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Introduction

The publication of Claude Shannon's collected papers is long overdue. A substantial
collection of his papers was published in Russian in 1963 (see item [121] of his Bibliography),
but no English edition has ever appeared. The editors were therefore commissioned by the
Information Theory Society of the Institute of Electrical and Electronics Engineers to collect
and publish his papers.

Since much of Shannon's work was never published, our first task was to assemble a
complete bibliography. We did this by consulting Claude and Betty Shannon, who have been
extremely helpful throughout this project and supplied us with copies of a number of
unpublished items; many of Claude's friends and colleagues; the Bell Laboratories Archives;
the National Archives in Washington; the National Security Agency; the patent records;
Mathematical Reviews; and other sources. We believe the resulting bibliography of 127 items
is reasonably complete.

The second step was to decide what to include. Our policy has been to include everything
of importance. We have included all the published papers, and all the unpublished material that
seemed of lasting value. Some war-time reports of very limited interest have been excluded, as
well as the M.LT. seminar notes. If an excluded paper has an abstract, we have printed it. We
have made several sets of copies of the excluded material, and plan to deposit copies in the
AT&T Bell Laboratories library at Murray Hill, New Jersey, the M.LT. library, and the Library
of Congress and the British Library.

The papers fall naturally into three groups: (A) communication theory, information theory
and cryptography; (8) computers, circuits and games; (C) the hitherto unpublished doctoral
dissertation on population genetics. Inside each group the papers are, with some exceptions,
arranged in chronological order. Minor items (abstracts, book reviews, and so on) have been
placed at the end of each section.

Most of the published works have been photographically reproduced from the originals,
while the others have been typeset by computer at AT&T Bell Labs.

The "Notes" following each section give references to more recent work.

We should like to thank R. B. Blackman, P. Elias, E. N. Gilbert, R. Gnanadesikan,
R. L. Graham, D. W. Hagelbarger, T. T. Kadota, H. O. Pollak, D. Slepian, E. Wolman and
R. Wright for supplying us with copies of Shannon's papers. R. A. Matula, of the AT&T Bell
Laboratories library staff, has been extremely helpful to us throughout this project. J. P.
Buhler, J. H. Conway, J. F. Crow, R. L. Graham, D. S. Johnson, T. Nagylaki and K. Thompson
kindly provided comments on some of the papers. We are very grateful to Susan Marko
(sometimes assisted by Sue Pope), who expertly retyped many of Shannon's papers for us.

ix



Biography of Claude Elwood Shannon

Claude Elwood Shannon was born in Petoskey, Michigan, on Sunday, April 30, 1916. His
father, Claude Sr. (1862-1934), a descendant of early New Jersey settlers, was a businessman
and, for a period, Judge of Probate. His mother, Mabel Wolf Shannon (1880-1945), daughter
of German immigrants, was a language teacher and for a number of years Principal of Gaylord
High School, in Gaylord, Michigan.

The first sixteen years of Shannon's life were spent in Gaylord, where he attended the
Public School, graduating from Gaylord High School in 1932. As a boy, Shannon showed an
inclination toward things mechanical. His best subjects in school were science and
mathematics, and at home he constructed such devices as model planes, a radio-controlled
model boat and a telegraph system to a friend's house half a mile away. The telegraph made
opportunistic use of two barbed wires around a nearby pasture. He earned spending money
from a paper route and delivering telegrams, as well as repairing radios for a local department
store. His childhood hero was Edison, who he later learned was a distant cousin. Both were
descendants of John Ogden, an important colonial leader and the ancestor of many
distinguished people. Shannon's recent hero list, without deleting Edison, includes more
academic types such as Newton, Darwin, Einstein and Von Neumann.

In 1932 he entered the University of Michigan, following his sister Catherine, who had just
received a master's degree in mathematics there. While a senior, he was elected a member of
Phi Kappa Phi and an associate member of Sigma Xi. In 1936 he obtained the degrees of
Bachelor of Science in Electrical Engineering and Bachelor of Science in Mathematics. This
dual interest in mathematics and engineering continued throughout his career.

In 1936 he accepted the position of research assistant in the Department of Electrical
Engineering at the Massachusetts Institute of Technology. The position allowed him to
continue studying toward advanced degrees while working part-time for the department. The
work in question was ideally suited to his interests and talents. It involved the operation of the
Bush differential analyzer, the most advanced calculating machine of that era, which solved by
analog means differential equations of up to the sixth degree. The work required translating
differential equations into mechanical terms, setting up the machine and running through the
needed solutions for various initial values. In some cases as many as four assistants would be
needed to crank in functions by following curves during the process of solution.

Also of interest was a complex relay circuit associated with the differential analyzer that
controlled its operation and involved over one hundred relays. In studying and servicing this
circuit, Shannon became interested in the theory and design of relay and switching circuits. He
had studied symbolic logic and Boolean algebra at Michigan in mathematics courses, and
realized that this was the appropriate mathematics for studying such two-valued systems. He
developed these ideas during the summer of 1937~ which he spent at Bell Telephone
Laboratories in New York City, and, back at M.LT., in his master's thesis, where he showed
how Boolean algebra could be used in the analysis and synthesis of switching and computer
circuits. The thesis, his first published paper, aroused considerable interest when it appeared in
1938 in the A.I.E.E. Transactions [I]. * In 1940 it was awarded the Alfred Noble Prize of the

The numbers in square brackets refer to items in Shannon' s bibliography.
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xii C.E.Shannon

combined engineering societies of the United States, an award given each year to a person not
over thirty for a paper published in one of the journals of the participating societies. A quarter
of a century later H. H. Goldstine, in his book The Computer from Pascal to Von Neumann,
called this work' 'one of the most important master's theses ever written...a landmark in that it
helped to change digital circuit design from an art to a science. "

During the summer of 1938 he did research work at M.I.T. on the design of the Bush Rapid
Selector, and was mainly involved with the vacuum tube circuits employed in this device. In
September of 1938, at the suggestion of Vannevar Bush, Shannon changed from the Electrical
Engineering Department to the Mathematics Department. He was awarded the Bolles
Fellowship and was also a teaching assistant while working toward a doctorate in mathematics.
Bush had just been made President of the Carnegie Institution in Washington, one of whose
branches, in Cold Spring Harbor, N.Y., dealt with the science of genetics. He suggested to
Shannon that algebra might be as useful in organizing genetic knowledge as it was in
switching, and Shannon decided to look into this matter with a view toward using it for a
doctoral thesis in mathematics. He spent the summer of 1939 at Cold Spring Harbor working
under geneticist Dr. Barbara Burks exploring the possibility, and found it a suitable subject for
a dissertation under the title "An Algebra for Theoretical Genetics" [3]. His Ph.D. supervisor
at M.I.T. was Professor Frank L. Hitchcock, an algebraist. In the Spring of 1939 he was elected
to full membership in Sigma Xi.

At about this time Shannon was also developing ideas both in computers and
communications systems. In a letter of February 16, 1939 now in the Library of Congress
archives ([2], included in Part A), he writes to Bush about trading relations between time,
bandwidth, noise and distortion in communication systems, and also about a computer design
for symbolic mathematical operations.

As the Spring of 1940 approached, Shannon had passed all requirements for both a master's
in electrical engineering and a doctorate in mathematics - except for satisfying the language
requirements, always his weakest subjects. Facing reality, he buckled down in the last few
months, hired a French and German tutor and repeatedly worked his way through stacks of
flash cards. He finally passed the language exams (it took two tries with German) and in the
Spring of 1940 received the S.M. degree in Electrical Engineering and the degree of Doctor of
Philosophy in Mathematics at the same commencement. His Ph.D. dissertation, [3], is
published here for the first time (in Part D).

The Summer of 1940 was spent at Bell Telephone Laboratories doing further research on
switching circuits. A new method of design was developed which greatly reduced the number
of contacts needed to synthesize complex switching functions from earlier realizations. This
was later published in a paper, "The Synthesis of Two-Terrninal Switching Circuits" [50].

The academic year 1940-1941 was spent on a National Research Fellowship at the Institute
for Advanced Study in Princeton working under Hermann Weyl. It was during this period that
Shannon began to work seriously on his ideas relating to information theory and efficient
communication systems.

Thornton C. Fry, head of the mathematics department at Bell Labs, was in charge of a
committee on fire control systems for anti-aircraft use - the country was arming up at the time
because of the spreading European war threats - and asked Shannon to join in this effort.
Returning to Bell Labs, Shannon joined a team working on anti-aircraft directors - devices to
observe enemy planes or missiles and calculate the aiming of counter missiles. This problem
became crucial with the development of the German V I and V2 rockets. Without the American
anti-aircraft directors, the ravaging of England, bad as it was, would have been vastly worse.
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Shannon spent fifteen years at BeJl Laboratories in a very fruitful association. Many first-
rate mathematicians and scientists were at the Labs - men such as John Pierce, known for
satellite communication; Harry Nyquist, with numerous contributions to signal theory; Hendrik
Bode of feedback fame; transistor inventors Brattain, Bardeen and Shockley; George Stibitz,
who built an early (1938) relay computer; Barney Oliver, engineer extraordinaire; and many
others.

During this period Shannon worked in many areas, most notably in information theory, a
development which was published in 1948 as "A Mathematical Theory of Communication"
[37]. In this paper it was shown that all information sources - telegraph keys, people speaking,
television cameras and so on - have a "source rate" associated with them which can be
measured in bits per second. Communication channels have a "capacity" measured in the
same units. The information can be transmitted over the channel if and only if the source rate
does not exceed the channel capacity (see the Preface to Part A).

This work on communication is generally considered to be Shannon's most important
scientific contribution. In 1981 Professor Irving Reed, speaking at the International
Symposium on Information Theory in Brighton, England, said, "It was thirty-four years ago, in
1948, that Professor Claude E. Shannon first published his uniquely original paper, 'A
Mathematical Theory of Communication,' in the Bell System Technical Journal. Few other
works of this century have had greater impact on science and engineering. By this landmark
paper and his several subsequent papers on information theory he has altered most profoundly
all aspects of communication theory and practice. "

Shannon has rung many changes on the problems of information and noise. In a paper
"Communication Theory of Secrecy Systems" [25] cryptography is related to communication
in a noisy channel, the "noise" being in this case the scrambling by the key of the
cryptographic system. This work later led to his appointment as a consultant on cryptographic
matters to the United States Government.

Another problem, which he investigated jointly with E. F. Moore [88]-[90], was that' of
increasing the reliability of relay circuits by redundant use of contacts, each of which may be
unreliable. Again this is a problem related to transmission in noisy channels.

Shannon has also applied these concepts to the problem of optimal investment strategies.
The "noisy signal" is the stock market and related time series, and the problem is to maximize
a utility function by proper choice and adjustment of a portfolio.

In a lighter vein and in the computer and artificial intelligence area, Shannon wrote a paper
"Programming a Computer for Playing Chess" in 1950 [54]. At that time computers were
slow, inept and very difficult to program. Since then, many chess-playing programs have been
written, most of them following quite closely the system described in that early paper.

In 1965 he was invited to Russia to give lectures at an engineering conference. While there,
he took the opportunity to meet Mikhail Botvinnik, for many years the World Chess Champion.
Botvinnik, also an electrical engineer, had become interested in the chess programming
problem. Shannon remembers the discussion as interesting but carried on through a somewhat
noisy channel since the interpreters knew little of either chess or computers.

After the discussion, he asked Botvinnik for the pleasure of a chess game. Translators,
guides and members of the American party watched with rapt attention as the epic battle
unfolded. At one point Shannon had a slight edge (a rook for a knight and pawn), but alas the
result was foregone - after forty-two moves Shannon tipped over his king - a message that
needed no translation.



xlv C. E. Shannon

Further advances in chess programming continued through the next decades and in 1980
Shannon was invited, as an honored guest, to an International Computer Chess Championship
held in Linz, Austria. Eighteen computers from Sweden, Germany, Russia, France, England,
Canada and several from the United States were entered. Most of the computers remained at
home but were linked electronicaJly to the tournament hall in Linz. The winner, "Belle,"
developed by Ken Thompson and Joe Condon of Bell Laboratories, was not far from master
playing strength.

Dr. Shannon enjoys constructing amusing if not utilitarian devices, and his house is filled
with such brainchildren. Among these might be mentioned THROBAC (Thrifty ROman
numerical BAckward looking Computer) [76J, a calculator which performs all the arithmetic
operations in the Roman numerical system; "turtles" which wander around the floor, backing
up and turning from obstacles; game-playing machines of various types and sizes; and a three-
ball juggling machine with two hands that bounce-juggles three balls on a drumhead.

The "Ultimate Machine," based on an idea of Marvin Minsky, was built in the early fifties.
The operation and spirit were well described by Arthur C. Clarke in Voice Across the Sea:
"Nothing could be simpler. It is merely a small wooden casket, the size and shape of a cigar
box, with a single switch on one face. When you throw the switch, there is an angry,
purposeful buzzing. The lid slowly rises, and from beneath it emerges a hand. The hand
reaches down, turns the switch off and retreats into the box. With the finality of a closing
coffin, the lid snaps shut, the buzzing ceases and peace reigns once more. The psychological
effect, if you do not know what to expect, is devastating. There is something unspeakably
sinister about a machine that does nothing - absolutely nothing - except switch itself off."

The maze-solving mouse Theseus, built in 1950, took a more positive approach to its
universe. ControJJed by a relay circuit, a Iifesize magnetic mouse moved around a maze of
twenty-five squares. The maze could be altered at will and the mouse would then search
through the passageways until it found the arbitrarily placed goal. Having been through the
maze, the mouse could be placed anywhere it had been and would go directly to the goal -
placed in unfamiliar ground, it would search until it reached a known position and then proceed
to the goal, adding the new knowledge to its memory. It appears to have been the first learning
device of this level.

In the case of Theseus, both the "brain" and the "muscles" were separate from the mouse
itself and were in fact under the maze. The brain was a circuit of about 100 relays, and the
muscles a pair of motors driving an electromagnet which by magnetic action moved the mouse
through the maze. With the development of solid state circuitry, self-contained mice became
feasible. Compared to Theseus, the brains were smaller but the mice were bigger. By 1978
enough engineers had built maze-solving mice for the IEEE Spectrum to hold an "Amazing
Micro Mouse Maze Contest," at which Theseus made a guest appearance.

A happy consequence of Shannon's sojourn at Bell Labs was his marriage to Mary
Elizabeth (Betty) Moore. Betty, a graduate in mathematics of Douglass College, Rutgers
University, worked as a numerical analyst (what was then called a "computer") in John
Pierce's group. Her interests in handweaving and computing are currently combined in work
with a computer-controlled loom, an area in which she pioneered in the sixties. Claude and
Betty were married in J949 and have three children, Robert, Andrew and Margarita. They Jive
on Mystic Lake, in Winchester, Massachusetts.

In 1956 Dr. Shannon was invited to be a visiting professor at M.I.T. and, in 1957-58, a
fellow at the Center for the Study of the Behavioral Sciences in Palo Alto, California. The
foJJowing year he became a permanent member of the M.I.T. faculty as Donner Professor of
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Science, where he continued research in various areas of communication theory. Among these
were communications systems with feedback and a study of the rate at which it is possible to
approach ideal coding as a function of delay. He continued his affiliation with Bell Telephone
Laboratories until July I, 1972.

Many of Shannon's papers have been translated into various foreign languages. Perhaps the
most thorough job was that of Russian scientists, who have long been interested in information
theory and computers and have contributed greatly to these fields. In 1963 he received three
copies of an 830-page collection, in Russian, of his scientific papers [121]. Years later, on a
visit to Russia, he was informed that his book had been collecting royalties to the amount of
several thousand rubles, which translated roughly into the same number of dollars.
Unfortunately, there was a catch - this could not be taken out of the country as money, but
could only be spent in Russia. Curiously, nothing they might buy seemed suitable. The books
were in Russian, Betty already had a fur coat, furniture was difficult to transport. They finally
ended up with an array of eight musical instruments ranging from a bassoon to a balalaika. On
the trip home the party was often taken for a traveling orchestra.

