conveyor sys-
tem for transporting the lumber to
a second point. In such a situation
there are two important quantities,
the rate R (in cubic feet per
second) at which lumber is pro-
duced at the mill and the capacity
C (cubic feet per second) of the
conveyor, If R is greater than C

it will certainly be impossible to
transport the full output of the
lumber mill. If R is less than or
equal to C, it may or may not be
possible, depending on whether the
lumber can be packed efficiently in
the conveyor. Suppose, however,
that we allow ourselves a saw-mill
at the source. Then the lumber can
be cut up into small pieces in such
a way as to fill out the available
capacity of the conveyor with
100-percent efficiency. Naturally in
this case we should provide a car-
penter shop at the receiving point
to glue the pieces back together in
their original form before passing
them on to the consumer.

If this analogy is sound, we
should be able to set up a measure
R in suitable units telling how
much information is produced per
second by a given information
source, and a second measure C
which determines the capacity of a
channel for transmitting informa-
tion, Furthermore, it should be
possible, by using a suitable coding
or modulation system, to transmit
the information over the channel if
and only if the rate of production B
is not greater than the capacity C.
That this is actually possible is a
key result of recent research and
we will indicate briefly how this is
accomplished.

Measurement of Intormation

Before we can consider how in-
formation is to be measured it is
necessary to clarify the precise
meaning of information from the
point of view of the communication
engineer. In general, the messages
to be transmitted have meaniny.
This, however, is quite irrelevant te

* Reprinted from the April issue of Electronics, and copyrighted 1950 by Penton Publishing, subsidiary of
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the problem of transmitting the in-
formation. It is as difficult (more
8o, in fact) to transmit a series of
nonsense syllables as straight Eng-
lish text. A little thought on the
subject will convince one that the
significant aspect of information
from the transmission standpoint is
the fact that one particular mes-
sage is chosen from a set of pos-
sible messages. The thing that
must be transmitted is a specifica-
tion of the particular message
which was chosen by the informa-
tion source. If and only if such an
unambig:uous specification is trans-
mitted, the original message can
be reconstructed at the receiving
point. "hus information in our
sense must be correlated with the
notion of a choice from a set of
possibilities.

The simplest type of choice is a
choice from two possibilities, each
with probability 4. This is the
situation, for example, when one
tosses a coin which is equally likely
to come up heads or tails. It is con-
venient to use the amount of infor-
mation produced by such a choice
as the basic unit, called a binary
digit or, more briefly, a bit. The
choice involved with one bit of in-
formation can be indicated sche-
matically as in Fig. 2A. At point
b we may choose either the upper
or lower line with probability 3 for
each possibility. 1f there are N
possibilities, all equally likely, the
amount of information is given by
log,N. The reason for this can be
seen from Fig. 2B, where we have
eight possibilities each with proba-
bility 8. The choice can be imag-
ined to occur in three stages, each
involving one bit. The first bit
corresponds to a choice of either
the first four or the second four of
the eight possibilities, the second
bit corresponds to the first or
second pair of the four chosen, and
the final bit determines the first or
second member of the pair. It will
be seen that the number of bits
required is log.N, in this case
log.8 or 8.

If the probavilities are not equal,

the formula is a litt'e more compli-
cated. A simple case is shown in
Fig. 2C. There are four possible
choices with probabilities 3, }, &
and 4. This can be broken down
into a sequence of binary choices
as indicated. The information pro-
duced is given by (1 + 3 + 1);
the 1 is from the first choice (at
point p) which always occurs, the
4 is from the choice at point g,
which ocecurs only half the time
(when the lower line is chosen at
point p), and so on. In general,
by a similar decomposition, the in-
formation, when the choices have
probabilities p, p,~, p., is given
by:

H = — (plogpy + pilogaps + 777 -+
Palogips) M

This formula, then, gives the
amount of information produced by
a single choice. An information
source produces a message which
consists of a sequence of choices,
for example, the letters of printed
text or the elementary words or
sounds of speech. In these cases,
by an application of Eq. 1, the
amount of information produced
per second or per symbol can be
calculated. It is interesting that
this information rate for printed
English text is about two bits per
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structure only out to word lengths.
Long-range meaning structure may
reduce this figure considerably.

Encoding Information

The importance of the measure
of information, H, is that it de-
termines the saving in transmission
time that is possible, by proper en-
coding, due to the statistics of the
message source. To illustrate this,
consider a language in which thére
are only four letters: A, B, C and
D. Suppose these letters have the
probabilities {, 1, 4 and 3§, as in Fig.
2C.

In a long text in this language,
A will occur half the time, B one-
quarter of the time, and so on.
Suppose we wish to encode this
language into binary digits, 0 or 1.
Thus we might wish to transmit on
a pulse system with two types of
pulse. The most direct code is the
following: A = 00,B = 01,C = 10,
D = 11. This code requires two
binary digits per letter of message.
By using the statistics, a better
code can be constructed as follows:
A=0,B=10,C =110, D = 111,
It is readily verified that the orig-
ina] message can be recovered from
its encoded form. Furthermore,
the number of binary digits used is

letter, when we consider statistical smaller on the average. It will be,
tnromu TRANS-] _ — M —e {aecﬂvml = Ju:smmon!
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in fact calculated as follows:
1+ 42) +§3) + §3) = 13

where the first term is due to the
letter A, which occurs half the time
and is one hinary digit long, and
similarly for the others. It will
be noted that 17 is just the value of
H calculated for Fig. 2C.

The resu't we have verified for
this special case holds generally.
If the information rate of the
message is H bits per letter, it is
possible to encode it into binary
digits using, on the average, only
H binary digits per letter of text.
There is no method of encoding
which uses less than this amount.

Capacity of a Channel

Now consider the problem of de-
fining the capacity C of a channel
for transmitting information. Since
the rate of production for an infor-
mation source has been measured
in bits per second, we would nat-
urally like to measure C in the
same units. The question then be-
comes “What is the maximum num-
ber of binary digits per second that
can be transmitted over a given
channel ?”

In some cases the answer is
simple. With a teletype channel
there are 32 possible symbols. Each
symbol therefore represents 5 bits,
provided the possible symbols are
used with equal probability. If we
can send n symbols per second, and
the noise level is not high enough
to introduce any errors during
transmission, we can send 5n bits
per second.

Suppose now that the channel is
defined as follows: We can use for
signals any tunctions of time f(t)
which lie within a certain band of
frequencies, W cycles per second
wide. It is known that a function
of this type can be specified by giv-
ing its values at a series of equally
spaced sampling points 1/2W sec-
onds apart as shown in Fig. 3.
Thus we may say that such a fune-
tion has 2W degrees of freedom, or
dimensions, per second.

If there is no noise whatever on
such a channel we can distinguish
an infinite number of different
amplitude levels for each sample.
Consequently we could, in principle,
transmit an infinite number of
binary digits per second, and the
capacity C would be infinite.

Even when there is noise, if we
place no limitations on the trans-
mitter power, the capacity will be
infinite, for we may still distin-
guish at each sample point an un-
limited number of different ampli-
tude levels. Only when noise is
present and the transmitter power
is limited in some way do we obtain
a finite capacity C. The capacity
depends, of course, on the statisti-
cal structure of the noise as well as
the nature of the power limitation.