In his leisure time Shannon, in addition to the gadgeteering mentioned above, has a number
of recreations. He tries to jog a mile or two each day, and enjoys sports like juggling which
require good coordination. One Christmas, Betty, knowing his proclivities, gave him a
unicycle. Within a few days he was riding around the block; in a few weeks he could juggle
three balls while riding. In a few months he was building unusual cycles such as one with an
eccentric wheel (the rider moved up and down as he pedalled forward). He is an easy mark for
any new intellectual challenge - he designed a machine to solve the Rubik cube, and was
observed trying to equal his son's record at Pac-Man.

Shannon plays the clarinet and enjoys music, especially the Dixieland popular in his youth.
He likes poetry with a nod to T. S. Eliot, the Rubaiyat and Ogden Nash, and has been known to
dash off a bit of light verse from time to time [127].

He holds honorary degrees from Yale (Master of Science, 1954), Michigan (1961),
Princeton (1962), Edinburgh (1964), Pittsburgh (1964), Northwestern (1970), Oxford (1978),
East Anglia (1982), Carnegie-Mellon (1984), Tufts (1987) and the University of Pennsylvania
(1991 ).

His awards include the Alfred Noble Prize (1940), Morris Liebmann Memorial Award of
the Institute of Radio Engineers (1949), Stuart Ballantine Medal of the Franklin Institute
(1955), Research Corporation Award (1956), Rice University Medal of Honor (1962), Marvin
J. Kelly Award (1962), I.E.E.E. Medal of Honor (1966), National Medal of Science (1966)
presented by President Johnson, Golden Plate Award (1967), Harvey Prize, Technion, Haifa
(1972) presented by the President of Israel, Jacquard Award (1978), Harold Pender Award
(1978), Audio Engineering Society Gold Medal (1985), the Kyoto Prize (1985) and the Eduard
Rhein Prize (1991).

He delivered the Vanuxem Lectures, Princeton (1958); the Steinmetz Lecture, Schenectady
(1962); the Gibbs Lecture, American Mathematical Society (1965); the first Shannon Lecture,
I.E.E.E. (1973); and the Chichele Lecture, Oxford (1978).

He has been Bolles Fellow at M.I.T. (1938-40); National Research Fellow at the Institute
for Advanced Study in Princeton (1940-41); Fellow of the Center for Advanced Study in the
Behavioral Sciences, Stanford (1957-58), Visiting Fellow at All Souls College, Oxford (1978);
and is a Fellow of Muir College of the University of California, the I.E.E.E., and the Royal
Society. He is (or has been) a member of the National Academy of Sciences, the National
Academy of Engineering, the American Mathematical Society, the American Philosophical
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Society, the Royal Irish Academy, the American Academy of Arts and Sciences, the Royal
Netherlands Academy, the Leopoldina Academy of Leipzig, and Tau Beta Pi, Sigma Xi, Phi
Kappa Phi and Eta Kappa Nu. For many years he was a member of the board of directors of
Teledyne, Inc.

In 1983, Dr. Shannon wrote concerning information technologies: "The growth of both
communication and computing devices has been explosive in the last century. It was about a
hundred years ago that the telephone and phonograph were invented, and these were followed
by radio, motion pictures and television. We now have vacuum tubes, transistors, integrated
circuits, satellite communication and microwave cable. We have even talked to astronauts on
the moon. Our life style has been totally changed by advances in communication.

"On the computing side we started the twentieth century with slide rules and adding
machines. These were followed in quantum jumps by the Bush analog computers, Stibitz and
Aiken relay computers, Eckert and Mauchly vacuum tube machines (ENIAC), transistor
computers and, finally, the incredibly compact integrated circuit and chip computers. At each
step the computers became faster, cheaper and more powerful. These hardware revolutions
were matched by equally impressive developments in programming.

"What can we expect in the future? Three advances in the artificial intelligence area would
be most welcome. (1) An optical sensor-computer combination capable of learning to
recognize objects, people, erc.,as our eyes and occipital cortex do. (2) A manipulator-computer
combination capable of the purposeful operations of the human hand. (3) A computer program
capable of at least some of the concept formation and generalizing abilities of the human brain.

"In the communication area our government might consider diverting a small fraction of its
'defense' budget to the construction of giant radio telescopes as proposed by the SETI (Search
for Extraterrestrial Intelligence) program, to listen for evidence of intelligent life on other star
systems - possibly as a joint venture with the Soviets. Who knows, perhaps E.T. would have
words of wisdom for all of us!"

Shannon was recently interviewed by the Scientific American and the interviewer, John
Horgan, reports that: "Claude E. Shannon can't sit still. We're at his home, a stuccoed
Victorian edifice overlooking a lake north of Boston, and I'm trying to get him to recall how he
came up with the theory of information. But Shannon, who is a boyish 73, with an elfish grin
and a shock of snowy hair, is tired of expounding on his past. Wouldn't I rather see his toys?

"Without waiting for an answer, and over the mild protests of his wife, Betty, he leaps from
his chair and disappears into the other room. When I catch up with him, he proudly shows me
his seven chess-playing machines, gasoline-powered pogostick, hundred-bladed jackknife,
two-seated unicycle and countless other marvels. Some of his personal creations - such as a
juggling W. C. Fields mannequin and a computer called THROBAC that calculates in Roman
numerals - are a bit dusty and in disrepair, but Shannon seems as delighted with everything as a
IO-year-old on Christmas morning.

"Is this the man who, as a young engineer at Bell Laboratories in 1948, wrote the Magna
Carta of the information age: The Mathematical Theory o.f Communication? Whose work
Robert W. Lucky, executive director of research at AT&T Bell Laboratories, calls the greatest
'in the annals of technological thought?' Whose 'pioneering insight' IBM Fellow Rolf W.
Landauer equates with Einstein's? Yes. This is also the man who invented a rocket-powered
Frisbee and who juggled while riding a unicycle through the halls of Bell Labs. 'I've always
pursued my interests without much regard to financiaJ value or value to the world,' Shannon
says. 'I've spent lots of time on totally useless things.'
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~ 10Shannon's ideas were almost too prescient to have an immediate practical impact.
Vacuum-tube circuits simply could not calculate the complex codes needed to approach the
Shannon limit. In fact, not until the early 1970's - with the advent of high-speed integrated
circuits - did engineers begin fully to exploit information theory. Today Shannon's insights
help shape virtually all systems that store, process or transmit information in digital form, from
compact disks to computers, from facsimile machines to deep-space probes such as Voyager.

"Information theory has also infiltrated fields outside of communications, including
linguistics, psychology, economics, biology, even the arts. In the early 1970's the IEEE
Transactions on Information Theory published an editorial, titled "Information Theory,
Photosynthesis and Religion, " decrying this trend. Yet Shannon himself suggests that applying
information theory to biological systems may not be so farfetched, because in his view common
principles underlie mechanical and living things. 'You bet,' he replies, when asked whether he
thinks machines can think. 'I'm a machine and you're a machine, and we both think, don't
we?'

"He built a 'mind-reading' machine [73] that played the game of penny-matching, in which
one person tries to guess whether the other has chosen heads or tails. A colleague at Bell Labs,
David W. Hagelbarger, built the prototype; the machine recorded and analyzed its opponent's
past choices, looking for patterns that would foretell the next choice. Because it is almost
impossible for a human to avoid falling into such patterns, the machine won more than
50 percent of the time. Shannon then built his own version and challenged Hagelbarger to a
legendary dual. Shannon's machine won."

This biographical sketch was based on the booklet Claude E. Shannon, Medalist for 1983
that was issued when he was awarded the John Fritz medal. It has been supplemented by
material from other sources, including a profile by John Horgan that appeared in the Scientific
American of January 1990.

Another interview follows.
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Much to his discomfort, Claude Elwood Shannon, at seventy, is a living legend. What
Louis Armstrong was to jazz, Shannon is to the electronic, digital information age, a founding
father who laid down its most important principles. His contribution is saluted by the world.
Diplomas and prizes stretch along a wall and up a spiral staircase in his home. There would
surely be a Nobel too.. if one existed in mathematics or information science.

But Shannon doesn't seek prominence. He is as content as an English country gentleman in
his privacy. His face is so unfamiliar that when he arrived at a conference last year in Brighton,
England, devoted to the field he founded, he was hardly recognized. In the dining hall, a man
cried excitedly "Do you know who's coming? Claude Shannon!", when Shannon was sitting
at the next table.

Not that he is unsociable. Out of the line of fire of the media, he laughs often, and is
variously playful as a gadgeteer and a prankster. He is vividly remembered at Bell Labs for
riding a unicycle down its long corridor and back again, juggling all the while. One of the
plaques on his wall is from the Wham-O Company for his rocket powered Frisbee. At the end
of the Brighton conference, he gave an amusing after dinner speech and pulling three tennis
balls from his pockets, demonstrated a juggling ••cascade."

Shannon's mathematical genius, on the other hand, is well recognized. He won fame first at
22 as a student at M.LT., when he wrote an M.Sc. thesis which Howard Gardner, the Harvard
mind theorist, in The Mind's New Science, judges "possibly the most important, and also the
most famous, master's thesis of the century."

This prize winning paper, A Symbolic Analysis ofRelay and Switching Circuits, put forward
a very bright idea. Shannon saw that the branching network of strict logic, Boolean algebra,
could be expressed by the relay switching circuits used in telephone exchanges. Essentially,
"If the alarm clock rings and it is Monday, then you have to go to work" was equivalent to "If
Switch A is closed, and Switch B is closed, then current flows through to the motor."

The insight was "monumental." says Marvin Minsky, M.I.T.'s Artificial Intelligence guru..
because it helped to lay the groundwork for constructing computers. "You could use
mathematics to calculate if a design was correct instead of using trial and error."

Ten years later, working at Bell Labs, Shannon came out with his masterwork, The
Mathematical Theory of Communication (University of Illinois Press). At a stroke he
transformed the understanding of the process of electronic communication, by providing it with
a mathematics, a general set of theorems called 'information theory'. With lucid brilliance,
Shannon wrote out the basic principles of the signaling of information. It was like Newton
writing out the laws of motion for mechanics.

The slim paper exploded on the scene 'like a bomb', wrote John Pierce, a prominent
colleague, and author of Symbols, Signals and Noise (Dover). Suddenly, engineers had a
language to deal with the major puzzles of telephone and radio communications: how to

* This article appeared (in a slightly different form) in Omni magazine, August 1987.
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measure information, and how to exploit fuJJy the capacity of a telephone wire, microwaves, a
fiber optic cable or any other channel of communication. So wide were the repercussions that
Fortune magazine was soon calling the theory one of man's' 'proudest and rarest creations, a
great scientific theory which could profoundly and rapidly alter man's view of his world. "

What astonished engineers was Shannon's proof that however "noisy" a communications
channel, it was always possible to send a signal without distortion. To do so, you have to
encode the' message in such a way that it is self checking. With the right code, signals could
be received with as high accuracy as if there were no interference on the line.

A simple code might involve adding a symbol, a binary digit or "bit," every few bits of
message to describe whether a previous group of bits add up to an odd or even number.
English is another error correcting code. Noisy party conversation is intelligible partly because
half the language is redundant. The extra symbols allow you to fill in what you miss.

Shannon had lit a beacon, showing such codes were possible. Over the next twenty-five
years engineers steered into the dark by his light. Powerful codes were worked out, yielding
super accurate communications hardware, from space probes and computers to disk drives and
compact disc players. Drag a knife point across the surface of a compact disc, and error
correcting codes will mask the flaw, thanks to Shannon.

Voyager II sending detailed pictures of Uranus and its ten newly discovered moons to
Earth 1.8 million miles away is a tribute to Shannon's inspiration. So are the picture perfect
digital TV's and VCR's now joining CD's on the home market. Information theory spurred the
digital revolution, where information is sent in discrete bits rather than in the wave form of
'analog' signals, because Shannon's error correcting codes work naturally in digital.

A problem is that the name "information theory" is misleading. As opposed to everyday
use, in Shannon's theory "Information." like "force" or "energy" in mechanics, is defined
very precisely as a commodity, measured in bits per second, unrelated to the meaning of the
message. Like the driver of a truckload of sealed packing cases, a communications engineer is
concerned only how to deliver the bits most efficiently.

Prompted by this misunderstanding, the short treatise, now in its eleventh printing, has
inspired great claims that information theory has a significance far beyond communications
engineering. Professors of the social sciences and other fields short of mathematical models
rushed to adapt the ideas to their own ends. The formulation has been applied to everything
from molecular biology and the brain to psychology, art, music, sociology, semantics and
linguistics, economics and even landscape gardening.

A wave of enthusiasm for such work came in the fifties, then receded. Now there is
renewed interest among some researchers. In one recent book, Grammatical Man, science
author Jeremy Campbell found enough progress to argue that Shannon's theories are
fundamental to understanding the universe, and that' 'to the powerful theories of chemistry and
physics must be added a later arrival: a theory of information. Nature must be interpreted as
matter, energy and information. "

Shannon was in his mid-twenties when he worked out information theory. Born on the
prairie in Gaylord, Michigan, he had gone to the University of Michigan, and then M.LT.,
where he wrote his Ph.D. thesis on the mathematics of genes and heredity. He joined Bell
Laboratories in 1941 and worked on cryptography. A theorem of Shannon's was behind the
SIGSALY telephone, the huge speech scrambling apparatus which allowed Churchill to speak
to Roosevelt from a special, toilet-sized booth through a coding system that even today is
unbreakable.
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Shannon left for M.I.T. in 1956, much to the regret of colleagues at Bell. "It was a big
loss," says Edgar Gilbert, a colleague. "He was always generating interesting ideas. He
would grasp the essence of a problem immediately, and come up with a totally different idea
that shed a great deal of light on it."

At M.I.T. Shannon, made Donner Professor in 1958, gave "beautiful" lectures, says a
colleague, took a few select graduate students in hand, and refined information theory. By the
mid sixties, his preference for working at home became the rule (a friend borrowing his
deserted office found a sizable uncashed check more than a year old). He retired in 1978,
becoming Professor Emeritus, wealthy from investments in technological companies, some of
them founded by his friends. One is Teledyne, where until recently Shannon served on the
board of directors.

Not just a theorist, Shannon has always been fond of inventing and building gadgets and
machines. A famous one was a mechanical white mouse which could learn its way through a
maze, decades before the microchip, Another was Throbac, a calculator which operated in
Roman numerals, and a 'mind reading' machine which anticipated whether a challenger would
choose heads or tails. (Colleague David Hagelbarger invented this but Shannon's stripped
down version outsmarted his "more conservative and pompous design," he says.)

Then there was Hex, a machine which played a board game. Shannon's prankish side came
out in the design, which cunningly concealed the fact that the machine had an unfair advantage.
A Harvard mathematician got very upset when he lost to Hex, which actually followed a
childishly simple strategy, but took an impressively long time to "think.' He was all set to try
again, when Shannon took pity on him and confessed the truth.

None of these devices made his fortune, though there was one near miss. Shannon and
Edward Thorp, author of Beat The Dealer, once took a trip to Las Vegas with their wives and a
computer, intent on outsmarting the roulette wheels. Unfortunately, the analog computer and
the ratio apparatus were primitive by modern standards and so the enterprise failed for technical
reasons. This was a pity: a night of testing in Shannon's basement had turned a few hundred
imaginary dollars into $24,000.

A visit to his large house, down a shady lane a few miles from M.I.T., suggests that home
life for Shannon has not been dull. There is a pile of penciled manuscripts of his mathematical
work. Around the house there are five pianos and thirty other musical instruments ranging from
piccolos to trumpets. Among a sizeable collection of chess playing machines is one which
moves the pieces with a three fingered arm, beeps and makes wry comments. (In J950
Shannon wrote the pioneering treatise on how a computer could be programmed to play chess.)
In the garage, there is a dusty pile of unicycles and penny farthings. The chair lift he built to
take his three children 450 feet down to the lakeside has been taken down, however, now that
they are grown.