The simplest type of noise is
white thermal noise or resistance
noise. The probability distribution
of amplitudes fol'ows a Gaussian
curve and the spectrum is flat with
frequency over the band in question
and may be assumed to be zero out-
side the band. This type of noise
is completely specified by giving its
mean square amplitude N, which
is the power it would deliver into
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a standard unit of resistance.
The simplest limitation on tranes-
mitter power is to assume that the
average power delivered by the
transmitter (or more precisely the
mean square amplitude of the sig-
nal) is not greater than P. If we
define our channel by these three
parameters W, P and N, the capac-
ity C can be calculated. It turns
out to be
P+ N ()]
N
bits per second. It is easy to see
that this formula is approximately
right when P/N is large. The re-
ceived signal will have a power
P + N and we can distinguish
something of the order of

V(P +N)/N
different amplitudes at each sample
point. The reason for this is that
the range of amplitude cf the re-
ceived signal is proportional to
VP 4+ N, while the noise intro-
duces an uncertainty proportional

to vVN. The amount of information
that can be transmitted with one
sample will therefore be log,
[(P + N)/N]. Since there are 2W
independent samples per second,
the capacity is given by Eq. 2. This
formula has a much deeper and
more precise significance than the
above argument would indicate. In
fact it can be shown that it is pos-
sible, by properly choosing our sig-
nal functions, to transmit W log,
[(P+N)/N] bits per second with
as small a frequency of errors as
desired. It is not possible to trans-
mit at any higher rate with an arbi-
trarily small frequency of errors.
This means that the capacity is a
sharply defined quantity in spite of
the noise.

The formula for C applies for all
values of P/N. Even when P/N is
very small, the average noise power
being much greater than the aver-
age transmitter power, it is pos-
sible to transmit binary digits at
the rate W log, [ (P + N)/N] with
as small a frequency of errors as
desired. In this case log, (1 +
P/N) is very nearly (P/N) log, e
or 1.443 P/N and we have, approxi-
mately, C = 1.443 PW/N.

It should be emphasized that it
is possible to transmit at a rate C
over a channel only by properly en-
coding the information. In general

Co= W log,
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the rate C cannot be actually at-
tained but only approached as a
limit by using more and more com-
plex encoding and longer and longer
delays at both transmitter and re-
ceiver. In the white noise case the
best encoding turns out to be such
that the transmitted signals them-
gelves have the structure of a re-
sistance noise of power P.

Ideal and Practical Systems

In Fig. 4 the curve is the function
C/W = log (1 + P/N) plotted
against P/N measured in db, It
represents, therefore, the channe)
capacity per unit of band with
white noise. The circles and points
correspond to pcm and ppm systems
used to send a sequence of binary
digits, adjusted to give about one
error in 10° binary digits. In the
pem case the number adjacent to a
point represents the number of
amplitude levels; 3 for example is
a ternary pcm system. In all cases
positive and negative amplitudes
are used. The ppm systems are
quantized with a discrete set of pos-
sible positions for the pulse, the
spacing is 1/2W and the number
adjacent to a point is the number
of possible positions for a pulse.

The series of points follows a
curve of the same shape as the
ideal but displaced horizontally
about 8 db. This means that with
more involved encoding or modula-
tion systems a gain of 8 db in
power could be achieved over the
systems indicated.

Unfortunately, as one attempts
to approach the ideal, the transmit-
ter and receiver required become
more complicated and the delays in-
crease. For these reasons there
will be some point where an eco-
nomic balance is established be-
tween the various factors. It is
possible, however, that even at the
present time more complex systems
would be justified.

A curious fact illustrating the
general misanthropic behavior of
nature is that at both extremes of
P/N (when we are well outside the
practical range) the series of points
in Fig. 4 approaches more closely
the ideal curve.

The relation C = W log (1 +
P/N) can be regarded as an ex-
change relation between the para-
meters W and P/N. Keeping the
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width at the cost of increasing trans-
mitted power

channel capacity fixed we can de-
crease the bandwidth W provided
we increase P/N sufficiently. Con-
versely, an increase in band allows
a lower signal-to-noise ratio in the
channel. The required P/N in db
is shown in Fig. 6 as a function of
the band W. It is assumed here
that as we increase the band W, the
noise power N increases propor-
tionally, N = W N, where N, is the
noise power per cycle of band. It
will be noticed that if P/N is large
a reduction of band is very ex-
pensive in power. Halving the band
roughly doubles the signal-to-noise
ratio in db that is required.

One method of exchanging band-
width for signal-to-noise ratio is
shown in Fig. 6. The upper curve
represents a signal function whose
bandwidth is such that it can be
specified by giving the samples
shown. Each sample has five ampli-
tude levels. The lower curve is
obtained by combining pairs of
samples from the first curve as
shown. There are now 25 ampli-
tude levels that must be distin-
guished but the samples occur only
half as frequently; consequently
the band is reduced by half, at the
cost of doubling the signal-to-noise
ratio in db. Operating this in re-
verse doubles the band but reduces
the required signal-to-noise ratio.

To summarize, there are three
essentially different ways in which
bandwidth can be reduced in a sys-
tem such as television or speech
transmission. The first is the
straightforward exchange of band-
width for signal-to-noise ratio just
discussed. The second method is
utilization of the statistical correla-
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tions existing in the message. This
capitalizes on particular properties
of the information source, and can
be regarded as a type of matching
of the source to the channel. Fi-
nally, particular properties of the
destination can be used. Thus, in
speech transmission the ear is rela-
tively insensitive to phase distor-
tion. Consequently, phase informa-
tion is not as important as ampii-
tude information, and rieed not be
sent so accurately. This can be
translated into a bandwidth sav-
ing, and in fact part of the reduc-
tion attained in the vocoder is due
to this effect. In general, the ex-
ploitation of particular sensitivities
or blindnesses in the destination re-
quires a proper matching of the
channe] to the destination.

Many present-day communica-
tion systems are extremely ineffic-
ient in that they fail to make use of
the statistical properties of the in-
formation source. To illustrate this,
suppose we are interested in a sys-
tem to transmit English speech (no
music or other sounds) and the
quality requirements on reproduc-
tion are only that it be intelligible
as to meaning. Personal accents,
inflections and the like can be lost
in the process of transmission. In
such a case we could, at least in
principle, transmit by the following
scheme. A device is constructed at
the transmitter which prints the
English text corresponding to the
spoken words. This can be encoded
into binary digits using, on the
average, not more than two binary
digits per letter or nine per word.
Taking 100 words per minute as a
reasonable rate of speaking, we
obtain 15 bits per second as an esti-
mate of the rate of producing in-
formation in English speech when
intelligibility is the only fidelity re-
quirement. From Fig. 4 this in-
formation could be transmitted
over a channel with 20 db signal-to-
noise ratio and a bandwith of only
2.3 cps!
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Prediction and Entropy of Printed English
By C. E. SHANNON

(Manuscript Received Sept. 15, 1950)

A new method of estimating the entros;y and redundancy of a language is

described. This method exploits the knowledge of the language statistics pos-

sessed by those who speak the language, and depends on experimental results

in prediction of the next letter when the preceding text is known. Results of

;xpe;ime;ts in prediction are given, and some properties of an ideal predictor are
eveloped.

1 INTRODUCTION

IN A previous paper' the entropy and redundancy of a language have
been defined. The entropy is a statistical parameter which measures,
in a certain sense, how much information is produced on the average for
each letter of a text in the language. If the language is translated into binary
digits (0 or 1) in the most efficient way, the entropy H is the average number
of binary digits required per letter of the original language. The redundancy,
on the other hand, measures the amount of constraint imposed on a text in
the language due to its statistical structure, e.g., in English the high fre-
quency of the letter E, the strong tendency of H to follow T or of U to follow
Q. It was estimated that when statistical effects extending over not more
than eight letters are considered the entropy is roughly 2.3 bits per letter,
the redundancy about 50 per cent.

Since then a new method has been found for estimating these quantities,
which is more sensitive and takes account of long range statistics, influences
extending over phrases, sentences, etc. This method is based on a study of
the predictability of English; how well can the next letter of a text be pre-
dicted when the preceding N letters are known. The results of some experi-
ments in prediction will be given, and a theoretical analysis of some of the
properties of ideal prediction. By combining the experimental and theoreti-
cal results it is possible to estimate upper and lower bounds for the entropy
and redundancy. From this analysis it appears that, in ordinary literary
English, the long range statistical effects (up to 100 letters) reduce the
entropy to something of the order of one bit per letter, with a corresponding
redundancy of roughly 75%. The redundancy may be still higher when
structure extending over paragraphs, chapters, etc. is included. However, as
the lengths involved are increased, the parameters in question become more

t C. E. Shannon, “A Mathematical Theory of Communication,” Bel} System Tecknical
Journal, v. 21, pp. 379-423, 623-656, July, October, 1948,
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erratic and uncertain, and they depend more critically on the type of text
involved.
2. ENTROPY CALCULATION FROM THE STATISTICS OF ENGLISH

One method of calculating the entropy H is by a series of approximations
Fo, Fy, F,, - -+, which successively take more and more of the statistics
of the language into account and approach H as a limit. Fx may be called
the N-gram entropy; it measures the amount of information or entropy due
to statistics extending over NV adjacent letters of text. Fy is given by!

FN = '_Z P(b-,j) ]082 pb.'(i)
= = p(b:, 1) logs p(bi, ) + 22 p(b2) log p(b)
in which: b, is a block of N-1 letters [(N-1)-gram]

7 is an arbitrary letter following b;
#(bs, 7) is the probability of the N-gram b;, j
P»,(7) is the conditional probability of letter j after the block b,

and is given by p(bi, 7)/p(b.).

The equation (1) can be interpreted as measuring the average uncertainty
(conditional entropy) of the next letter j when the preceding N-1 letters are
known. As N is increased, Fy includes longer and longer range statistics
and the entropy, H, is given by the limiting value of Fy as N — oo

H = Lim Fy. )

N—w

(0

The N-gram entropies Fy for small values of ¥ can be calculated from
standard tables of letter, digram and trigram frequencies.2 If spaces and
punctuation are ignored we have a twenty-six letter alphabet and F, may
be taken (by definition) to be log: 26, or 4.7 bits per letter. F, involves letter
frequencies and is given by

Fy, = —é (@) logs p(5) = 4.14 bits per letter. 3
The digram approximation Fj gives the result
Fy = — ‘E, 2, 1) log: pi(5)
= 2 p6,7) loga 96, ) + 2. 90) logs pG) @)

= 7.70 — 4.14 = 3.56 bits per letter.
? Fletcher Pratt, “Secret and Urgent,” Blue Ribbon Books, 1942.
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The trigram entropy is given by
Fy = — Zk PG, 7, ) loga pi;(k)
el

- Z PG, 7, &) logs p(i, j, ) + 2. pG, 1) logs p(i, /) (5)

]

110 — 7.7 = 33

In this calculation the trigram table? used did not take into account tri-
grams bridging two words, such as WOW and OWO in TWO WORDS. To
compensate partially for this omission, corrected trigram probabilities p(i,
J> k) were obtained from the probabilities p’(i, , k) of the table by the follow-
ing rough formula:

2G5, B) = §-55- 26,5, B + 113 @G, B + 7 90, )sth

where (1) is the probability of letter i as the terminal letter of a word and
s(k) is the probability of k as an initial letter. Thus the trigrams within
words (an average of 2.5 per word) are counted according to the table; the
bridging trigrams (one of each type per word) are counted approximately
by assuming independence of the terminal letter of one word and the initial
digram in the next or vice versa. Because of the approximations involved
here, and also because of the fact that the sampling error in identifying
probability with sample frequency is more serious, the value of F; is less
reliable than the previous numbers.

Since tables of V-gram frequencies were not available for ¥ > 3, Fy, Fs,
etc. could not be calculated in the same way. However, word frequencies
have been tabulated® and can be used to obtain a further approximation.
Figure 1 is a plot on log-log paper of the probabilities of words against
frequency rank. The most frequent English word ‘“‘the” has a probability
071 and this is plotted against 1. The next most frequent word “of’”’ has a
probability of .034 and is plotted against 2, etc. Using logarithmic scales
both for probability and rank, the curve is approximately a straight line
with slope —1; thus, if p, is the probability of the nth most frequent word,
we have, roughly

pn = g- (6)

n

Zipf* has pointed out that this type of formula, p, = &/, gives a rather good
approximation to the word probabilities in many different languages. The

:G. Dzewey, “Relative Frequency of English Speech Sounds,” Harvard University
Press, 1923.

*G. K. Zipf, “Human Behavior and the Principle of Least Effort,” Addison-Wesley
Press, 1949.



Prediction and Entropy of Printed English 197

formula (6) clearly cannot hold indefinitely since the total probability Zp,
must be unity, while E .1/n is infinite. If we assume (in the absence of any
1

better estimate) that the formula p, = .1/7 holds out to the »# at which the
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Fig. 1—Relative frequency against rank for English words.

total probability is unity, and that p, = O for larger n, we find that the
critical n is the word of rank 8,727. The entropy is then:
827

—2 pa logs po = 11.82 bits per word, )
1

or 11.82/4.5 = 2.62 bits per letter since the average word length in English
is 4.5 letters. One might be tempted to identify this value with Fys, but
actually the ordinate of the Fy curve at N = 4.5 will be above this value.
The reason is that F, or Fy involves groups of four or five letters regardless
of word division. A word is a cohesive group of letters with strong internal
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statistical influences, and consequently the N-grams within words are more
restricted than those which bridge words. The effect of this is that we have
obtained, in 2.62 bits per letter, an estimate which corresponds more nearly
to, say, Fy or Fs.