For some time his current interest has been juggling, continuing a life long fascination with
balance and controlled instability. His machines include a motorized, gasoline powered pogo
stick, a unicycle with an off center wheel (it keeps a rider steady while juggling), and a tandem
unicycIe that no couple has yet been able to ride. He goes to juggling conventions, and is
polishing a paper for Scientific American. In the toy room there is a machine with soft bean
bags for hands which "juggles" steel balls. His model masterpiece is a tiny stage on which
three clowns juggle eleven rings, seven balls and five clubs, all driven by a diabolical
mechanism of clockwork and rods, invisible to the viewer in black light illumination.

When I visited him, Shannon was just back from Japan, where he had given a speech and
collected a Kyoto award in company with Messaien the composer. He was entertainingly
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hospitable, ready to show off photos of his family, a computer printout of his stock selections,
and all his toys. His gruff laugh made it clear that fun is still his life's motif. Betty Shannon, a
math graduate who met Shannon at Bell Labs, was his partner in the constant merriment.
Occasionally the overlay of disarming geniality was penetrated, as a question gave him pause.
Under the beetle brows his eyes would show the canny depths of genius.

OMNI: How many balls can you juggle?

Shannon: I can do four. With five I don't last very long! I can get them up there, but
catching them is a different matter!

OMNI: Did your genius come unannounced, or was there science and invention in your
background?

Shannon: My grandfather was an inventor who had some patents, a washing machine, stuff
like that. He was also very interested in- determining the exact tum of the century, how it
should be fixed - 1900 or 1901. He owned a farm, and was always inventing farm machinery.

My father Claude was judge of probate in Gaylord, a little town of about
3000 people in Michigan. Small enough that if you walked a couple of blocks, you'd be in the
countryside. Here is a picture of me playing the E Flat alto hom in the town band. Here's my
mother, who was principal of the high school in Gaylord. Very intelligent person, as was my
father. My father was clever mathematically and knew what he was talking about, but he didn't
work in mathematics. My mother got glowing recommendations from her University of
Michigan professors in languages.

I don't think there was much scientific influence between my father and myself.
He was a little distant, and by the time I got to be ten or fifteen he was practically seventy.
Although he certainly helped me when he could. I used to work with erector sets, and a friend
of mine and I had a telegraph system between our houses, half a mile away, and we built the
parts for this line for Morse Code signalling. Later we scrounged telephone equipment from
the local exchange and connected up a telephone. I was always interested in building things
that had funny motions, but my interest gradually shifted into electronics.

OMNI: Funny motions?

Shannon: Yes, especially like those dancers I used to see as a young man on the stage
burlesque theatre! They had an interesting motion. Cheap joke!

OMNI: When was the erector set?

Shannon: In the seventh grade or so. As a matter of fact when Betty and I got married I
said I'd always wished I'd got a number ten erector set, as I had only got up to eight and a half,
and she gave me one for Christmas!

Betty Shannon: I went out and gave him the biggest erector set you could buy in this
country - it was fifty bucks and everyone thought I was insane!

Shannon: Giving it to a grown man! But the fact of the matter is that it was extremely
useful and I used it to tryout different things. Now I have a number ten Meccano set and two
others as well.

OMNI: Ashley Montagu in Growing Young says that it's important to remain playful in
spirit through life. You seem to agree with that?
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Shannon: Yes .. I certainly do. I am always building totally useless gadgets, some of which
you can see around here, just because I think they're fun to make. They have no commercial
value" but I think they may be amusing.

OMNI: Don't you ever worry about the fact that they are not useful?

Shannon: No. That would be the last thing! Here's a picture of me riding a unicycle and
juggling at the same time. That was more than thirty years ago. As a matter of fact you
wouldn 't believe the number of unicycles we have in our garage outside, and similar wheeled
vehicles of very odd types. I have a certain fascination for them.

OMNI: You once made an enormous impression riding a unicycle and juggling at the same
time in the corridors of Bell Labs!

Shannon: Yes I did! That created quite a stir.

OMNI: Was it such a staid place, Bell Labs, that this could create such a sensation?

Shannon: Oh no. Those people are very far out. But this was something that had never
happened in the hall before. Bell Labs was and is the freest research group in the country
associated with a commercial firm.

I worked at Bell Labs for fifteen years, and after that I was a consultant there.
They gave you great freedom. To begin with you could work on what you wanted, your own
ideas; they didn't come and say, "work on this!" At least, not to me. Not only that, but the
people in my department in the mathematics research group were all very bright and capable
and I had a lot of interaction with them. Yes, it is a great place.

OMNI: Can Bell Labs take credit to some extent for your achievement?

Shannon: I think so. If I had been in another company, more aimed at a particular goal I
wouldn't have had the freedom to work that way. I think I could have done it if I had been at a
university. Most universities are totally free in which kind of research their professors do,
M.LT. for instance. Bell Labs was very open-minded.

OMNI: Shockley, the inventor of the transistor, was there at Bell Labs when you were there
- did you know him well?

Shannon: I remember going into his office, where he had a little object on his desk and I
said "What's that?," and he said "It's a solid state amplifier," and explained that it amplified
like a vacuum tube. In other words this was the transistor in its first version. Right there I got a
little grasp of its importance because of its small size. I consider Shockley and his team there
and Bardeen as the inventors of the most important thing discovered this century.

OMNI: Was the university environment less conducive to you?

Shannon: I believe that scientists get their best work done before they are fifty, or even
earlier than that. I did most of my best work while I was young.

OMNI: Is there some magical quality which disappears with age?

Shannon: It may be that our brains are not as sharp as when we are young. If you look at
the history of great scientists, and read about Newton or Einstein or people in that class, you
find that their greatest work was done at a fairly young age, usually between twenty and fifty.

OMNI: Some recent research suggests that the brain physically responds to stimulating
interests even in old age, and with growth in dendrites, and so there doesn't seem to be an
obvious physical reason why the brain should not operate as well later. The experiments have
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been on rats, rather than people, of course!

Shannon: What did they do, ask them a hard mathematical question?

OMNI: Did your ambition wane at all?

Shannon: I don't think I was ever motivated by the notion of winning prizes, although I
have a couple of dozen of them in the other room. I was more motivated by curiosity. Never
by the desire for financial gain. I just wondered how things were put together. Or what laws or
rules govern a situation, or if there are theorems about what one can't or can do. Mainly
because I wanted to know myself. After I had found the answers it was always painful to write
them up or to publish them (which is how you get the acclaim). There are many things I have
done and never written up at all. Too lazy, I guess. I have a file upstairs of unfinished papers.

OMNI: You weren't affected by your success in the stock market, were you? Did it take
away the necessity to work so hard?

Shannon: Certainly not. It's true we have been very successful in stocks, not just Teledyne,
but Hewlett Packard, Motorola and many other companies. Indeed I even did some work on
the theory of stocks and the stock market, which is among other papers that I have not
published. Everybody wants to know what's in them! (Laughs.) It's funny. I gave a talk at
M.LT. on this subject some twenty years ago and outlined the mathematics, but never published
it, and to this day people ask about it. Just last year when we were over in Brighton more than
one person came up to me and said HI heard you talked at M.LT. about the stock market!" I
was amazed that anybody would even have remembered it!

OMNI: So your stock market success was based on mathematics?

Shannon: Oh yes. Mathematics and some good friends! More important, that! One of my
good friends since college days was Henry Singleton, who is head of Teledyne. He started his
company and asked me if I would like to invest in him. I had a good opinion of him and we put
as much as we could into Teledyne, and that's gone off like crazy. That was in 1961.

Betty Shannon: We had already had one good experience with Bill Harrison, that taught us
what can happen if you're lucky in the market.

Shannon: He started Harrison Laboratories, which merged with .Hewlett Packard. That was
in 1953. We've had quite a few things like that. But in addition, we do study the graphs and
charts. The bottom line is that the mathematics is not as important in my opinion as the people
and the product.

OMNI: What was the lecture at M.I.T. about?

Shannon: The best way to balance a portfolio - the optimal amount you should have in
different stocks, to maximize the logarithm of the current value of the portfolio, if that is the
thing you are trying to maximize. But let me say that a lot of this is negated by the tax laws. If
you make money it becomes very painful to sell that stock, because you have to pay a capital
gains tax. This tends to negate all the theoretical thinking.

OMNI: It is not about when to buy or sell an individual stock?

Shannon: A lot of people look at the stock price, when they should be looking at the basic
company and its earnings. There are many problems concerned with the prediction of
stochastic processes, for example the earnings of companies. When we consider a new
investment, we look carefully at the earnings of the company, and think a Jot about the future
prospects of the product. We're fundamentalists, not technicians.
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OMNI: Are you lucky too?

Shannon: Far beyond any reasonable expectations.

xxv

You know economists talk about the efficient market, and say everything is
equalized out and nobody can really make any money, it's all luck and so on. I don't believe
that's true at all. These are our current stocks, some of which we have only held a short time.
The annual growth rates are punched out by our machine there every night, a prehistoric
Apple II which Steve Jobs wired together himself.

The annual compounded growth rates of these stocks since we bought them, most
of them quite a few years ago, are 31% a year, 11%, 185% (that one we haven't had too long),
30%, 31%, 181%, 10%, 18%, 114%, 21%, 2% and 27%. (Laughs.) That's the full list of our
holdings.

OMNI: Which companies are the big gainers?

Shannon: Teledyne for example, we have held for 25 years, and it's compounded 27 per
cent a year. The difference between going up 27 per cent and 10 per cent, such as you might
get in a bank, is incredible, especially when that happens for 25 years.

OMNI: Is there a future to using mathematics to predict fluctuations in stock prices?

Shannon: My general feeling is that it is easier to choose companies which are going to
succeed, than to predict short tenn variations, things which last only weeks or months, which
they worry about on Wall Street Week. There is a lot more randomness there and things
happen which you cannot predict, which cause people to sell or buy a lot of stock. I think it is
very hard to predict short term stock fluctuations. Furthermore when you get into short term
fluctuations you are always paying short term capital gains. With a long term stock you may
never pay taxes because you keep it forever.

OMNI: How did you get to M.LT.?

Shannon: When I got my bachelor's from Michigan I wasn't sure what I was going to do.
There was this little postcard on the wall saying that M.LT. was looking for somebody to run
the differential analyser, a machine which Vannevar Bush had invented to solve differential
equations. They wanted a research assistant to run it, and I applied for the job. I spent the next
four years at M.LT. getting first a Master's degree in electrical engineering, and then a
doctorate in mathematics. So throughout my life I have been straddling those two fields.

OMNI: What was the differential analyser made of?

Shannon: The main machine was mechanical with spinning discs and integrators, and there
was a complicated control circuit with relays. I had to understand both of these. The relay part
got me interested. I knew about symbolic logic at the time from a course at Michigan, and I
realized that Boolean algebra was just the thing to take care of relay circuits and switching
circuits. I went to the library and got all the books I could on symbolic logic and Boolean
algebra, started interplaying the two, and wrote my Master's thesis on it. That was the
beginning of my great career! (Laughs.)

OMNI: You saw the connection between a relay circuit and Boolean algebra? It was quite
an inspiration?

Shannon: Oh yeah. Trivial, actually, once you make it. The connection was not the main
thing. The more important, harder part was working out the details, how to interleave the
topology of the switching circuits, the way the contacts are connected up and so on, with the
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Boolean algebra expressions. Working that out was a lot of fun. I think I had more fun doing
that than anything else in my life, creatively speaking. It worked out so well. When I finished,
it was shown to several people there, including Vannevar Bush who was then vice-president
and dean of engineering at M.I.T.. He was very impressed and wrote a recommendation to get
it published, and to get me into the mathematics department there, instead of electrical
engineering. So I did my doctorate in mathematics.

OMNI: Was the basic insight that yes/no can be embodied in on/off switches so trivial?

Shannon: It's not so much that a thing is "open" or "closed," the "yes" or ~ 'no" that you
mentioned. The real point is that two things in series are described by the word "and" in logic,
so you would say this Hand" this, while two things in parallel are described by the word "or."
The word ~ 'not' connects with the back contact of a relay rather than the front contact. There
are contacts which close when you operate the relay, and there are other contacts which open,
so the word "not" is related to that aspect of relays. All of these things together form a more
complex connection between Boolean algebra, if you like, or symbolic logic, and relay circuits.

The people who had worked with relay circuits were, of course, aware of how to
make these things. But they didn't have the mathematical apparatus or the Boolean algebra to
work with them, and to do them efficiently. A lot of my work has to do with minimizing
circuits, trying to get the smallest number of contacts, for example. They had done this to a
certain extent, but they hadn't gone deeply into the mathematics, so they hadn't done it nearly
as well as you could with the Boolean algebra.

OMNI: But they already had some idea, did they, of translating the words "and," "or,"
and "not' into a physical embodiment?

Shannon: They all knew the simple fact that if you had two contacts in series both had to be
closed to make a connection through. Or if they are in parallel, if either one is closed the
connection is made. They knew it in that sense, but they didn't write down equations with plus
and times, where plus is like a parallel connection and times is like a series connection.

OMNl: Still, making the connection between relay circuits and Boolean algebra was
inspired, wasn't it?

Shannon: Well, I don't know what inspiration is. I think you do have flashes of insight. I
may have had an insight one day and then I would spend some time in the library, writing
equations and so on, and more insights would come.

OMNI: Most people don't know very much about your Ph.D. thesis, which applied
mathematics to biology, I understand - it sounds like DNA coding?

Shannon: Yes, it's related to that. Animals have many pairs of chromosomes, long Jines of
genes, and when two animals mate they get one of a pair from the mother and one from the
father, for each of the pairs. More complicated things can happen too. The chromosomes can
have a crossover so that you only get a portion of one half and a portion of the other half.

I tried to get a mathematical description of what goes on when you mix these
chromosomes in this kind of a process, and more generally when you have whole populations
mixing their chromosomes this way - what goes on in the statistics of the different gene
frequencies, which determine if your hair is brown, or what color your eyes are, or how tall you
are.

So I set up an algebra which described this complicated process. One could
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calculate, if one wanted to (although not many people have wanted to in spite of my work), the
kind of population you would have after a number of generations.

OMNI: So your scheme would tell us, for example, if Americans will eventually tum into a
nation of brunettes?

Shannon: I don't know how many genes are related to hair color, I think probably more
than one pair, just as IQ is not just one or two genes but probably a great many.

My theory has to do with what happens when you have all the genetic facts. But
people don't know all of them, especially for humans. They are pretty well versed on the
fruitfly! There they understand that this gene does this, this gene does that. But with regard to
humans, it's hard to perform experiments to get the data. I was at a much more theoretical
level, assuming that all the genetic facts were available.

OMNI: Before you wrote your classic paper on The Mathematical Theory of
Communication, Norbert Wiener went round the offices at Bell Labs announcing "information
is entropy.' , Did that remark provoke you in any way to come up with information theory?

Shannon: No. I hadn't even heard of that remark when I started my work. I don't think
Wiener had much to do with information theory. He wasn't a big influence on my ideas there,
though I once took a course from him. Don't get me wrong, he was a great mathematician. He
was an idol of mine when I was a young student at M.LT.

OMNI: When The Mathematical Theory of Communication was published, there was an
indignant review by a certain mathematician, accusing you of mathematical dishonesty because
your results weren't proved, he said, with mathematical rigor. Did you think that plain silly, or
did you think, Well, maybe I should work hard to meet his criticisms?

Shannon: I didn't like his review. He hadn't read the paper carefully. You can write
mathematics line by line with each tiny inference indicated, or you can assume that the reader
understands what you are talking about. I was confident I was correct, not only in an intuitive
way but in a rigorous way. I knew exactly what I was doing, and it all came out exactly right.

OMNI: How would you explain the impact of your information theory on communications
engineering?

Shannon: On the philosophical level, one is able to understand the communication process
and measure what is being sent, measure information in so many bits or choices per second.
On the actual operational level, it enables you to combat noise and send information efficiently
and use the right amount of redundancy to allow you to decode at the receiving end in spite of
noisy communication.

OMNI: What about its importance in other fields? In the fifties, you criticized what you
called the bandwagon effect, where people in your view over-enthusiastically applied your
ideas to fields other than communications. Recently, the book Grammatical Man has again
suggested that it may be widely applicable. Are you as skeptical as you were in the fifties about
there being something more to it?