A similar set of calculations was carried out including the space as an
additional letter, giving a 27 letter alphabet. The results of both 26- and
27-letter calculations are summarized below:

1.3 R Fa ] Fuerd
26letter............... .. 4.70 4.14 3.56 3.3 2.62
27letter..... ............ 4.76 4.03 3.32 3.1 2.14

The estimate of 2.3 for Fy, alluded to above, was found by several methods,
one of which is the extrapolation of the 26-letter series above out to that
point. Since the space symbol is almost completely redundant when se-
quences of one or more words are involved, the values of Fy in the 27-letter
case will be ;—: or .818 of Fy for the 26-letter alphabet when N is reasonably
large.

3. PreDICTION OF ENGLISH

The new method of estimating entropy exploits the fact that anyone
speaking a language possesses, implicitly, an enormous knowledge of the
statistics of the language. Familiarity with the words, idioms, clichés and
grammar enables him to fill in missing or incorrect letters in proof-reading,
or to complete an unfinished phrase in conversation. An experimental demon-
stration of the extent to which English is predictable can be given as follows:
Select a short passage unfamiliar to the person who is to do the predicting.
He is then asked to guess the first letter in the passage. If the guess is correct
he is so informed, and proceeds to guess the second letter. If not, he is told
the correct first letter and proceeds to his next guess. This is continued
through the text. As the experiment progresses, the subject writes down the
correct text up to the current point for use in predicting future letters. The
result of a typical experiment of this type is given below. Spaces were in-
cluded as an additional letter, making a 27 letter alphabet. The first line is
the original text; the second line contains a dash for each letter correctly
guessed. In the case of incorrect guesses the correct letter is copied in the
second line.

(1) THE ROOM WAS ROT VBRY LIGHT A SMALL OBLOKG (®)
(2) ----ROO------ ROT-V----- Ioeeeos M----0BL----

(1) READING LAMP ON THE DESK SHED GLOW ON
(2) RBA=-~ceuune- 0-nenn- D----8HED-GLO--0- -



Prediction and Entropy of Printed English 199

Of a total of 12y letters, 89 or 699, were guessed correctly. The errors, as
would be expected, occur most frequently at the beginning of words and
syllables where the line of thought has more possibility of branching out. It
might be thought that the second line in (8), which we will call the reduced
text, contains much less information than the first. Actually, both lines con-
tain the same information in the sense that it is possible, at least in prin-
ciple, to recover the first line from the second. To accomplish this we need
an identical twin of the individual who produced the sequence. The twin
(who must be mathematically, not just biologically identical) will respond in
the same way when faced with the same problem. Suppose, now, we have
only the reduced text of (8). We ask the twin to guess the passage. At each
point we will know whether his guess is correct, since he is guessing the same
as the first twin and the presence of a dash in the reduced text corresponds
to a correct guess. The letters he guesses wrong are also available, so that at
each stage he can be supplied with precisely the same information the first
twin had available.

ORIGINAL COMPARISON COMPARISON
TEXT REDUCED TEXT

\L PREDICTOR —JJ \'— PREDICTOR b /

Fig. 2—Communication system using reduced text.

ORIGINAL
TEXT

The need for an identical twin in this conceptual experiment can be
eliminated as follows. In general, good prediction does not require knowl-
edge of more than N preceding letters of text, with N fairly small. There are
only a finite number of possible sequences of N letters. We could ask the
subject to guess the next letter for each of these possible N-grams. The com-
plete list of these predictions could then be used both for obtaining thke
reduced text from the original and for the inverse reconstruction process.

To put this another way, the reduced text can be considered to be an
encoded form of the original, the result of passing the original text through
a reversible transducer. In fact, a communication system could be con-
structed in which only the reduced text is transmitted from one point to
the other. This could be set up as showr in Fig, 2, with two identical pre-
diction devices.

An extension of the above experiment yields further information con-
cerning the predictability of English. As before, the subject knows the text
up to the current point and is asked to guess the next letter. If he is wrong,
he is told so and asked to guess again. This is continued until he finds the
correct letter. A typical result with this experiment is shown below. The
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first line is the original text and the numbers in the second line indicate the
guess at which the correct letter was obtained.

(1) THERE IS NO REVERSE ON A NOTORCYCLE A
(2)1115112112111511711121321227111141111131
(1) FPRIEND OF MINE FOUND THIS O0UT
(2)861311111111111621111112111111

() RATHER D RAMATICALLY THE OTHER DAY
(2)41111111151111111111161111111111111 (8)

Out of 102 symbols the subject guessed right on the first guess 79 times,
on the second guess 8 times, on the third guess 3 times, the fourth and fifth
guesses 2 each and only eight times required more than five guesses. Results
of this order are typical of prediction by a good subject with ordinary literary
English. Newspaper writing, scientific work and poetry generally lead to
somewhat poorer scores.

The reduced text in this case also contains the same information as the
original. Again utilizing the identical twin we ask him at each stage to guess
as many times as the number given in the reduced text and recover in this
way the original. To eliminate the human element here we must ask our
subject, for each possible N-gram of text, to guess the most probable next
letter, the second most probable next letter, etc. This set of data can then
serve both for prediction and recovery.

Just as before, the reduced text can be considered an encoded version of
the original. The original language, with an alphabet of 27 symbols, 4,
B, - -+, Z, space, has been translated into a new language with the alphabet
1, 2, .-, 27. The translating has been such that the symbol 1 now has an
extremely high frequency. The symbols 2, 3, 4 have successively smaller
frequencies and the final symbols 20, 21, - - - , 27 occur very rarely. Thus the
translating has simplified to a considerable extent the nature of the statisti-
cal structure involved. The redundancy which originally appeared in com-
plicated constraints among groups of letters, has, by the translating process,
been made explicit to a large extent in the very unequal probabilities of the
new symbols. It is this, as will appear later, which enables one to estimate
the entropy from these experiments.

In order to determine how predictability depends on the number N of
preceding letters known to the subject, a more involved experiment was
carried out. One hundred samples of English text were selected at random
from a book, each fifteen letters in length. The subject was required to guess
the text, letter by letter, for each sample as in the preceding experiment.
Thus one hundred samples were obtained in which the subject had available
0,1,23,---, 14 preceding letters. To aid in prediction the subject made
such use as he wishe1 of various statistical tables, letter, digram and trigram
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tables, a table of the frequencies of initial letters in words, a list of the fre-
quencies of common words and a dictionary. The samples in this experiment
were from ‘“Jefferson the Virginian’ by Dumas Malone. These results, to-
gether with a similar test in which 100 letters were known to the subject, are
summarized in Table I. The column corresponds to the number of preceding
letters known to the subject plus one; the row is the number of the guess.
The entry in column N at row S is the number of times the subject guessed
the right letter at the Sth guess when (N-1) letters were known. For example,