Shannon: I'd have to say I am interested in information theory and always was in the
narrow sense of communication work, on problems of coding and so on. You can broaden the
meaning of the term information theory to apply to all kinds of things, like genetics and how
the brain works and so on.

Many people now see it in a much broader context than I ever did. They apply it
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for example to the nervous system of animals or humans, where information is transmitted
along nerve networks, and there is redundancy, because the system is not very precise and
accurate. This is a noisy system.

A similar thing happens in the social system where we have Jots of aids to
communication. If you're talking to me I might say "what?" which is a feedback system to
overcome some of the noise, and to get correct transmission.

OMNI: Does your theory give a hint of how life might have evolved, seemingly in the face
of the second law of thermodynamics, which says that order should slowly disintegrate?

Shannon: The evolution of the universe is certainly a very puzzling thing to me as well as to
everybody else. It's fantastic we've ever come to the level of organization we have, starting
from a big bang. Nonetheless, I believe in the big bang.

The second law of thermodynamics is not quite so simple as to say that from that
big bang you couldn't get anything more than disorganization. There's a lot of energy
involved. You could get local organization at the cost of overall increase of entropy. I'm a
firm believer in an increase in entropy as time goes on. But you can use some of it to increase
order elsewhere. In a steam engine, you can use disorganized heat energy to produce organized
mechanical energy but only at a certain cost. So I think it's kind of that way in the universe.

I've puzzled many hours about the gradual organization of life and the structure of
knowledge, and all the things we humans have. To me it's the most incredible thing! I don't
happen to be a religious man and I don't think it would help if I were!

OMNI: You wouldn't want to say information theory is a substitute for belief in a God?

Shannon: I certainly would not!

OMNI: Marvin Minsky said you stopped working on information theory because you felt
all the important theorems were proved. Is that correct?

Shannon: No, I just developed different interests. As life goes on, you change your
direction.

OMNI: You have avoided the press over the years, have you?

Betty Shannon: Not deliberately. On the other hand, we haven't sought them either. We
live very quietly.

Shannon: I'll tell you this, I'm not too crazy about interviews.

OMNI: Did you feel you were destined for fame?

Shannon: I don't think so. I always thought I was quite sharp scientifically, but scientists
by and large don't get the press that politicians or authors or other people do. I thought my
paper on switching was quite good, and I got a prize for it, and I thought my information paper
was very good, and I got all kinds of acclaim for that - there's a wallful of prizes and stuff in
the other room.

OMNI: Do you find fame a burden?

Shannon: Not too much. I have people like you coming and wasting my afternoons, but
that isn't too much of a burden!
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OMNI: Why is juggling so interesting to you, especially mathematically?

Shannon: I did write a paper for Scientific American, as yet unpublished. There is a
theorem which relates to how many balls you are juggling, and how long each one is in the air.
I talk about a uniform juggle where every time you throw a ball it stays in the air the same
amount of time, and when it hits your hand it stays there the same amount of time. We
visualize a person not just with two hands but with several hands, or there could be several
different people involved. The theorem relates five quantities, the number of hands, the number
of balls, the vacant time when your hand has nothing in it, the contact time and the flight time.
These five things are all connected by a very simple relationship, which would be exciting to

nobody except a few mathematically inclined jugglers!

OMNI: Would it lead to a way of juggling more objects than ever before?

Shannon: You have to throw the balls higher to get more time, and it gives an indication of
how much higher you have to throw them, as a function of the number of balls you are
juggling.

I've measured jugglers with stopwatches and observed how they do it, and if
they're juggling seven balls, which is a very hard thing to do, they have to throw them very
high. I even had them put metallic strips on jugglers' hands and had them juggling metal
covered balls so they would close a contact when they were holding the balls, and ran this data
into electronic clocks.

OMNI: Does it show what the limits of juggling are? Can we say that no one will ever
juggle more than fifteen balls, for example?

Shannon: No. All you have to do is throw them higher and be quicker. Indeed a friend of
ours holds the world record of twelve rings.

OMNI: If's remarkable that you've never commercialized your delightful juggling clowns.

Betty Shannon: Oh fiddle!

Shannon: Well, I don't think there would be too much of a market.

Betty Shannon: We don't really believe in commercializing fun.

OMNI: You have a nice array of computerized chess machines in your toy room. Do you
still play chess?

Shannon: I don't play at all.

Betty Shannon: He used to play very well. Good enough to play Botvinnik in Moscow.
Claude at one point got the exchange. Botvinnik was worried. He finally won, but it was close.

OMNI: Do you find it depressing that chess computers are getting so strong?

Shannon: I am not depressed by it. I am rooting for machines. I have always been on the
machines' side.

Betty Shannon: Some people get very angry when he says that.

Shannon: I am not depressed by machines getting better. Whether people are going to be
replaced by machines, I don't know. That's a hard question. It may be possible within a
century or so, that machines are going to be doing almost everything better than we do. They
already do a lot of things better than we do. An automobile can go down the street a heck of a
lot faster than any person can, for example. They can do factory work of all kinds better than
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we can. The highly intellectual stuff is going to come later.

Anthony Liversidge

But I wouldn't be at all surprised, no.

OMNI: Do you agree with Norbert Wiener, who is reported to have denied any basic
distinction between life and non-life, man and machine?

Shannon: That's a heavily loaded question! Let me say this. I am an atheist to begin with.
I believe in evolutionary theory and that we are basically machines, but a very complex type,
far more so than any machine man has made yet. So in a way that's both a Yes and a No. We
are kind of an extreme case of mechanical device - by mechanical I don't mean just metals are
involved, of course, gears and so on. A natural device. I see no God involved or anything like
that.

OMNI: Will robots be complex enough to be friends of people, do you think?

Shannon: I think so. But it's quite a way away.

OMNI: Could you imagine being friends with a robot?

Shannon: Yes I could. I could imagine that happening very easily. I see no limit to the
capability of machines. The microchips are getting smaller and smaller and faster and faster
and I can see them getting better than we are. I can visualize sometime in the future we will be
to robots as dogs are to humans.

OMNI: Can you imagine a robot President of the United States?

Shannon: Could be! I think by then you wouldn't speak of the United States any more. It
would be a totally different organization.

OMNI: Is your famous proof that a reliable circuit can be built using unreliable components
relevant to the brain's operations? Could the brain be making use of such design?

Shannon: How the brain manages to work so well with the kinds of elements it has is quite
a puzzle. It must make some use of redundancy in its connections. We know the brain can
suffer all kinds of damage and in particular neurons can go out of operation and it can still
handle things pretty well. So it must use some redundancy to take care of faulty operations.
But whether it does it the way we discussed in that paper is a much deeper and harder question.

In a modem desk computer there is generally no redundancy. If one part gets into
trouble that will show up in later operation. It seems to me that the way the brain works and
how we manage to live in spite of all kinds of internal troubles shows that there must be a great
deal of redundancy there, and a design which involves some kind of concept of multiple units
or parallelism.

OMNI: But your paper involved more than redundancy - you showed that even if you had
relays which closed only 60 per cent of the time when triggered, you could still cleverly design
a circuit which would work. Could the brain be using such an approach?

Shannon: The brain has ten billion neurons, or some such huge number, so probably it is
cheaper for biology to make more components than to work out sophisticated circuits. But I
wouldn't put it past evolution to do some very clever things like that! I am totally astounded by
how clever and sophisticated some of the things we see in the human or animal bodies are, due
to long evolutionary changes, I presume. This could be happening in the brain, but an easier
way would be parallelism. The brain is pretty sophisticated in other directions, as we know.
When it really gets going we have all these clever people like Einstein.



Profile of Claude Shannon xxxi

OMNI: Why aren't you more involved with computers, personally? One would think you
would love playing with them. Aren't they the ultimate gadget?

Shannon: I don't mess around with programming at all. I find that kind of dull, feeding
stuff into a computer. Designing computers would be more my taste, but I haven't been feeling
much like it lately. I guess I've had a bellyful of that' game. There was the differential
analyser, then relay circuits, and all those things that were leading up to these computers, and
I've written papers on all those subjects.

OMNI: Perhaps you like machines that you can build yourself, rather than computers which
you can't build from scratch any more?

Shannon: I do like the physical aspects of these things, but you're oversimplifying to say I
don't really like the symbolic things too. Mathematics itself involves symbolics.

OMNI: Where did you find all your chess machines?

Shannon: There's a store in Los Angeles which has all these different chess machines.

Mrs. Shannon: Claude went hog wild.

Shannon: Yes. Bought one of each.

OMNI: Did you make the motorized pogo stick hanging in your garage?

Shannon: No, I bought it, from a guy in New Jersey who made it. I don't think he had
rnuch success with it. I may have been one of the few buyers. It's gasoline driven. There's a
piston in it which fires each titne it comes down, so you go along at great velocity! But I found
it very uncomfortable.. It was kind of a shock each time the thing exploded there and so it
didn't ever get much use.

OMNI: When you went to Las Vegas equipped with computer and radio to win at roulette,
why did you abandon the project?

Shannon: The thing worked very well here in the house. The roulette wheel is up in the
attic now. A real professional one you know. The predictor would predict not in which hole
the ball was going to fall but which half of the wheel. It was a lot better than a 50-50
prognosis. Two thirds of the time it would pick the right half of the wheel. This improved the
odds so that you would win at a very good rate if it kept going.

OMNI: It worked extremely well, then, on that roulette wheel at least. How did it do it?

Shannon: Part of it depended on the fact that wheels in Las Vegas and elsewhere are
somewhat tilted, and they don't level them up well. We examined many wheels and we could
see some of them were tilted quite strongly. If you pick those out then there is a strong
probability that the ball will fall in a certain segment of the outside of the wheel, and you can
tell quite well how long it will take for that to happen.

If you time the spinning of the wheel you can see where the wheel is going to be
when the ball falls in. The wheel is going around one way and the ball is going around the
other, and you find the concurrence of those two things, where the wheel is going to be when
the ball falls in. It's a simple dynamical system with, very little friction.

OMNI: Why wouldn't you have to take into account the strength of the croupier's throw?

Shannon: The device we used timed both the wheel and the ball. The person standing there
would press a button when they gave the wheel a good spin, and the double zero went by a
certain point. and also when the ball was thrown and passed a certain point, and came around



xxxii Anthony Liversidge

again to that point. The croupier could throw it at different speeds, true, but this was taken into
account in the computation.

OMNI: But you had to see where it started?

Shannon: You had to both time the wheel and get an indication of when the ball left the
croupier's hand. Both of those things were involved in this little computer that we made. But
we had a lot of practical problems, and we never made any money really.

OMNI: But could you have made money if you had worked hard to solve these purely
practical problems?

Shannon: I think so, if we had been willing to spend another month cleaning up details. But
we got discouraged after we spent a lot of time and effort.

OMNI: You once wrote that the redundancy of a language determined whether you could
have crossword puzzles in that language, and that since English has a redundancy of about half,
you couldn't have three dimensional crossword puzzles in English. Is that right?

Shannon: Yes. You can't build big ones in three dimensions. In English there are more
constraints among the letters, and it gets harder to find other words which will tie them together
in a two dimensional pattern. A fortiori, if I may use another English word, it gets even harder
to tie them together in three dimensions.

OMNI: Your interest in balance and controlled instability which shows up in your unicycles
and juggling is very relevant to robots and their control systems. Are the robot designers
making the pilgrimage to your house to ask about robots?

Shannon: I have built a number of robotic devices and juggling machines. They are more a
matter of entertainment for me than practical devices for the rest of the world. I like to show
them off to people but I don't expect to sell very many.

OMNI: If you were funded to the full would you build a robot that would ride a bicycle?

Shannon: Oh, I have built little bicycle riders already. I have one four inches high that rides
a tiny two wheeled bicycle. That's almost trivial to do, actually. I worked on a little
mechanical unicycle rider but I never got that working very well.

OMNI: Is it true you investigated the idea of mirrored rooms?

Shannon: Yes, I tried to work out all the possible mirrored rooms that made sense, in that if
you looked everywhere from inside one, space would be divided into a bunch of rooms, and
you would be in each room and this would go on to infinity without contradiction. That is,
you'd move your head around and everything would look sensible. I think there were seven
types of room. I planned to build them all in my extra room here and give people an exciting
tour.

The simplest case would be a cube where you would just see an infinite series of
yourself receding into the distance. All of space would be divided sensibly into these cubical
patterns. But other ones, tetrahedra and so on, yield much more complex and interesting
patterns. I will build them if I can finish all my other projects!

At the moment I am working on another juggling machine, which might juggle five
balls. I am using an air hockey table, and plan to juggle disks by tilting the table.

OMNI: What's your secret in remaining so carefree?



Profile of Claude Shannon xxxiii

Shannon: I do what comes naturally, and usefulness is not my main goal. I like to solve
new problems all the time. I keep asking myself, How would you do this? Is it possible to
make a machine to do that? Can you prove this theorem? These are my kind of problems. Not
because I am going to do something useful.
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Preface to Shannon's Collected Papers (Part A)

Claude Shannon's creation in the 1940's of the subject of information theory is one of the
great intellectual achievements of the twentieth century. Information theory has had an
important and significant influence on mathematics, particularly on probability theory and
ergodic theory, and Shannon's mathematics is in its own right a considerable and profound
contribution to pure mathematics. But Shannon did his work primarily in the context of
communication engineering, and it is in this area that his remarkably original work stands as a
unique monument. In his classical paper of 1948 and its sequels, he formulated a model of a
communication system that is distinctive for its generality as well as for its amenability to
mathematical analysis. He formulated the central problems of theoretical interest, and gave a
brilliant and elegant solution to these problems. We preface this section of his collected works
with a very short description of this pioneering work.

Let us look first at his model. Shannon saw the communication process as essentially
stochastic in nature. The meaning of information plays no role in the theory. In the Shannon
paradigm, information from a "source" (defined as a stochastic process) must be transmitted
though a "channel" (defined by a transition probability law relating the channel output to the
input). The system designer is allowed to place a device called an "encoder" between the
source and channel which can introduce a fixed though finite (coding) delay. A "decoder" can
be placed at the output of the channel. The theory seeks to answer questions such as how
rapidly or reliably can the information from the source be transmitted over the channel, when
one is allowed to optimize with respect to the encoder/decoder?

Shannon gives elegant answers to such questions. His solution has two parts. First, he
gives a fundamental limit which, for example, might say that for a given source and channel, it
is impossible to achieve a fidelity or reliability or speed better than a certain value. Second, he
shows that for large coding delays and complex codes, it is possible to achieve performance
that is essentially as good as the fundamental limit. To do this, the encoder might have to make
use of a coding scheme that would be too slow or complicated to be used in practice.

One of Shannon's most brilliant insights was the separation of problems like these (where
the encoder must take both the source and channel into account) into two coding problems. He
showed that with no loss of generality one can study the source and channel separately and
assume that they are connected by a digital (say binary) interface. One then finds the (source)
encoder/decoder to optimize the source-to-digital performance, and the (channel)
encoder/decoder to optimize the performance of the channel as a transmitter of digital data.
Solution of the source and channel problems leads immediately to the solution of the original
joint source-channel problem. The fact that a digital interface between the source and channel
is essentially optimal has profound implications in the modem era of digital storage and
communication of all types of information.

Thus the revolutionary elements of Shannon's contribution were the invention of the
source-encoder-channel-decoder-destination model, and the elegant and remarkably general
solution of the fundamental problems which he was able to pose in terms of this model.
Particularly significant is the demonstration of the power of coding with delay in a
communication system, the separation of the source and channel coding problems, and the
establishment of fundamental natural limits on communication.

In the course of developing the solutions to the basic communication problem outlined
above, Shannon created several original mathematical concepts. Primary among these is the

3
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notion of the "entropy" of a random variable (and by extension of a random sequence), the
"mutual information" between two random variables or sequences, and an algebra that relates
these quantities and their derivatives. He also achieved a spectacular success with his technique
of random coding, in which he showed that an encoder chosen at random from the universe of
possible encoders will, with high probability, give essentially optimal performance.