TasiE 1

1 2 3| 4] s e 118 9 10| 1m|12] 1371415100
1118.21290.2]136!147 51158148 |66|66]|67 |62]58]|661}72] 60 80
211071148} 20| 1811311917 15| 13|10 9 {14 | 9| 6| 18 7
31 86|10.0)j12}14} 8} 5} 3 S| 9| 4 7 71 4] 91 5§
41 6.7 8.6 71 3| 4{ 1 4 4] 4} 4| 5| 6{ 4} 3| 5 3
51 65} 7.1 1 1§ 31 47 37 61 1 61 5| 2 3 4
6] 58| 5.5 4} 51 21 3} 2 1 41 2] 3] 47 1] 2
71 561 45| 31 3| 2{ 2 8 1 1 1§ 4§ 1 4 1
8¢ 5.2} 3.6) 2§ 2 1 1 2 1 1 1 1 2 1 3
91 50} 3.0] 4 5 11§ 4 2 1 1 2 1 1
10} 43| 26| 2 1i 3 311 2
11 3.1 2.2 2] 2] 2 1 1 3 1 1 2 1
121 2.8) 19} 4 2 1 1 2 1 1 1] 1
13{ 2.4 1.5 1 1 1 1 1 1 1 1 1 1
14} 2.3 1.2 1 1 1 1
15 2.1 1.0 1 1 1 1 1
16] 2.0 .9 1 1 1
17 1.6 7 1 2 1 1 1 2f 2
18 1.6 .5 1
19 1.6 4 1 1 1 1
20 1.3 .3 1 1 1
21 1.2 .2
22 .8 .1
23 3 1
24 1 .0
25 1
26 1
27 1

the entry 19 in column 6, row 2, means that with five letters known the cor
rect letter was obtained on the second guess nineteen times out of the hun
dred. The first two columns of this table were not obtained by the experi-
mental procedure outlined above but were calculated directly from the
known letter and digram frequencies. Thus with no known letters the most
probable symbol is the space (probability .182); the next guess, if this is
wrong, should be E (probability .107), etc. These probabilities are the
frequencies with which the right guess would occur at the first, second, etc.,
trials with best prediction. Similarly, a simple calculation from the digram
table gives the entries in column 1 when the subject uses the table to best
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advantage. Since the frequency tables are determined from long samples of
English, these two columns are subject to less sampling error than the others.

It will be seen that the prediction gradually improves, apart from some
statistical fluctuation, with increasing knowledge of the past as indicated
by the larger numbers of correct first guesses and the smaller numbers of
high rank guesses.

One experiment was carried out with “reverse” prediction, in which the
subject guessed the letter preceding those already known. Although the
task is subjectively much more difficult, the scores were only slightly poorer.
Thus, with two 101 letter samples from the same source, the subject ob-
tained the following results:

No. of guess 1 2 3 4 L] [ 7 8 >8
Forward.................. 70 10 7 2 2 3 3 0 4
Reverse................... 06 7 4 4 6 2 1 2 9

Incidentally, the N-gram entropy Fy for a reversed language is equal to
that for the forward language as may be seen from the second form in equa-
tion (1). Both terms have the same value in the forward and reversed cases.

4. IpEAL N-GrAM PREDICTION

The data of Table I can be used to obtain upper and lower bounds to the
N-gram entropies Fy . In order to do this, it is necessary first to develop
some general results concerning the best possible prediction of a language
when the preceding N letters are known. There will be for the language a set
of conditional probabilities gy, , ¢y, *** , ¢y_, (f). Thisis the probability when
the (N-1) gram 4, , 43, - -+, iy~ occurs that the next letter will be 5. The
best guess for the next letter, when this (¥-1) gram is known to have oc-
curred, will be that letter having the highest conditional probability. The
second guess should be that with the second highest probability, etc. A
machine or person guessing in the best way would guess letters in the order
of decreasing conditional probability. Thus the process of reducing a text
with such an ideal predictor consists of a mapping of the letters into the
numbers from 1 to 27 in such a way that the most probable next letter
[conditional on the known preceding (N-1) gram] is mapped into 1, etc.
The frequency of 1’s in the reduced text will then be given by

q)lv = Ep(ils i’) "ty iN—lsj) (10)

where the sum is taken over all (N-1) grams 4, , 45, « + - , 15 the § being the
one which maximizes p for that particular (N-1) gram. Similarly, the fre-
quency of 2’s, q7 , is given by the same formula with 5 chosen to be that
letter having the second highest value of p, etc.

On the basis of N-grams, a different set of probabilities for the symbols
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in the reduced text, gt "', g3*, ..., g%, would normally result. Since this

prediction is on the basis of a greater knowledge of the past, one would ex-
pect the probabilities of low numbers to be greater, and in fact one can
prove the following inequalities:

8 8
242l S=1,2. (11)
This means that the probability of being right in the first S guesses when
the preceding N letters are known is greater than or equal to that when
only (N-1) are known, for all S. To prove this, imagine the probabilities
p(3y, 42, -+, in, J) arranged in a table with j running horizontally and all
the N-grams vertically. The table will therefore have 27 columns and 27¥
rows. The term on the left of (11) is the sum of the S largest entries in each
row, summed over all the rows. The right-hand member of (11) is also a sum
of entries from this table in which S entries are taken from each row but not
necessarily the S largest. This follows from the fact that the right-hand
member would be calculated from a similar table with (N-1) grams rather
than N-grams listed vertically. Each row in the N-1 gram table is the sum
of 27 rows of the N-gram table, since:

27
plia, sy o yimg) = 2 P, da, ooy in, D). (12)
§ e
The sum of the .S largest entries in a row of the N-1 gram table will equal
the sum of the 275 selected entries from the corresponding 27 rows of the
N-gram table only if the latter fall into S columns. For the equality in (11)
to hold for a particular S, this must be true of every row of the V-1 gram
table. In this case, the first letter of the N-gram does not affect the set of the
S most probable choices for the next letter, although the ordering within
the set may be affected. However, if the equality in (11) holds for all S, it
follows that the ordering as well will be unaffected by the first letter of the
N-gram, The reduced text obtained from an ideal N-1 gram predictor is then
identical with that obtained from an ideal N-gram predictor.
Since the partial sums

8
Q3'=Zlq7 §$=12-- (13)
are monotonic increasing functions of N, <1 for all N, they must all ap-
proach limits as N — o, Their first differences must therefore approach
limits as N — o, i.e., the g} approach limits, ¢7 . These may be interpreted
as the relative frequency of correct first, second, - - - , guesses with knowl-
edge of the entire (infinite) past history of the text.
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The ideal N-gram predictor can be considered, as has been pointed out, to
be a transducer which operates on the language translating it into a sequence
of numbers running from 1 to 27. As such it has the following two properties:

1. The output symbol is a function of the present input (the predicted

next letter when we think of it as a predicting device) and the preced-
ing (N-1) letters.

2. It is instantaneously reversible. The original input can be recovered by

a suitable operation on the reduced text without loss of time. In fact,
the inverse operation also operates on only the (V-1) preceding sym-
bols of the reduced text together with the present output.

The above proof that the frequencies of output symbols with an N-1
gram predictor satisfy the inequalities:

8 8
2 >22d s=1,2...,2 (14)
1 1

can be applied to any transducer having the two properties listed above*
In fact we can imagine again an array with the various (N-1) grams listed
vertically and the present input letter horizontally. Since the present output
is a function of only these quantities there will be a definite output symbol
which may be entered at the corresponding intersection of row and column.
Furthermore, the instantaneous reversibility requires that no two entries
in the same row be the same. Otherwise, there would be ambiguity between
the two or more possible present input letters when reversing the transla-
lion.sThe total probability of the S most probable symbols in the output,

say 3. r¢, will be the sum of the probabilities for.S entries in each row, summed
1

over the rows, and consequently is certainly not greater than the sum of the
S largest entries in each row. Thus we will have

8 8
;qﬁ'?.;re S=12---,27 15)

In other words ideal prediction as defined above enjoys a preferred position
among all translating operations that may be applied to a language and
which satisfy the two properties above. Roughly speaking, ideal prediction
collapses the probabilities of various symbols to a small group more than
any other translating operation involving the same number of letters which
is instantaneously reversible.

Sets of numbers satisfying the inequalities (15) have been studied by
Muirhead in connection with the theory of algebraic inequalities.® If (15)
holds when the g{ and r, are arranged in decreasing order of magnitude, and

% Hardy, Littlewood and Polya, “Inequalities,” Cambridge University Press, 1934.
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21 27
also Zq’,—v'= Zr.-, (this is true here since the total probability in each
1 1

case is 1), then the first set, q'.-v , is said to majoriz2 the second set, r;. It is
known that the majorizing property is equivalent to either of the following
properties:

1. The r; can be obtained from the q'.-' by a finite series of ‘“flows.” By a
flow is understood a transfer of probability from a larger ¢ to a smaller
one, as heat flows from hotter to cooler bodies but not in the reverse
direction.

2. The r, can be obtained from the q'.-v by a generalized “averaging”
operation. There exists a set of .non-negative real numbers, a;;, with
fa.-j = }‘: a4 = 1 and such that

ry = ;a.-,(q',-v). (16)

S. EnTROPY BOUNDS FROM PREDICTION FREQUENCIES

If we know the frequencies of symbols in the reduced text with the ideal
N-gram predictor, ¢} , it is possible to set both upper and lower bounds to
the N-gram entropy, Fx, of the original language. These bounds are as
follows:

7 27
D ilgY — g logi < Fy < — }:l g7 log ¢f. a7

The upper bound follows immediately from the fact that the maximum
possible entropy in a language with letter frequencies ¢} is — 2 ¢i log ¢ .
Thus the entropy per symbol of the reduced text is not greater than this.
The N-gram entropy of the reduced text is equal to that for the original
language, as may be seen by an inspection of the definition (1) of Fy . The
sums involved will contain precisely the same terms although, perhaps, in a
different order. This upper bound is clearly valid, whether or not the pre-
diction is ideal.

The lower bound is more difficult to establish. It is necessary to show that
with any selection of N-gram probabilities p(1;, 12, ..., ix), we will have

27
El i(qf — giv) logi < 22 PG in) log iy o dwna(in) (1)
[T LITEREN §

The left-hand member of the inequality can be interpreted as follows:
Imagine the ¢} arranged as a sequence of lines of decreasing height (Fig. 3).
The actual g7 can be considered as the sum of a set of rectangular distribu-
tions as shown. The left member of (18) is the entropy of this set of distribu-
tions. Thus, the #** rectangular distribution has a total probability of
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i(gY — q¥+1). The entropy of the distribution is log i. The total entropy is
then

37

2, gl — gin) log i (19)
The problem, then, is to show that any system of probabilities p(s;, ...,
ix), with best prediction frequencies ¢; has an entropy Fx greater than or
equal to that of this rectangular system, derived from the same set of g¢;.

0.60
ORIGINAL DISTRIBUTION
0.20
joos l 0.05 ,0028 008 0.02% . 0.025
qy q2 Q) Qe Qs Qe q, Qe
0.40 (q,-q,)
RECTANGULAR DECOMPOSITION
015 015 (q2-q3)
0.025
10.025 [] ] 1(q~q,)
10025 | ] s ] ] §0025Qe

Fig. 3——Rectangular decomposition of a monotonic distribution.

The g¢; as we have said are obtained from the p(s,, ..., i) by arranging
each row of the table in decreasing order of magnitude and adding vertically.
Thus the ¢; are the sum of a set of monofonic decreasing distributions. Re-
place each of these distributions by its rectangular decomposition. Each one
is replaced then (in general) by 27 rectangular distributions; the ¢; are the
sum of 27 x 27¥ rectangular distributions, of from 1 to 27 elements, and all
starting at the left column. The entropy for this set is less than or equal to
that of the original set of distributions since a termwise addition of two or
more distributions always increases entropy. This is actually an application
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of the general theorem that H,(x) < H(x) for any chance variables x and y.
The equality holds only if the distributions being added are proportional.
Now we may add the different components of the same width without
changing the entropy (since in this case the distributions are proportional).
The result is that we have arrived at the rectangular decomposition of the
q:, by a series of processes which decrease or leave constant the entropy,
starting with the original N-gram probabilities. Consequently the entropy
of the original system Fy is greater than or equal to that of the rectangular
decomposition of the g;. This proves the desired result.

It will be noted that the lower bound is definitely less than Fy unless each
row of the table has a rectangular distribution. This requires that for each

5 1{
oA |

\ (
AR ‘-uppen BOUND
" , A 7
Ez B T~ | X )
\N 6 A 7 L
LOWER BOUND-177 T 0 -3

| L] it
o 11

° 2 3 4 5 6 7 & 9 10 1 12 13 14 5 100
NUMBER OF LETTERS
Fig. 4—Upper and lower experimental bounds for the entropy of 27-letter English.

possible (NV-1) gram there is a set of possible next letters each with equal
probability, while all other next letters have zero probability.

It will now be shown that the upper and lower bounds for Fy given by
(17) are monotonic decreasing functions of N. This is true of the upper bound
since the ¢} ** majorize the ¢} and any equalizing flow in a set of probabilities
increases the entropy. To prove that the lower bound is also monotonic de-
creasing we will show that the quantity

U= Z #(gi — gin) log i (20)

is increased by an equalizing flow among the ¢,. Suppose a flow occurs from
¢i to g4, the first decreased by Ag and the latter increased by the same
amount. Then three terms in the sum change and the change in U is given by

AU = [-GE =1 log G — 1)+ 2ilogi — (i 4+ 1) log (i + 1)]ag (21)
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The term in brackets has the form —f(x — 1) + 2f(x) — f(x + 1) where
f(x) = xlog x. Now f(x) is a function which is concave upward for positive x,
since f” (x) = 1/x > 0. The bracketed term is twice the difference between the
ordinate of the curve at x = 7 and the ordinate of the midpoint of the chord
joining i — 1 and 7 + 1, and consequently is negative. Since Ag also is nega-
tive, the change in U brought about by the flow is positive. An even simpler
calculation shows that this is also true for a flow from ¢, to ¢. or from g to
ger (where only two terms of the sum are affected). It follows that the lower
bound based on the N-gram prediction frequencies ¢} is greater than or
equal to that calculated from the N + 1 gram frequencies ¢}