Shannon's work, as well as that of his legion of disciples, provides a crucial knowledge
base for the discipline of communication engineering. The communication model is general
enough so that the fundamental limits and general intuition provided by Shannon theory
provide an extremely useful "roadrnap" to designers of communication and information
storage systems. For example, the theory tells us that English text is not compressible to fewer
than about 1.5 binary digits per English letter, no matter how complex and clever the
encoder/decoder. Most significant is the fact that Shannon's theory indicated how to design
more efficient communication and storage systems by demonstrating the enormous gains
achievable by coding, and by providing the intuition for the correct design of coding systems.
The sophisticated coding schemes used in systems as diverse as "deep-space" communication
systems (for example, NASA's planetary probes), and home compact disk audio systems, owe a
great deal to the insight provided by Shannon theory. As time goes on, and our ability to
implement more and more complex processors increases, the information theoretic concepts
introduced by Shannon become correspondingly more relevant to day-to-day communications.



A Mathematical Theory of Communication

By C. E. SHANNON

INTRODUCTION

T HE recent development of various methods of modulation such as PCM
and PPM which exchange bandwidth for signal-to-noise ratio has in-

tensified the interest in a general theory of communication. A basis for
such a theory is contained in the important papers of Nyquist' and Hartley'
on this subject. In the present paper we willextend the theory to include a
number of new factors, in particular the effect of noise in the channel, and
the savings possible due to the statistical structure of the original message
and due to the nature of the final destination of the information.

The fundamental problem of communication is that of reproducing at
one point either exactly or approximately a message selected at another
point. Frequently the messages have meaning; that is they refer to or are
correlated according to some system with certain physical or conceptual
entities. These semantic aspects of communication are irrelevant to the
engineering problem. The significant aspect is that the actual message is
one selected from a set of possible messages. The system must be designed
to operate for each possible selection, not just the one which will actually
be chosen since this is unknown at the time of design.

If the number of messages in the set is finite then this number or any
monotonic function of this number can be regarded as a measure of the in-
formation produced when one message is chosen from the set, all choices
being equally likely. As was pointed out by Hartley the most natural
choice is the logarithmic function. Although this definition must be gen-
eralized considerably when we consider the influence of the statistics of the
message and when we have a continuous range of messages, we will in all
cases use an essentially logarithmic measure.

The logarithmic measure is more convenient for various reasons:
1. It is practically more useful. Parameters of engineering importance

1 Nyquist, H., "Certain Factors Affecting Telegraph Speed," BellSystem Technical Jour-
nal, April 1924, p. 324; "Certain Topics in Telegraph Transmission Theory," A. I. E. E.
Trans., v , 47, April 1928, p. 617.

t Hartley, R. V. L., "Transmission of Information," Bell System Technicol Joumal, July
1928, p. 535.

Published in THE DELL SYSTEM TI.CUNICAL JOURNAL

Vol. 27, pp. 379·423, 623·656, July, October. 1948
Copyrtght 1948 by AMERICAN T£LEPIIONE AND TEf.EGRAPIt Co.
P,';nt,d in U. S. A.
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6 C. E. Shannon

such as time, bandwidth, number of relays, etc., tend to vary linearly with
the logarithm of the number of possibilities. For example, adding one relay
to a group doubles the number of possible states of the relays. It adds 1
to the base 2 logarithm of this number. Doubling the time roughly squares
the number of possible messages, or doubles the logarithm, etc.

2. It is nearer to our intuitive feeling as to the proper measure. This is
closely related to (1) since we intuitively measure entities by linear com-
parison with common standards. One feels, for example, that two punched
cards should have twice the capacity of one for information storage, and two
identical channels twice the capacity of one for transmitting information.

3. It is mathematically more suitable. Many of the limiting operations
are simple in terms of the logarithm but would require clumsy restatement in
terms of the number of possibilities.

The choice of a logarithmic base corresponds to the choice of a unit for
measuring information. If the base 2 is used the resulting units may be
called binary digits, or more briefly bits, a word suggested by J. W. Tukey.
A device with two stable positions, such as a relay or a flip-flop circuit, can
store one bit of information. N such devices can store N bits, since the
total number of possible states is 2N and log22N = N. If the base 10 is
used the units may be called decimal digits. Since

log2 M = 10g1o M/log102

= 3.32 log10 M,

a decimal digit is about 31 bits. A digit wheel on a desk computing machine
has ten stable positions and therefore has a storage capacity of one decimal
digit. In analytical work where integration and differentiation are involved
the base e is sometimes useful, The resulting units of information will be
called natural units. Change from the base a to base b merely requires
multiplication by 10gb a.

By a communication system we will mean a system of the type indicated
schematically in Fig. 1. It consists of essentially five parts:

1. An information source which produces a message or sequence of mes-
sages to be communicated to the receiving terminal. The message may be
of various types: e.g. (a) A sequence of letters as in a telegraph or teletype
system; (b) A single function of time jet) as in radio or telephony; (c) A
function of time and other variables as in black and white television-here
the message may be thought of as a function j(x, y, t) of two space coordi-
nates and time, the light intensity at point (x, y) and time I on a pickup tube
plate; (d) Two or more functions of time, say j(l), g(t), It(l)-this is the
case in "three dimensional" sound transmission or if the system is intended
to service several individual channels in multiplex; (e) Several functions of
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several variables-in color television the message consists of three functions
f(x, 'J, t), g(x, 'Y, I), 1,(%, 'Y, I) defined in a three-dimensional continuum-
we may also think of these three functions as components of a vector field
defined in the region-similarly, several black and white television sources
would produce "messages" consisting of a number of functions of three
variables; (f) Various combinations also occur, for example in television
with an associated audio channel.

2. A ',ansmitler which operates on the message in some way to produce a
signal suitable for transmission over the channel. In telephony this opera-
tion consists merely of changing sound pressure into a proportional electrical
current. In telegraphy we have an encoding operation which produces a
sequence of dots, dashes and spaces on the channel corresponding to the
message. In a multiplex PCM system the different speech functions must
be sampled, compressed, quantized and encoded, and finally interleaved

INFORMATION
~OUACE TRANSUITTER RECEIVER DESTINATION

~ - - f-I--
SIGNAL

~

~ REC[IVEO-
SIGNAL

UESSAGE ,~ MESSAGE

NOISE
SOURCE

Fig. I-Schematic diagram of a general communication system.

properly to construct the signal. Vocoder systems, television, and fre-
quency modulation are other examples of complex operations applied to the
message to obtain the signal.

3. The cJtannel is merely the medium used to transmit the signal lrom
transmitter to receiver. It may be a pair of wires, a coaxial cable, a band of
radio frequencies, a beam of light, etc.

4. The receiver ordinarily performs the inverse operation of that done by
the transmitter, reconstructing the message from the signal.

S. The destinatiolt is the person (or thing) for whom the message is in-
tended.

We wish to consider certain general problems involving communication
systems. To do this it is first necessary to represent the various elements
involved as mathematical entities, suitably idealized from their physical
counterparts. We may roughly classify communication systems into three
main categories: discrete, continuous and mixed. By a discrete system we
will mean one in which both the message and the signal are a sequence of
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discrete symbols. A typical case is telegraphy where the message is a
sequence of letters and the signal a sequence of dots, dashes and spaces.
A continuous system is one in which the message and signal are both treated
as continuous functions, e.g, radio or television. A mixed system is one in
which both discrete and continuous variables appear, e.g., PCM transmis-
sion of speech.

We first consider the discrete case. This case has applications not only
in communication theory, but also in the theory of computing machines,
the design of telephone exchangesand other fields. In addition the discrete
case forms a foundation for the continuous and mixed cases which will be
treated in the second hall of the paper.

PART I: DISCRETE NOISELESS S~STEMS

1. THE DISCRETE NOISELESS CJIANNEL

Teletype and telegraphy are two simple examples of a discrete channel
for transmitting information. Generally, a discrete channel will mean a
system whereby a sequence of choices from a finite set of elementary sym-
bols Sl· · · S" can be transmitted from one point to another. Each of the
symbols S. is assumed to have a certain duration in time I. seconds (not
necessarily the same for different S i , for example the dots and dashes in
telegraphy). It is not required that all possible sequences of the S, be cap-
able of transmission on the system; certain sequences only may be allowed.
These will be possible signals for the channel. Thus in telegraphy suppose
the symbols are: (1) A dot, consisting of line closure for a unit of time and
then line open for a unit of time; (2) A dash, consisting of three time units
of closure and one unit open; (3) A letter space consisting of, say, three units
of line open; (4) A word space of six units of line open. We might place
the restriction on allowable sequences that no spaces follow each other (for
if two letter spaces are adjacent, it is identical with a word space). The
question we now consider is how one can measure the capacity of such a
channel to transmit information.

In the teletype case where all symbols are of the same duration, and any
sequence of the 32 symbols is allowed the answer is easy. Each symbol
represents five bits of information. If the system transmits 1J symbols
per second it is natural to say that the channel has a capacity of 5n bits per
second. This does not mean that the teletype channel will always be trans-
mitting information at this rate-this is the maximum possible rate and
whether or not the actual rate reaches this maximum depends on the source
of information which feeds the channel, as will appear later.
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In the more general case with different lengths of symbols and constraints
on the allowed sequences, we make the following definition:
Definition: The capacity C of a discrete channel is given by

C = Lim log N(T)r..... T

where N(T) is the number of allowed signals of duration T.
It is easily seen that in the teletype case this reduces to thc previous

result. It can be shown that the limit in question will exist as a finite num-
ber in most cases of interest. Suppose all sequences of the symbols S. , · .. ,
S" are allowed and these symbols have durations h , · · · , t«, What is the
channel capacity? If N(l) represents the number of sequences of duration
l we have

N(t) = N(l - I.) + N(t - t2) + ... + N(t - I,,)

The total number is equal to the sum of the numbers of sequences ending ill
Sl , S2 , · .. , Sri and these are N(t - I.), N(t - t2), · .. , N(t - ira), respec-
tively. According to a well known result in finite differences, N(t) is then
asymptotic for large t to X~ where Xo is the largest real solution of the
characteristic equation:

r 'l + x:» + ·.. + rift = 1

and therefore.
C = logXo

In case there are restrictions on allowed sequences we may stilloften ob-
tain a difference equation of this type and find C from the characteristic
equation. In the telegraphy case mentioned above

N(t) = N(t - 2) + N(t - 4) + N(I - 5) + N(t - 7) + N(t - 8)

+ N(t - 10)

as we see by counting sequences of symbols according to the last or next to
the last symbol occurring. Hence C is - log Po where 110 is the positive
root of 1 = #A2 + p.4 + pi + p,7 + p.8 + piO. Solving this we find C = 0.539.

A very genera) type of restriction which may be placed on allowed se-
quences is the following: We imagine a number of possible states at ,a2 , · · · ,
am. For each state only certain symbols from the set S. , · · · , S" can be
transmitted (different subsets for the different states). When one of these
has been transmitted the state changes to a new state depending both on
the old state and the particular symbol transmitted. The telegraph case is
a simple example of this. There are two states depending on whether or not
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a space was the last symbol transmitted. If so then only a dot or a dash
can be sent' next and the state always changes. If not, any symbol can be
transmitted and the state changes if a space is sent, otherwise it remains
the same. The conditions can be indicated in a linear graph as shown in
Fig. 2. The junction points correspond to the states and the lines indicate
the symbols possible in a state and the resulting state. In Appendix I it is
shown that if the conditions on allowed sequences can be described in this
form C will exist and can be calculated in accordance with the following
result:
Theorem 1: Let b~j) be the duration of the sth symbol which is allowable in
state i and leads to stale j. Then the channel capacity C is equal to log
W where W is the largest real root of the determinant equation:

I:E lv-"~i) - .5 i j I = o.
•

where 8,j = 1 if i = j and is zero otherwise,

DASH

Dot

DASH

WORD &PACE

Fig. 2-Graphical representation of the constraints on telegraph symbols.

For example, in the telegraph case (Fig. 2) the determinant is:

I
-1 (IV-

2 + JJr
4

) I
= 0

(JV-3 -It II") (~V-2 + IV-4
- 1)

On expansion this leads to the equation given above for this case.

2. TIlE DISCRETE SOURCE OF INFORMATION

We have seen that under very general conditions the logarithm of the
number of possible signals in a discrete channel increases linearly with time.
The capacity to transmit information can be specified by giving this rate of
increase, the number of bits per second required to specify the particular
signal used.

We now consider the information source, How is an information source
to be described mathematically, and how much information in bits per sec-
ond is produced in a given source? The main point at issue is the effect of
statistical knowledge about the source in reducing the required capacity



A Mathematical Theory of Communication 11

of the channel, by the use of proper encoding of the information. In teleg-
raphy, for example, the messages to be transmitted consist of sequences
of letters. These sequences, however, are not completely random. In
general, they form sentences and have the statistical structure of, say, Eng-
lish. The letter E occurs more frequently than Q, the sequence TI-I more
frequently than XP, etc. The existence of this structure allows one to
make a saving in time (or channel capacity) by properly encoding the mes-
sage sequences into signal sequences. This is already done to a limited ex-
tent in telegraphy by using the shortest channel symbol, a dot, for the most
common English letter E; while the infrequent letters, Q, X, Z are repre-
sented by longer sequences of dots and dashes. This idea is carried still
further in certain commercial codes where common words and phrases arc
represented by Cour- or five-letter code groups with a considerable saving in
average time. The standardized greeting and anniversary telegrams now
in use extend this to the point of encoding a sentence or two into a relatively
short sequence of numbers.

We can think of a discrete source as generating the message, symbol by
symbol. It will choose successive symbols according to certain probabilities
depending, in general, on preceding choices as well as the particular symbols
in question. A physical system, or a mathematical model of a system which
produces such a sequence of symbols governed by a set of probabilities is
known as a stochastic process.! We may consider a discrete source, there-
fore, to be represented by a stochastic process. Conversely, any stochastic
process which produces a discrete sequence of symbols chosen from a finite
set may be considered a discrete source. This will include such cases as:
1. Natural written languages such as English, German, Chinese.
2. Continuous information sources that have been rendered discrete by some

quantizing process. For example, the quantized speech from a PCM
transmitter, or a quantized television signal.

3. Mathematical cases where we merely define abstractly a stochastic
process which generates a sequence of symbols. The following are ex-
amples of this last type of source.
(A) Suppose we have five letters A, B, C, D, E which arc chosen each

with probability .2, successive choices being independent. This
would lead to a sequence of which the following is a typical example.
BDCBCECCCADCBDDAAECEEA
ABDDAEECACEEBAEECnCEAD
This was constructed with the use of a table of random numbers.'

I See, for example, s. Chandrasekhar, "Stochastic Problems in Physics and Astronomy,"
Rmews oj Mod~" PI,ysies, v, 15, No.1, January 1943, Jl. l.

4 Kendall and Smith, "Tables or Random Sampling Numbers," Cambridge, 1939.
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(D) Using the same five letters Jet the probabilities be .4, .1, .2, .2, .1
respectively, with successive choices independent. A typical
message from this source is then:
AAACDCBDCEAADADACEDA
EADCABEDADDCECAAAAAD

(C) A more complicated structure is obtained if successive symbols are
not chosen independently but their probabilities depend on preced-
ing letters. In the simplest case of this type a choice depends only
on the preceding letter and not on ones before £hat. The statistical
structure can then be described by a set of transition probabilities
P.(j), the probability that letter i is followed by letter j. The in-
dices i and j range over all the possible symbols. A second cquiv-
alent way of specifying the structure is to give the "digram" prob-
abilities p(i, j), i.e., the relative frequency of the digram i [. The
letter frequencies p(i), (the probability of letter i), the transition
probabilities P.(i) and the digram probabilities p(i, j) are related by
the following formulas.

p(i) = L p(i, j) = L p(j, i) = L p(j)Pi(i)
iii

p(i,j) = p(i)P.(j)

L /Ji(j) = L p(i) == L p(i, j) = 1.
i , i.;

As a specific example suppose there are three letters A, B, C with the prob-
abili ty tables:

Pi(j) j i p(i) p(i, j) j
A n C A B C

A 0 • .1 A 8 A 0 • 1
I 5 ~T T3' TI'

i B 1 1. 0 B if i B 8 8 02 2 VT ~T

C .1 2 1 C 2 C 1 t 1
:I ~ 10 ~T IT TI"!' TT"5'

A typical message from this source is the following:
ABBABABABABABABBBABBBBBAB
ABADABABBBACACABBABBDBABB
ABACBBDABA
The next increase in complexity would involve trigram frequencies
but no more. The choice of a letter would depend on the preceding
two letters but not on the message before that point. A set of tri-
gram frequencies p(i, j, k) or equivalently a set of transition prob-
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abilities Pij(k) would be required. Continuing in this way one ob-
tains successively more complicated stochastic processes. In the
general n-gram case a set of n-gram probabilities p(i1 t it t • •• t i,,)
or of transition probabilities Pit. i l •··· • '·"-1(i,,) is required to
specify the statistical structure.

(D) Stochastic processes can also be defined which produce a text con-
sisting of a sequence of "words." Suppose there are five letters
A, B, C, D, E and 16 "words" in the language with associated
probabili ties:

.10 A

.04ADEB

.OSADEE

.01 BADD

.16BEBE

.04 BED

.02 DEED

.05 CA

.11 CABED

.05 CEED

.08 DAB

.04 DAD

.04: DEB

.15 DEED

.01 EAB

.OSEE

Suppose successive "words" are chosen independently and are
separated by a space. A typical message might be:
DAB EE A BEBE DEED DEB ADEE ADEE EE DEn DEBE
BEBE BEBE ADEE BED DEED DEED CEED ADEE A DEED
DEED BEBE CAnED BEBE DED DAB DEED ADEB
If all the words are of finite length this process is equivalent to one
of the preceding type, but the description may be simpler in terms
of the word structure and probabilities. We may also generalize
here and introduce transition probabilities between words, etc.

These artificial languages are useful in constructing simple problems and
examples to illustrate various possibilities. We can also approximate to a
natural language by means of a series of simple artificial languages. The
zero-order approximation is obtained by choosing all letters with the same
probability and independently. The first-order approximation is obtained
by choosing successive letters independently but each letter having the
same probability that it does in the natural language.' Thus, in the first-
order approximation to English, E is chosen with probability .12 (its fre-
quency in normal English) and W with probability .02, but there is no in-
fluence between adjacent letters and no tendency to form the preferred
digrams such as TIl, ED, etc. In the second-order approximation, digram
structure is introduced. After a letter is chosen, the next one is chosen in
accordance with the frequencies with which the various letters follow the
first one. This requires a table of digram frequencies p,(j). In the third-
order approximation, trigram structure is introduced. Each letter is chosen
with probabilities which depend on the preceding two letters.

I Letter, digram and trigram frequencies are given in "Secret and Urgent" by Fletcher
Pratt, Blue Ribbon Books 1939. Word frequencies arc tabulated in "Relative Frequency
of English Speech Sounds," G. Dewey, Harvard University Press, 1923.
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3. THE SERIES OF ApPROXIMATIONS TO ENGLISH

To give a visual idea of how this series of processes approaches a language,
typical sequences in the approximations to English have been constructed
and are given below. In all cases we have assumed a 27-symbol "alphabet,"
the 26 letters and a space.

1. Zero-order approximation (symbols independent and equi-probable).
XFOML RXKHRJFFJUJ ZLPWCFWKCYJ
FFJEYVKCQSGXYD QPAAMKBZAACIBZLHJQD

2. First-order approximation (symbols independent but with frequencies
of English text).

aCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEl
ALIiENHTTPA OODTTVA NAH DRL

3. Second-order approximation (digram struclure as in English).
ON IE ANTSOUTINYS ARE T INCTORE ST DE S DEAMY
ACHIN D n.ONASIVE TUCOOWE AT TEASONARE FUSO
TIZIN ANDY TOnE SEACE CTISBE

4. Third-order approximation (trigram structure as in English).
IN NO 1ST LAT WHEY CRATICT FROURE BIRS GROCID
PONDENOME OF DEMONSTURES OF THE REPTAGIN IS
REGOACTIONA OF CRE

S. First-Order Word Approximation. Rather than continue with tetra-
gram, · .. , n-gram structure it is easier and better to jump at this
point to word units. Here words are chosen independently but with
their appropriate frequencies.

REPRESENTING AND SPEEDILY IS AN GOOD APT OR
COME CAN DIFFERENT NATURAL HERE HE THE A IN
CAME THE TO OF TO EXPERT GRAY COME TO FUR-
NISHES TI-IE LINE MESSAGE HAD BE TI-IESE.

6. Second-Order Word Approximation. The word transition probabil-
ities are correct but no further structure is included.

THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH
WRITER THAT THE CHARACTER OF THIS POINT IS
THEREFORE ANOTHER METHOD FOR THE LETTERS
THAT THE TIME OF WHO EVER TOLD THE PROBLEM
FOR AN UNEXPECTED

The resemblance to ordinary English text increases quite noticeably at
each of the above steps. Note that these samples have reasonably good
structure out to about twice the range that is taken into account in their
construction. Thus in (3) the statistical process insures reasonable text
for two-letter sequence, but four-letter sequences from the sample can
usually be fitted into good sentences. In (6) sequences of four or more
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words can easily be placed in sentences without unusual or strained con-
structions. The particular sequence of ten words "attack on an English
writer that the character of this" is not at all unreasonable. It appears
then that a sufficiently complex stochastic process will give a satisfactory
representation of a discrete source.

The first two samples were constructed by the use of a book of random
numbers in conjunction with (for example 2) a table of letter frequencies.
This method might have been continued for (3), (4), and (5), since digram,
trigram, and word frequency tables are available, but a simpler equivalent
method was used. To construct (3) for example, one opens a book at ran-
dom and selects a letter at random on the page. This letter is recorded.
The book is then opened to another page and one reads until this letter is
encountered. The succeeding letter is then recorded. Turning to another
page this second letter is searched for and the succeeding Jetter recorded,
etc. A similar process was used for (4), (5), and (6). It would be interest-
ing if further approximations could be constructed, but the labor involved
becomes enormous at the next stage.

4. GRAPIIICAL REPRESENTATION OF A MARKOFF PROCESS

Stochastic processes of the type described above are known mathe-
matically as discrete Markoff processes and have been extensively studied in
the literature.' The general case can be described as follows: There exist a
finite number of possible "states" of a system; S, , 52, · .. , S". In addi-
tion there is a set of transition probabilities; p,(j) the probability that if the
system is in state S i it will next go to state Sj. To make this Markoff
process into an information source we need only. assume that a letter is pro-
duced for each transition from one state to another. The states will corre-
spond to the "residue of influence" from preceding letters.

The situation can be represented graphically as shown in Figs. 3, 4 and 5.
The "states" are the junction points in the graph and the probabilities and
letters produced for a transition are given beside the corresponding line.
Figure 3 is for the example n in Section 2, while Fig. 4 corresponds to the
example C. In Fig. 3 there is only one state since successive letters are
independent. In Fig. 4 there are as many states as letters. If a trigram
example were constructed there would be at most ,,,2 states corresponding
to the possible pairs of letters preceding the one being chosen. Figure 5
is a graph for the case of word structure in example D. Here S corresponds
to the "space" symbol.

• For a detailed treatment see M. Frechct, "Methods des fonctions arbitraires, Theone
des 6n6nc.ncnls en chaine dans le cas d'un nombre finid'etats possibles." Paris, Gauthier-
Villars, 1938.
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5. ERGODIC AND MIXED SOURCES

As we have indicated above a discrete source for our purposes can be con-
sidered to be represented by a Markoff process. Among the possible discrete
Markoff processes there is a group with special properties of significance in

[

.1

D .2
Fig. 3-A graph corresponding to the source in example D.

c.,
Fig. 4-A graph corresponding to the source in example C.

Jt'ig. S-A graph corresponding to the source in example D.

communication theory. This special class consists of the "ergodic" proc-
esses and we shall call the corresponding sources ergodic sources. Although
a rigorous definition of an ergodic process is somewhat involved, the general
idea is simple. In an ergodic process every sequence produced by the proc-
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ess is the same in statistical properties. Thus the letter frequencies,
digram frequencies, etc., obtained from particular sequences will, as the
lengths of the sequences increase, approach definite limits independent of
the particular sequence. Actually this is not true of every sequence but the
set for which it is false has probability zero. Roughly the ergodic property
means statistical homogeneity.

All the examples of artificial languages given above are ergodic. This
property is related to the structure of the corresponding graph. If the graph.
has the following two properties' the corresponding process will be ergodic:

I. The graph does not consist of two isolated parts A and B such that it is
impossible to go from junction points in part A to junction points in
part B along lines of the graph in the direction of arrows and also im-
possible to go from junctions in part B. to junctions in part A.

2. A closed series of lines in the graph with all arrows on the lines pointing
in the same orientation will be called a "circuit!' The "length" of a
circuit is the number of lines in it. Thus in Fig. 5 the series BEBES
is a circuit of length 5. The second property required is that the
greatest common divisor of the lengths of all circuits in the graph be
one.

If the first condition is satisfied but the second one violated by having the
greatest common divisor equal to d > 1, the sequences have a certain type
of periodic structure. The various sequences fall into tl different classes
which are statistically the same apart from a shift of the origin (i.e., which
letter in the sequence is called letter 1). By a shift of from 0 up to d - 1
any sequence can be made statistically equivalent to any other. A simple
example with d = 2 is the following: There are three possible letters a, b, c.
Letter a is followed with either b or c with probabilities i and! respec-
tively. Either b or c is always followed by letter a. Thus a typical sequence
is

abacacacabacababacac

This type of situation is not of much importance for our work.
If the first condition is violated the graph may be separated into a set of

subgraphs each of which satisfies the first condition. We will assume that
the second condition is also satisfied for each subgraph. We have in this
case what may be called a "mixed" source made up of a number of pure
components. The components correspond to the various subgraphs.
If L 1 , L 2 , L3 , • • • are the component sources we may write

where Pi is the probability of the component source L, .
.,These are restatements in terms of the graph of conditions given in Freehet,
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Physically the situation represented is this: There are several different
sources L1 , L2 , LJ , • • • which are each of homogeneous statistical structure
(i.e., they are ergodic). We do not know a priori which is to be used, but
once the sequence starts in a given pure component L, it continues indefi-
nitely according to the statistical structure of that component.

As an example one may take two of the processes defined above and
assume PI = .2 and P2 = .8. A sequence from the mixed source

L = .2 L I + .8 L 2

would be obtained by choosing first L1 or L2 with probabilities .2 and .8
and after this choice generating a sequence from whichever was chosen.

Except when the contrary is stated we shall assume a source to be ergodic.
This assumption enables one to idcntify averages along a sequence with
averages over the ensemble of possible sequences (the probability of a dis-
crepancy being zero). For example the relative frequency of the letter A
in a particular infinite sequence will be, with probability one, equal to its
relative frequency in the ensemble of sequences.

If Pi is the probability of state i and p,(j) the transition probability to
state j, then for the process to be stationary it is clear that the I', must
satisfy equilibrium conditions:

r, = E Pi Pi(J).

"
In the ergodic case it can be shown that with any starting conditions the
probabilities Pj(N) of being in state j after N symbols, approach the equi-
librium values as N ~ 00.

6. CIIOICE, UNCERTAINTY AND ENTROPY

We have represented a discrete information source as a Markoff process.
Can we define a quantity which will measure, in some sense, how much in-
formation is "produced" by such a process, or better, at what rate informa-
tion is produced?

Suppose we have a set of possible events whose probabilities of occurrence
are Pl , 1'2 , · •• , pn. These probabilities are known but that is all we know
concerning which event will occur. Can we find a measure of how much
"choice" is involved in the selection of the event or of how uncertain we are
of the outcome?

If there is such a measure, say II (PI, P2 , · · • , pn), it is reasonable to re-
quire of it the following properties:

1. II should be continuous in the p, .

2. If all the Pi are equal, Pi = !, then II should bea monotonic increasing
11
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function of n. With equally likely events there is more choice, or un-
certainty, when there are more possible events.

3. If a choice be broken down into two successive choices, the original
H should be the weighted sum of the individual values of H. The
meaning of this is illustrated in Fig. 6. At the left we have three
possibilities pJ = i,p2 = i, 1'3 = 1. On the right we first choose be-
tween two possibilities-eachwith probability i, and if the second occurs
make another choice with probabilities }, 1. The final results have
the same probabilities as before. We require, in this special case,
that

1/(i, i, 1) = I/(i, !) + 111(}, 1)
The coefficient! is because this second choice only occurs halI the time.

1/2

1/3

1/6

Fig. 6-Decomposition of a choice from three possibilities.

In Appendix II, the following result is established:
Theorem 2: The only II satisfying the three above assumptions is of the
form:

n

II = - K 2: Pi log Pi
a-I

where K is a positive constant.
This theorem, and the assumptions required for its proof, are in no way

necessary for the present theory. It is given chiefly to lend a certain plausi-
bility to some of our later definitions. The real justification of these defi-
nitions, however, will reside in their implications.

Quantities of the form II = - ~ p, log p, (the constant K metely amounts
to a choice of a unit of measure) playa central role in information theory as
measures of information, choice and uncertainty. The form of H will be
recognized as that of entropy as defined in certain formulations of statistical
mechanics" where Piis the probability of a system being in cell i of its phase
space. H is then, for example, the H in Boltzmann's famous II theorem.
We shall call H = - ~ Pi log Pi the entropy of the set of probabilities

• See, for example. R. C. Tolman, "Principles or Statistical Mechanics." Oxford.
Clarendon. 1938.
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PI, ..• , p". If X is a chance variable we will write H(x) for its entropy;
thus x is not an argument of a function but a label for a number, to differen-
tiate it from H(y) say, the entropy of the chance variable y.

The entropy in the case of two possibilities with probabilities l' and q ==
1 - p, namely

H == - (1' log l' + q log q)•
is plotted. in Fig. 7 as a function of p.

The quantity H has a number of interesting properties which further sub-
stantiate it as a reasonable measure of choice or information.

0
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Fig. 7-Entropy in the case of two possibilities with probabilities p and (1 - p).

H
BITS

1. H = 0 if and only if all the Pi but one are zero, this one having the
value unity. Thus only when we are certain of the outcome does H vanish.
Otherwise H is positive.

2. For a given n, II is a maximum and equal to log n when all the Pi are

equal ( l.e., ~). This is also intuitively the most uncertain situation.

3. Suppose there are two events, x and y, in question with m possibilities
for the first and n for the second. Let pCi,j) be the probability of the joint
occurrence of i for the first and j for the second. The entropy of the joint
event is

11(x, ,) = - :E p(i, j) log p(i, j)
i';
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while

H(x) == - ~ p(i, j) log~ p(i, j)
i'; ;

H(y) == - ~ p(i, j) log~ p(i, j).
i.; ,

It is easily shown that

21

H(x, y) s H(x) + H(y)

with equality only if the events are independent (i.e., p(i, J) == p(i) p(j».
The uncertainty of a joint event is less than or equal to the sum of the
individual uncertainties.

4. Any change toward equalization of the probabilities PI , P2, •• • , pra
increases H. Thus if PI < P2 and we increase PI , decreasing P2 an equal
amount so that PI and P2 are more nearly equal, then II increases. More
-generally, if we perform any "averaging" operation on the Pi of the form

p~ = L aijpj
i

where ~ aij ,= ~ aiJ = 1, and all aij ~ 0, then H increases (except in the
, i

special case where this transfonnation amounts to no more than a permuta-
tion of the pj with H of course remaining the same).

5. Suppose there are two chance events x and y as in 3, not necessarily
independent. For any particular value i that x can assume there is a con-
ditional probability Pi(l} that y has the value j. This is given by

. p(i, j)
Pi{J) = L p{i, j) ·

i

We define the co,ulitio1lal e,dropy of y, H z(y) as the average of the entropy
of y for each value of x, weighted according to the probability of getting
that particular x. That is

I1s(Y) == - L p(i, j) log Pi(j).
i.i

This quantity measures how uncertain we are of y on the average when we
know x. Substituting the value of PiV) we obtain

IIs(Y) = - L p(;, j) log p(i, j) +~ p(i, j) log L p(i, j)
ii 'i;

= H(x, y) - H(x)

or

flex, y) == H(x) + H ~(y)
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The uncertainty (or entropy) of the joint event x, y is the uncertainty of x
plus the uncertainty of y when x is known.