6. EXPERIMENTAL BOUNDS FOR ENGLISH

Working from the data of Table I, the upper and lower bounds were calcu-
lated from relations (17). The data were first smoothed somewhat to over-
come the worst sampling fluctuations. The low numbers in this table are
the least reliable and these were averaged together in groups. Thus, in
column 4, the 47, 18 and 14 were not changed but the remaining group
totaling 21 was divided uniformly over the rows from 4 to 20. The upper and
lower bounds given by (17) were then calculated for each column giving the
following results:

Column 1 2 3 4 5 6 7 3 9 10 11 12 13 14 15 100
Upper. ..... 4.033.423.02.62.72.22.81.81.92.12.2232.11.72.11.3
Lower... .. .3.192.502.11.71.71.31.81.01.01.01.31.31.2 .91.2 .6

It is evident that there is still considerable sampling error in these figures
due to identifying the observed sample frequencies with the prediction
probabilities. It must also be remembered that the lower bound was proved
only for the ideal predictor, while the frequencies used here are from human
prediction. Some rough calculations, however, indicate that the discrepancy
between the actual Fy and the lower bound with ideal prediction (due to
the failure to have rectangular distributions of conditional probability)
more than compensates for the failure of human subjects to predict in the
ideal manner. Thus we feel reasonably confident of both bounds apart from
sampling errors. The values given above are plotted against N in Fig. 4.
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Efficient Coding of a Binary Source
with One Very Infrequent Symbol*

Claude E. Shannon

Abstract

Details are given of a coding system for a binary source of information with one highly
infrequent symbol. This code approaches the ideal compression ratio as the probability p of the
infrequent symbol approaches zero.

In the paper ‘A Mathematical Theory of Communication,’’ an information source was
considered which produces a sequence of A’s and B’s, successive choices independent, with
probability p for A, ¢ = | — p for B, and with p much less than g. A simple and reasonably
efficient coding into 0’s and 1’s was mentioned which approaches ideal encoding as p — O.
That is, the ratio of the expected length of the encoded text to the length of original text
asymiptotically approaches the entropy of this source:

H=-plogp -gqloggq.

When p is small H is approximately p log ep~'.

Several people have requested details of this analysis. This note proves this resuit for a
coding system similar to that described in the communication paper, but simplified slightly to
facilitate calculation.

The infrequent letter A with probability p is represented in the code by / 0's (000...0). The
series of B’s following each A is represented by giving a binary number telling the number of
B’s. This binary number is filled out at the beginning with additional 0’s (if necessary) to give
an even multiple of / — 1 binary digits. At positions / + 1, 2/ + 1, etc., 1’s are inserted both
as markers and to prevent the possibility of / 0’s appearing in the code associated with the B’s,
The following example shows how this would work when ! = 5, so that A = 00000. Suppose
the original message is

A, 15 B’s, A, 1024 B’s, A,45B’'s, A, A, one B, ...

Then the encoded form is

00000 l 11111 l 00000 ' 10100 | 10000 | 10000
A no. of B’s A
15 in binary < 1024 in binary form —
form

00000 | 10010 | 11101 | 00000 | 00000 | 10001

A <45 —> A A |

It is clear that this code can be uniquely decoded to recover the original text.

*  Bell Laboratories Memorandum, Jan. 29, 1954.
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A sequence of n B’s will require not more than
(loga(n + 1) + 1 + (I = 1] [——l—l

binary digits in its encoded form. The term log,;(n + 1) + 1 is a pessimistic estimate of the
number of digits in the binary expression for n, (! — 1) is the worst possible number of added

digits to give a multiple of / — 1 and the factor //(/ — 1) accounts for the number of added 1’s
used as markers.

The A preceding a sequence of n B’s adds / more binary digits, giving a total of less than

1 log,(n+ 1) + 21+ 2.
The probability (or relative frequency) of a sequence consisting of A followed by n B’s is

p q". Therefore the expected number of binary digits in the corresponding encoded form,
averaged over all n, is less than

X pq" [1_11 1og2(n+1)+21+2} (1)
We now prove that this sum is less than ] d 1 log, p~' + (21 + 2). We have
n+i 2 3 n+l
dx dx dx dx
] + 1) = — = | =+ | — 4+ -+ —
ogy (n ) ‘! e .! . j S -’[ X
1 1 1
<l + =+ =4+ - + —.
2 3 n

Hence the term 1—1——11) Zl g" log,(n + 1)is less than

l-—i—l [q+q2(1+—;—)+q3(1+—;—+%)+~--}.

By rearranging terms in the sum (the series is absolutely convergent) we obtain

l q° q° 2 q’ q* .
l~1p[(q+_2—+7+ ) + (g7 + 3 + 3 + 1) +

I}
) [‘ng (1 - q) +qlog, (1 -q) +q’log; (1 - q)

+ q3log2 (1 -g) + ]

)
Y [l +q+q2+~~]10g2(1 -4q)

! 1 \

——— l -
TP Tl

l

o1 log, p~
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The entire expression (1) is therefore less than

T log p~' + (21 +2) .

—1 )l/2

Ifwelet/! = (2 log, p this is approximated, when p is small, by

log p~' + 2(V2 log p b+ 1), 2)

ignoring terms whose ratio to those given approaches zeroas p — 0.

Expression (2) is therefore an approximation to the average encoded length of a sequence
consisting of A followed by a group of B’s. In the original message A occurs p~ ! of the time,
on the average. Therefore in the original the average length of the subgroups of this type is
p~'. The message has been reduced in length, on the average (or for a very long message), in
the ratio

log p™' +2(N2tlogp™! + 1)
-1 N

p

As p approaches zero this approaches the value

plogep™t.

Hence the code approaches the ideal compression ratio as p goes to zero.



Information Theory*

Claude E. Shannon

One of the most prominent features of 20th-century technology is the development and
exploitation of new communication mediums. Concurrent with the growth of devices for
transmitting and processing information, a unifying theory was developed and became the
subject of intensive research.

This theory, known as communication theory, or, in its broader applications, information
theory, is concerned with the discovery of mathematical laws governing systems designed to
communicate or manipulate information. It sets up quantitative measures of information and of
the capacity of various systems to transmit, store and otherwise process information.

Some of the problems treated relate to finding the best methods of utilizing various
available communication systems, the best methods of separating signals from noise and the
problem of setting upper bounds on what it is possible to do with a given channel. While the
central results are chiefly of interest to communication engineers, some of the concepts have
been adopted and found useful in such fields as psychology and linguistics.

Information is interpreted in its broadest sense to include the messages occurring in any of
the standard communication mediums such as telegraphy, radio or television, the signals
involved in electronic computing machines, servomechanisms systems and other data-
processing devices, and even the signals appearing in the nerve networks of animals and man.
The signals or messages need not be meaningful in any ordinary sense. This theory, then, is
quite different from classical communication engineering theory which deals with the devices
employed but not with that which is communicated.

Central Problems of Communication Theory. The type of communication system that has
been most extensively investigated is shown in Fig. 1. It consists of the following:

1. An information source which produces the raw information or ‘‘message’’ to be
transmitted.

2. A transmitter which transforms or encodes this information into a form suitable for the
channel. This transformed message is called the signal.