6. From J and 5 we have

I/(x) + 11(y) ~ 11(x, y) = 11(x) + 11%(y)

Hence

Il(y) ~ H %(y)

The uncertainty of y is never increased by knowledge of x. It will be de-
creased unless x and yare independent events, in whichcase it is not changed.

7. TIlE ENTROPY OF AN INFORMATION SOURCE

Consider a discrete source of the finite state type considered above.
For each possible state i there will be a set of probabilities Pi(j) of pro-
ducing the various possible symbols j. Thus there is an entropy II i for
each state. "The entropy of the source will be defined as the average of
these /1 i weighted in accordance with the probability of occurrence of the
states in question:

This is the entropy of the source per symbol of text. If the Markoff proc-
ess is proceeding at a definite time rate there is also an entropy per second

II' = L t.u,
i

wherefi is the average frequency (occurrences per second) of state i, Clearly

II' = "tII

where 111 is the average number of symbols produced per second. II or 11'
measures the amount of information generated by the source per symbol
or per second. If the logarithmic base is 2, they will represent bits per
symbol or per second.

If successive symbols are independent then II is simply - ~ Pi log Pi
where Pi is the probability of symbol i. Suppose in this case we consider a
long message of N symbols, It will contain with high probability about
PIN occurrences of the first symbol, p2N occurrences of the second, etc.
Hence the probability of this particular message will be roughly

p = pflN pl2N. • •p~"N

or
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log P == N I: P. log Pi
•

23

logP == -NIl

II == Jog lIP.
N

II is thus approximately the logarithm of the reciprocal probability of a
typical long sequence divided by the number of symbols in the sequence.
The same result holds for any source. Stated more precisely we have (see
Appendix III):
Theorem 3: Given any E > 0 and 8 > 0, we can find an No such that the se-
quences of any length N ~ No fall into two classes:
1. A set whose total probability is less than E.

2. The remainder, all of whose members have probabilities satisfying the
inequality

Ilog:-1 _ 1II< ~

log r:
In other words we are almost certain to have -N very close to II when N

is large.
A closely related result deals with the number of sequences of various

probabilities. Consider again the sequences of length N and let them be
arranged in order of decreasing probability. We define 1~(q) to be the
number we must take from this set starling with the most probable one in
order to accumulate a total probability q for those taken.
Theorem 4:

Lim log n{q) = II
N-+oo N

when q does not equal 0 or 1.
We may interpret log It(Q) as the number of bits required to specify the

sequence when we consider only the most probable sequences with a total

probability q. Then log;<q) is the number of bits per symbol for the

specification. The theorem says that for large N this will be independent of
q and equal to H. The rate of growth of the logarithm of the number of
reasonably probable sequences is given by II, regardless of our interpreta-
tion of "reasonably probable." Due to these results, which are proved in
appendix III, it is possible for most purposes to treat the long sequences as
though there were just 2' 1N of them, each with a probability 2- 11

N.
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The next two theorems show that H and H' can be determined by limit-
ing operations directly from the statistics of the message sequences, without
reference to the states and transition probabilities between states.
Theorem 5: Let pCB,) be the probability of a sequence B, of symbols from
the source. Let

where the sum is oyer all sequences Bi containing N symbols. Then GN

is a monotonic decreasing function of Nand

Lim GN = II.
N....oo

Theorem 6: Let p(B" Sj) be the probability of sequence B, followed by
symbol S, and PBi(Sj) = p(IJi, Sj)/P(/Ji) be the conditional probability of
S, after B i. Let

where the sum is over all blocks Bi of N - 1 symbols and over all symbols
Sj. Then PN is a monotonic decreasing function of N,

FH = NGN -(N - 1) GN- J ,

1 "
GH = Nlt FH ,

and Lim FN = II.
N....oo

These results are derived in appendix III. They show that a series of
approximations to II can be obtained by considering only the statistical
structure of the sequences extending over 1, 2, · .. N symbols. FN is the
better approximation. In fact ];'N is the entropy of the N'Ja order approxi-
mation to the source of the type discussed above. If there are no statistical
influences extending over more than N symbols, that is if the conditional
probability of the next symbol knowing the preceding (N - 1) is not
changed by a knowledge of any before that, then ]IN = H. FN of course is
the conditional entropy of the next symbol when the (N - 1) preceding
ones are known, while G N is the entropy per symbol of blocks of N symbols.

The ratio of the entropy of a source to the maximum value it could have
while still restricted to the same symbols will be called its relative enlropy.
This is the maximum compression possible when we encode into the same
alphabet. One minus the relative entropy is the redundan(,y. The redun-
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dancy of ordinary English, not considering statistical structure over greater
distances than about eight letters is roughly 50%. This means that when
we write English half of what we write is determined by the structure of the
language and half is chosen freely. The figure 50% was found by several
independent methods which all gave results in this neighborhood. One is
by calculation of the entropy of the approximations to English. A second
method is to delete a certain fraction of the letters from a sample of English
text and then let someone attempt to restore them. If they can be re-
stored when 50% are deleted the redundancy must be greater than 50%.
A third method depends on certain known results in cryptography.

Two extremes of redundancy in English prose are represented by Basic
English and by James Joyces' book "Finigans Wake." The Basic English
vocabulary is limited to 850 words and the redundancy is very high. This
is reflected in the expansion that occurs when a passage is translated into
Basic English. Joyce on the other hand enlarges the vocabulary and is
alleged to achieve a compression of semantic content.

The redundancy of a language is related to the existence of crossword
puzzles. If the redundancy is zero any sequence of letters is a reasonable
text in the language and any two dimensional array of letters forms a cross-
word puzzle. If the redundancy is too high the language imposes too
many constraints for large crossword puzzles to be possible. A more de-
tailed analysis shows that if we assume the constraints imposed by the
language are of a rather chaotic and random nature, large crossword puzzles
are just possible when the redundancy is 50%. If the redundancy is 33%,
three dimensional crossword puzzles should be possible, etc.

8. REPRESENTATION OF TIlE ENCODING AND DECODING OPERATIONS

We have yet to represent mathematically the operations performed by
the transmitter and receiver in encoding and decoding the information.
Either of these will be called a discrete transducer. The input to the
transducer is a sequence of input symbols and its output a sequence of out-
put symbols. The transducer may have an internal memory so that its
output depends not only on the present input symbol but also on the past
history. We assume that the internal memory is finite, i.e, there exists
a finite number m of possible states of the transducer and that its output is
a function of the present state and the present input symbol. The next
state will be a second function of these two quantities. Thus a transducer
can be described by two functions:

y,. = I(x,. tan)

an+l = g(xn taft)
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where: x,. is the ""It input symbol,
a,. is the state of the transducer when the ",'It input symbol is introduced,
Yn is the output symbol (or sequence of output symbols) produced when

x,. is introduced if the state is a,..
If the output symbols of one transducer can be identified with the input

symbols of a second, they can be connected in tandem and the result is also
a transducer. If there exists a second transducer which operates on the out-
put of the first and recovers the original input, the first transducer will be
called non-singular and the second will be called its inverse.
Theorem 7: The output of a finite state transducer driven by a finite state
statistical source is a finite state statistical source, with entropy (per unit
time) less than or equal to that of the input. If the transducer is non-
singular they arc equal.

Let a represent the state of the source, which produces a sequence of
symbols Xi ; and let {j be the stale of the transducer, which produces, in its
output, blocks of symbols Yj. The combined system can be represented
by the "product state space" of pairs (a, P). Two points in the space,
(ai, PI) and (at P2), are connected by a line if al can produce an x which
changes (JI to 132 , and this line is given the probability of that x in this case.
The line is labeled with the block of Yi symbols produced by the transducer.
The entropy of the output can be calculated as the weighted sum over the
states. If we sum first on (3 each resulting term is less than or equal to the
corresponding term for a, hence the entropy is not increased. If the trans-
ducer is non-singular let its output be connected to the inverse transducer.
If n; , n; and II~ are the output entropies of the source, the first and
second transducers respectively, then ll~ ~ ll~ ~ tt; = tt; and therefore
ll~ = II~.

Suppose we have a system of constraints on possible sequences of the type
which can be represented by a linear graph as in Fig. 2. If probabilities
p~i) were assigned to the various lines connecting state i to statej this would
become a source. There is one particular assignment which maximizes the
resulting entropy (see Appendix IV).
Theorem 8: Let the system of constraints considered as a channel have a
capacity C. If we assign

(,) IJj c-l(~)
Pi; = B, "

where t1/) is the duration of the $'" symbol leading from state i to state .i
and the B, satisfy

then II is maximized and equal to C.
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By proper assignment of the transition probabilities the entropy of sym-
bols on a channel can be maximized at the channel capacity.

9. Tuz FUNDAMENTAL T1IEOREM FOR A NOISELESS CIIANNEL.

We will now justify our interpretation of II as the rate of generating
information by proving that II determines the channel capacity required
with most efficient coding.
Theorem 9: Let a source have entropy II (bits per symbol) and a channel
have a capacity C (bits per second). Then it is possible to encode the output

of the source in such a way as to transmit at the average rate ~ - E symbols

per second over the channel where E is arbitrarily small. It is not possible

. I Cto transmit at an average rate greater t ian II.

C
The converse part of the theorem, that 1/ cannot be exceeded, may be

proved by noting that the entropy of the channel input per second is equal
to that of the source, since the transmitter must be non-singular, and also
this entropy cannot exceed the channel capacity. Hence II' ~ C and the
number of symbols per second = H'/II .$ ell/.

The first part of the theorem will be proved in two different ways. The
first method is to consider the set of an sequences of N symbols produced by
the source. For N large we can divide these into two groups, one containing
less than 2(11+'1> N members and the second containing less than 2R N members
(where R is the logarithm of the number of different symbols) and having a
total probability less than u. As N increases '1 and J.l approach zero. The
number of signals of duration T in the channel is greater than 2tc-

II
) T with

(J small when T is large. If we choose

T= (~+ X)N
then there will be a sufficient number of sequences of channel symbols for
the high probability group when Nand T are sufficiently large (however
smalJ ") and also some additional ones. The high probability group is
coded in an arbitrary one to one way into this set. The remaining sequences
are represented by larger sequences, starting and ending with one of the
sequences not used for the high probability group. This special sequence
acts as a start and stop signal for a different code. In between a sufficient
time is allowed to give enough different sequences for all the low probability
messages. This will require

T1 = (~+~) N
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where f(J is small. The mean rate of transmission in message symbols per
second will then be greater than

[ T TJ-1 [ (11) (R )J-l(1 - 6) N + 6 ; = (1 - 6) c + x + 6 C+ tp

As N increases 6, >. and tp approach zero and the rate approaches~ •

Another method of performing this coding and proving the theorem can
be described as follows: Arrange the messages of length N in order of decreas-
ing probability and suppose their probabilities are PI ~ /12 ~ pa ... ~ .p" .

• -1

Let P, = L Pi ; that is P, is the cumulative probability up to, but not
1

JlliJadiag, P.. We first encode into a binary system. The binary code for
message s is obtained by expanding P, as a binary number. The expansion
is carried out to m, places, where In. is the integer satisfying:

1 1
log2 - ~ In, < 1 + log, -p. p.

Thus the messages of high probability are represented by short codes and
those of low probability by long codes. From these inequalities we have

.-!- < -II < _1_
2m. - r» 2m, - 1 •

The code for P. will differ from an succeeding ones in one or more of its

In. places, since all the remaining Pi are at least 2-.!..- larger and their binary
m.

expansions therefore differ in the first m, places. Consequently all the codes
are different and it is possible to recover the message from its code. If the
channel sequences are not already sequences of binary digits, they can be
ascribed binary numbers in an arbitrary fashion and the binary code thus
translated into signals suitable for the channel.

The average number II' of binary digits used per symbol of original mes-
sage is easily estimated. We have

11' = ~~"" p,

But,

~ }; (log2 ;,) p, s ~ XIII, p, < ~}; (1 + log2 ;,) p,

and therefore,
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GN s II' < GN + ~

As N increases GN approaches II, the entropy of the source and H' ap-
proaches H.

We see from this that the inefficiency in coding, when only a finite delay of

N symbols is used, need not be greater than ~ plus the difference between

the true entropy II and the entropy GN calculated for sequences of length N.
The per cent excess time needed over the ideal is therefore less than

GN 1
II + lIN - 1.

This method of encoding is substantially the same as one found inde-
pendently by R. M. Fano.t His method is to arrange the messages of length
N in order of decreasing probability. Divide this series into two groups of
as nearly equal probability as possible. If the message is in the first group
its first binary digit will be 0, otherwise 1. The groups arc similarly divided
into subsets of nearly equal probability and the particular subset determines
the second binary digit. This process is continued until each subset contains
only one message. It is easily seen that apart from minor differences (gen-
erally in the last digit) this amounts to the same thing as the arithmetic
process described above.

10. DISCUSSION AND EXAMPLES

In order to obtain the maximum power transfer from a generator to a load
a transformer must in general be inlroduced so that the generator as seen
from the load has the load resistance. The situation here is roughly anal-
ogous. The transducer which does the encoding should match the source
to the channel in a statistical sense. The source as seen from the channel
through the transducer should have the same statistical structure as the
source which maximizes the entropy in the channel. The content of
Theorem 9 is that, although an exact match is not in general possible, we can
approximate it as closely as desired. The ratio of the actual rate of trans-
mission to the capacity C may be called the efficiency of the coding system.
This is of course equal to the ratio of the actual entropy of the channel
symbols to the maximum possible entropy.

In general, ideal or nearly ideal encoding requires a long delay in the
transmitter and receiver. In the noiseless case which we have been
considering, the main function of this delay is to allow reasonably good

t Technical Report No. 65, The Research Laboratory of Electronics, 1\'1. I. T.
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matching of probabilities to corresponding lengths of sequences. With a
good code the logarithm of the reciprocal probability of a long message
must be proportional to the duration of the corresponding signal, in fact

must be small for all but a small fraction of the long messages,
If a source can produce only one particular message its entropy is zero,

and no channel is required. For example, a computing machine set up to
calculate the successive digits of 1r produces a definite sequence with no
chance clement. No channel is required to "transmit" this to another
point. One could construct a second machine to compute the same sequence
at the point. However, this nlay be impractical. In such a case we can
choose to ignore some or all of the statistical knowledge we have of the
source. We might consider the digits of 1r to be a random sequence in that
we construct a system capable of sending any sequence of digits. In a
similar way \ve may choose to use some of our statistical knowledge of Eng-
lish in constructing a code, but not all of it. In such a case we consider the
source with the maximum entropy subject to the statistical conditions we
wish to retain. The entropy of this source determines the channel capacity
which is necessary and sufficient. In the 11" example the only information
retained is that all the digits arc chosen from the set 0, 1, ... , 9. In the
case of English one might wish to use the statistical saving possible due to
letler frequencies, but nothing else. The maximum entropy source is then
the first approximation to English and its entropy determines the required
channel capacity.

As a simple example of some of these results consider a source which
produces a sequence of letters chosen from among .11, /3, C, D with prob-
abilities I, }, 1, 1, successive symbols being chosen independently. We
have

II = - (! log! + 1log 1· + i log i)

= t bits per symbol.

Thus we can approximate a coding system to encode messages from this
source into binary digits with an average of -I- binary digit per symbol.
In this case we can actually achieve the limiting value by the Iollowing code
(obtained by the method of the second proof of Theorem 9):
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A
B
C
D

o
10

110
111

31

The average number of binary digits used in encoding a sequence of N sym-
bols will be

N(! X 1 + 1 X 2 + i X 3) = iN

It is easily seen that the binary digits 0, 1 have probabilities j , ! so the II for
the coded sequences is one bit per symbol. Since, on the average, we have t
binary symbols per original letter, the entropies on a time basis are the
same. The maximum possible entropy for the original set is log 4 = 2,
occurring when A, 13, C, D have probabilities i, i, l, -1. Hence the relative
entropy is I. We can translate the binary sequences into the original set of
symbols on a two-to-one basis by the following table:

00 A'
01 B'
10 C'
11 D'

This double process then encodes the original message into the same symbols
but with an average compression ratio i .