3. The channel on which the encoded information or signal is transmitted to the receiving
point. During transmission the signal may be changed or distorted. In radio, for example,
there often is static, and in television transmission so-called ‘‘snow.”” These disturbing
effects are known generally as noise, and are indicated schematically in Fig. | by the noise
source.

4. The receiver, which decodes or translates the received signal back into the original
message or an approximation of it.

5. The destination or intended recipient of the information.

* Reprinted with permission from Encyclopaedia Brittanica, 14th edition, © 1968 by Encyclopaedia Britannica,
Inc.

212



Information Theory 213

TRANS.
lNFg(;er;ARACTEION o LA 3 RECEIVER DESTINATION
s SIGNAL ‘ RECEIVED

MESSAGE SIGNAL MESSAGE

NOISE
SOURCE

Figure 1. Diagram of general communication system

It will be seen that this system is sufficiently general to include a wide variety of
communication problems if the various elements are suitably interpreted. In radio, for example,
the information source may be a person speaking into a microphone. The message is then the
sound that he produces, and the transmitter is the microphone and associated electronic
equipment which changes this sound into an electromagnetic wave, the signal. The channel is
the space between the transmitting and receiving antennas, and any static or noise disturbing
the signal corresponds to the noise source in the schematic diagram. The home radio is the
receiver in the system and its sound output the recovered message. The destination is a person
listening to the message.

A basic idea in communication theory is that information can be treated very much like a
physical quantity such as mass or energy. A homely analogy may be drawn between the
system in Fig. | and a transportation system; for example, we can imagine an information
source to be like a lumber mill producing lumber at a certain point. The channel in Fig. 1 might
correspond to a conveyor system for transporting the lumber to a second point. In such a
situation there are two important quantities: the rate R (in cubic feet per second) at which
lumber is produced at the mill, and the capacity (in cubic feet per second) of the conveyor.
These two quantities determine whether or not the conveyor system will be adequate for the
lumber mill. If the rate of production R is greater than the conveyor capacity C, it will certainly
be impossible to transport the full output of the mill; there will not be sufficient space available.
If R is less than or equal to C, it may or may not be possible, depending on whether the lumber
can be packed efficiently in the conveyor. Suppose, however, that we allow ourselves a
sawmill at the source. This corresponds in our analogy to the encoder or transmitter. Then the
lumber can be cut up into small pieces in such a way as to fill out the available capacity of the
conveyor with 100% efficiency. Naturally in this case we should provide a carpenter shop at
the receiving point to fasten the pieces back together in their original form before passing them
on to the consumer.

If this analogy is sound, we should be able to set up a measure R in suitable units telling the
rate at which information is produced by a given information source, and a second measure C
which determines the capacity of a channe! for transmitting information. Furthermore, the
analogy would suggest that by a suitable coding or modulation system, the information can be
transmitted over the channel if and only if the rate of production R is not greater than the
capacity C. A key result of information theory is that it is indeed possible to set up measures R
and C having this property.

Measurement of Information. Before we can consider how information is to be measured it
is necessary to clarify the precise meaning of ‘‘information’’ from the point of view of the
communication engineer. Often the messages to be transmitted have meaning: they describe or
relate to real or conceivable events. However, this is not always the case. In transmitting
music, the meaning, if any, is much more subtle than in the case of a verbal message. In some
situations the engineer is faced with transmitting a totally meaningless sequence of numbers or



214 C. E. Shannon

letters. In any case, meaning is quite irrelevant to the problem of transmitting the information.
It is as difficult to transmit a series of nonsense syllables as it is to transmit straight English text
(more so, in fact). The significant aspect of information from the transmission standpoint is the
fact that one particular message is chosen from a set of possible messages. What must be
transmitted is a specification of the particular message which was chosen by the information
source. The original message can be reconstructed at the receiving point only if such an
unambiguous specification is transmitted. Thus in information theory, information is thought
of as a choice of one message from a set of possible messages. Furthermore, these choices
occur with certain probabilities; some messages are more frequent than others.

The simplest type of choice is a choice from two equally likely possibilities; that is, each
has a probability 1/2. This is the situation, for example, when a coin is tossed which is equally
likely to come up heads or tails. It is convenient to use the amount of information produced by
such a choice as the basic unit and this basic unit is called a binary digit or, more briefly, a
“bit.”” The choice involved with one bit of information can be indicated schematically as in
Fig. 2(A). At point b either the upper or lower line may be chosen with probability 1/2 for
each possibility.

A B

Figure 2. A choice from (A) two possibilities; (B) eight possibilities.

If there are N possibilities, all equally likely, the amount of information is given by log, N.
The reason for this can be seen from Fig. 2(B), where there are eight possibilities each with
probability 1/8. The choice can be imagined to occur in three stages, each involving one bit.
The first bit corresponds to a choice of either the first four or the second four of the eight
possibilities, the second bit corresponds to the first or second pair of the four chosen, and the
final bit determines the first or second member of the pair. It will be seen that the number of
bits required is log, N, in this case log; 8 = 3.

If the probabilities are not equal, the formula is more complicated. When the choices have
probabilities p, p», ..., p,, the amount of information H is given by

H = - (p\logap, + pylogypy + -+ + p,logyp,) .
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This formula for the amount of information gives values ranging from zero — when one of
the two events is certain to occur (i.e. has a probability of 1) and all others are certain not to
occur (i.e. have probability O) — to a maximum value of log, N when all events are equally
probable (i.e. have probability 1/N). These situations correspond intuitively to the minimum
information produced by a particular event (when it is already certain what will occur) and the
greatest information or the greatest prior uncertainty of the event.

The parlor game ‘‘Twenty Questions’’ illustrates some of these ideas. In this game, one
person thinks of an object and the other players attempt to determine what it is by asking not
more than twenty questions that can be answered ‘‘yes’ or ‘‘no.”’ According to information
theory each question can, by its answer, yield anywhere from no information to log,2 or one
bit of information, depending upon whether the probabilities of ‘‘yes’” and ‘‘no’’ answers are
very unequal or approximately equal. To obtain the greatest amount of information, the players
should ask questions that subdivide the set of possible objects, as nearly as possible, into two
equally likely groups. For example, if they have established by previous questions that the
object is a town in the United States, a good question would be, *‘Is it east of the Mississippi?”’
This divides the possible towns into two roughly equal sets. The next question then might be,
*“Is it north of the Mason-Dixon line?”” If it were possible to choose questions which always
had the effect of subdividing into two equal groups, it would be possible to isolate, in
twenty questions, one object from approximately 1,000,000 possibilities. This corresponds to
twenty bits.

The formula for the amount of information is identical in form with equations representing
entropy in statistical mechanics, and suggests that there may be deep-lying connections
between thermodynamics and information theory. Some scientists believe that a proper
statement of the second law of thermodynamics requires a term relating to information. These
connections with physics, however, do not have to be considered in the engineering and other
applications of information theory.

Most information sources produce a message which consists not of a single choice but of a
sequence of choices; for example, the letters of printed text or the elementary words or sounds
of speech. The writing of English sentences can be thought of as a process of choice: choosing
a first word from pos