As a second example consider a source which produces a sequence of A 's
and B's with probability p for A and q for B. If P< < q we have

II = -log p'(1 _ P)'-P

= - P log P (1 - p)u-P)/p

· I e= p og-
'P

In such a case one can construct a fairly good coding of the message on a
0, 1 channel by sending a special sequence, say 0000, for the infrequent
symbol A and then a sequence indicating the number of B's following it.
This could be indicated by the binary representation with all numbers con-
taining the special sequence deleted. All numbers up to 16 are represented
as usual; 16 is represented by the next binary number after 16 which does
not contain four zeros, namely 17 = 10001, etc.

It can be shown that as p --. 0 the coding approaches ideal provided the
length of the special sequence is properly adjusted.
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PART II: THE DISCRETE CHANNEL WITH NOISE

11. REPRESENTATION OF A NOISY DISCRETE CHANNEL

We now consider the case where the signal is perturbed by noise during
transmission or at one or the other of the terminals. This means that the
received signal is not necessarily the same as that sent out by the trans-
mitter. Two cases may bedistinguished. If a particular transmitted signal
always produces the same received signal, i.e. the received signal is a definite
function of the transmitted signal, then the effect may be called distortion.
If this function has an inverse-no two transmitted signals producing the
same received signal-distortion may be corrected, at least in principle, by
merely performing the inverse functional operation on the received signal.

The case of interest here is that in which the signal does not always undergo
the same change in transmission. In this case we may assume the received
signal E to be a function of the transmitted signal S and a second variable,
the noise N.

E = tis, N)

The noise is considered to be a chance variable just as the message was
above. In general it may be represented by a suitable stochastic process.
The most general type of noisy discrete channel we shall consider is a general-
ization of the finite state noise free channel described previously. We
assume a finite number of states and a set of probabilities

Pa,'(P' j).

This is the probability, if the channel is in state a and symbol i is trans-
mitted, that symbol j will be received and the channel left in state (j. Thus
a and (j range over the possible states, i over the possible transmitted signals
and j over the possible received signals. In the case where successive sym-
bols are independently perturbed by the noise there is only one state, and
the channel is described by the set of transition probabilities Pi(j), the prob-
ability of transmitted symbol i being received as j.

If a noisy channel is fed by a source there are two statistical processes at
work: the source and the noise. Thus there are a number of entropies that
can be calculated. First there is the entropy H(x) of the source or of the
inpu t to the channel (these will be equal if the transmitter is non-singular).
The entropy of the output of the channel, i.e. the received signal, will be
denoted by H(y). In the noiseless case ll(y) = [lex). The joint entropy of
input and output will be H(xy). Finally there are two conditional entro-
pies Hs(y) and H,(x), the entropy of the output when the input is known
and conversely. Among these quantities we have the relations

H{x, y) = H(x) + H .(y) = H(y) + H,(x)
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All of these entropies can be measured on a per-second or a per-symbol
basis.

12. EQUIVOCATION AND CIIANNEL CAPACITY

If the channel is noisy it is not in general possible to reconstruct the orig-
inal message or the transmitted signal with (,ulai,dy by any operation on the
received signal E. There are, however,ways of transmitting the information
which are optimal in combating noise. This is the problem which we now
consider.

Suppose there are two possible symbols 0 and 1, and we are transmitting
at a rate of 1000symbols per second with probabilities po = PI = !. Thus
our source is producing information at the rate of 1000bits per second. Dur-
ing transmission the noise introduces errors so that, on the average, 1 in 100
is received incorrectly (a 0 as 1, or 1 as 0). What is the rate of transmission
of information? Certainly less than 1000 bits per second since about 1%
of the received symbols are incorrect. Our first impulse might be to say the
rate is 990 bits per second,merely subtracting the expected number of errors.
This is not satisfactory since it fails to take into account the recipient's
lack of knowledge of where the errors occur. We may carry it to an extreme
case and suppose the noise so great that the received symbols are entirely
independent of the transmitted symbols. The probability of receiving 1 is
I whatever was transmitted and similarly for o. Then about half of the
received symbols are correct due to chance alone, and we would be giving
the system credit for transmitting 500 bits per second while actually no
information is being transmitted at all. Equally "good" transmission
would be obtained by dispensing with the channel entirely and flipping a
coin at the receiving point.

Evidently the proper correction to apply to the amount of information
transmitted is the amount of this information which is missing in the re-
ceived signal, or alternatively the uncertainty when we have received a
signal of what was actually sent. From our previous discussion of entropy
as a measure of uncertainty it seems reasonable to use the conditional
entropy of the message, knowing the received signal, as a measure of this
missing information. This is indeed the proper definition, as we shall see
later. Following this idea the rate of actual transmission, R, would be ob-
tained by subtracting from the rate of production (i.e., the entropy of the
source) the average rate of conditional entropy.

R = l/(x) - Ill/(x)

The conditional entropy /l,(x) will, for convenience, be called the equi-
vocation. It measures the average ambiguity of the received signal.
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In the example considered above, if a 0 is received the a posteriori prob-
ability that a 0 was transmitted is .99, and that a 1 was transmitted is
.01. These figures are reversed if a 1 is received. Hence

[11/(x) = - r.99 log .99 + 0.01 log 0.01]

= .081 bits/symbol

or 81 bits per second. We may say that the system is transmitting at a rate
1000 - 81 = 919 bits per second. In the extreme case where a 0 is equally
likely to be received as a 0 or 1 and similarly for 1J the a posteriori proba-
bilities are! J 1and

Ill/(x) = - Jllog! + llog !J
= 1 bit per symbol

or 1000 bits per second. The rate of transmission is then 0 as it should
be.

The following theorem gives a direct intuitive interpretation of the
equivocation and also serves to justify it as the unique appropriate measure.
\Ve consider a communication system and an observer (or auxiliary device)
who can see both what is sent and what is recovered (with errors
due to noise). This observer notes the errors in the recovered message and
transmits data to the receiving point over a "correction channel" to enable
the receiver to correct the errors. The situation is indicated schematically
in Fig. 8.
Theorem 10: If the correction channel has a capacity equal to BIJ(x) it is
possible to so encode the correction data as to send it over this channel
and correct all but an arbitrarily small fraction E of the errors. This is not
possible if the channel capacity is less than IIJl.(x).

Roughly then, IIII (x) is the amount of additional information that must be
supplied per second at the receiving point to correct the received message.

To prove the first part, consider long sequences of received message M'
and corresponding original message M. There will be logarithmically
TII,,(x) of the M's which could reasonably have produced each M'. Thus
we have TH,I (x) binary digits to send each T seconds. This can be done
with E frequency of errors on a channel of capacity Il ll (x).

The second part can be proved by noting, first, that for any discrete chance
variables x, y, S

II ,I (x, s) 2: II,,(x)

The left-hand side can be expanded to give

ll,,(z) + 111/.(x) ~ lll/{x)

H".(x) ~ I11J(x) - HIJ{z) ~ 1111 (x) 11(z)
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If we identify x as the output of the source, y as the received signal and s
as the signal sent over the correction channel, then the right-hand side is the
equivocation less the rate of transmission over the correction channel. If
the capacity of this channel is less than the equivocation the right-hand side
will be greater than zero and llll'(x) ~ O. But this is the uncertainty of
what was sent, knowing both the received signal and the correction signal.
If this is greater than zero the frequency of errors cannot be arbitrarily
small.
Example:

Suppose the errors occur at random in a sequence of binary digits: proba-
bility p that a digit is wrong and q = 1 - P that it is right. These errors
can be corrected if their position is known. Thus the correction channel
need only send information as to these positions. This amounts to trans-

CORRECTION DATA-
I

OB5ERVER

, \

- ~
M M'

~OURC[ ~RANSUITTER RECEIVER CORRECTING
DEVICE

Fig. 8-Schcnlatic diagram of a correction SYSlCI11.

mitring Irom a source which produces binary digits with probability p for
1 (correct) and q for 0 (incorrect). This requires a channel of capacity

- [p log P+ q log q]

which is the equivocation of the original system,
The rate of transmission R can be written in t\VO other forms due to the

identities noted above. We have

R = ll(x) - IIII(x)

= ll(y) - ll~(y)

= Il(x) + II(y) - ll(x, y).

The first defining expression has already been interpreted as the amount of
information sent less the uncertainly of what was sent. The second meas-
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ures the amount received less the part of this which is due to noise. The
third is the sum of the two amounts less the joint entropy and therefore in a
sense is the number of bits per second common to the two. Thus all three
expressions have a certain intuitive significance.

The capacity C of a noisy channel should be the maximum possible rate
of transmission, i.e., the rate when the source is properly matched to the
channel. We therefore define the channel capacity by

C = Max (H(x) - HII(x»

where the maximum is with respect to all possible information sources used
as input to the channel. If the channel is noiseless, llll(x) = O. The defini-
tion is then equivalent to that already given for anoiseless channel since the
maximum entropy for the channel is its capacity.

13. TIlE FUNDAMENTAL THEOREM FOR A DISCRETE CIIANNEL WITII

NOISE

It may seem surprising that we should define a definite capacity C for
a noisy channel since we can never send certain information in such a case.
It is clear, however, that by sending the information in a redundant fonn the
probability of errors can be reduced. For example, by repeating the
message many times and by a statistical study of the different received
versions of the message the probability of errors could be made very small.
One would expect, however, that to make this probability of errors approach
zero, the redundancy of the encoding must increase indefinitely, and the rate
of transmission therefore approach zero. This is by no means true. If it
were, there would not be a very well defined capacity, but only a capacity
for a given frequency of errors, or a given equivocation; the capacity going
down as the error requirements are made more stringent. Actually the
capacity C defined above has a very definite significance. It is possible
to send information at the rate C through the channel with as small a fre-
quency of errors or equivocation as desired by proper encoding. This state-
ment is not true for any rate greater than C. If an attempt is made to
transmit at a higher rate than C, say C + R1 , then there will necessarily
be an equivocation equal to a greater than the excess R1 • Nature takes
payment by requiring just that much uncertainty, so that we are not
actually getting any more than C through correctly.

The situation is indicated in Fig. 9. The rate of information into the
channel is plotted horizontally and the equivocation vertically. Any point
above the heavy line in the shaded region can be attained and those below
cannot. The points on the line cannot in general be attained, but there will
usually be two points on the line that can.
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These results are the main justification for the definition of C and will
now be proved.
Theorem 11. Let a discrete channel have the capacity C and a discrete
source the entropy per second [I. If II ~ C there exists a coding system
such that the output of the source can be transmitted over the channel with
an arbitrarily small frequency of errors (or an arbitrarily small equivocation).
If II > C it is possible to encode the source so that the equivocation is less
than II - C + E where E is arbitrarily small. There is no method of encod-
ing which gives an equivocation less than II - C.

TIle method of proving the first part of this theorem is not by exhibiting
a coding method having the desired properties, but by showing that such a
code must exist in a certain group of codes. In fact we will average the
frequency of errors over this group and show that this average can be made
less than E. If the average of a set of numbers is less than E there must
exist at least one in the set which is less than E. This will establish the
desired result.

H 'X)

Fig. 9-The equivocation possible for a given input entropy to a channel.

The capacity C of a noisy channel has been defined as

C = Max (ll(x) - 11,,(x»

where x is the input and y the output. The maximization is over all sources
which might be used as input to the channel.

Let So be a source which achieves the maximum capacity C. If this
maximum is not actually achieved by any source let So be a source which
approximates to giving the maximum rate. Suppose So is used as input to
the channel. We consider the possible transmitted and received sequences
of a long duration T. The following will be true:
1. The transmitted sequences fall into two classes, a high probability group
with about 2TH (z ) members and the remaining sequences of small total
probability.
2. Similarly the received sequences have a high probability set of about
2T H C

,, ) members and a low probability set of remaining sequences.
3. Each high probability output could be produced by about 2T 11

,, ( Z ) inputs.
The probability of all other cases has a small total probability.
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All the e's and 6'5 implied by the words "small" and "about" in these
statements approach zero as we allow T to increase and So to approach the
maximizing source.

The situation is sununarized in Fig. 10 where the input sequences are
points on the left and output sequences points on the right. The fan of
cross lines represents the range of possible causes for a typical output,

Now suppose we have another source producing information at rate R
with R < C. In the period T this source will have 2T B high probability
outputs. We wish to associate these with a selection of the possible channel

[

•
•

M
• •
• •

•

•
•

2H1y)T
• HIGH PROBABILITY

2 Hy(xJT RCCEIVED SIGNALS
RtASONABLE CAUSCS·

rOR EACH E•

2 HhdT
HIGH PROBABILITY ------~__

MESSAGES

• •

•
Fig. to-Schematic representation of the relations between inputs and outputs in a

channel.

inputs in such a way as to get a small frequency of errors. We will set up
this association in all possible ways (using, however, only the high proba-
bility group of inputs as determined by the source So) and average the fre-
quency of errors for this large class of possible coding systems. This is the
same as calculating the frequency of errors for a random association of the
messages and channel inputs of duration T. Suppose a particular output
)'1 is observed. What is the probability of more than one message in the set
of possible causes of 'Yl? There are 2TRmessages distributed at random in
2TH

(2) points. The probability of a particular point being a message is
thus

27'(R-H(Z»
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The probability that none of the points in the fan is a message (apart from
the actual originating message) is

P = [1 - 2TCII-H(%l)j2TII,(z)

Now R < 11(x)
Consequently

H.(x) so R - 11(x) = -11,,(x) - " with" positive.

P = [1 - 2-TII,(Z)-T"]2TH.CZ)

approaches (as T --. (X»

Hence the probability of an error approaches zero and tile first part of the
theorem is proved.

The second part of the theorem is easily shown by noting that we could
merely send C bits per second from the source, completely neglecting the
remainder of the information generated. At the receiver the neglected part
gives an equivocation H(x) - C and the part transmitted need only add f.

This limit can also be attained in many other ways, as will be shown when we
consider the continuous case.

The last statement of the theorem is a simple consequence of our definition
of C. Suppose we can encode a source with R = C + a in such a way as to
obtain an equivocation II,,(x) = a - E with E positive. Then R = H(x) =
C + a and

[/(x) - II,,(x) = C + E

with E positive. This contradicts the definition of C as the maximum of
[/(x) - 11,,(x).

Actually more has been proved than was stated in the theorem. If the
average of a set of numbers is within E of their maximum, a fraction of at
most .y;can be more than -V;below the maximum. Since ~ is arbitrarily
small we can say that almost all the systems are arbitrarily close to the ideal.

14. DISCUSSION

The demonstration of theorem 11, while not a pure existence proof, has
some of the deficiencies of such proofs. An attempt to obtain a good
approximation to ideal coding by following the method of the proof is gen-
erally impractical. In fact, apart from some rather trivial cases and
certain limiting situations, no explicit description of a series of approxima-
tion to the ideal has been found. Probably this is no accident but is related
to the difficulty of giving an explicit construction for a good approximation
to a random sequence.
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An approximation to the ideal would have the property that if the signal
is altered in a reasonable way by the noise, the original can still be recovered.
In other words the alteration will not in general bring it closer to another
reasonable signal than the original. This is accomplished at the cost of a
certain amount of redundancy in the coding. The redundancy must be
introduced in the proper way to combat the particular noise structure
involved. However, any redundancy in the source will usually help if it is
utilized at the receiving point. III particular, if the source already has a
certain redundancy and no attempt is made to eliminate it in matching to the
channel, this redundancy willhelp combat noise. For example, in a noiseless
telegraph channel one could save about 50% in lime by proper encoding of
the messages. This is not done and most of the redundancy of English
remains in the channel symbols. This has the advantage, however, of
allowing considerable noise in the channel. A sizable fraction of the letters
can be received incorrectly and still reconstructed by the context. In
fact this is probably not a bad approximation to the ideal in many cases,
since the statistical structure of English is rather involved and the reasonable
English sequences are not too far (in the sense required for theorem) from a
random selection.

As in the noiseless case a delay is generally required to approach the ideal
encoding. It now has the additional function of allowing a large sample of
noise to affect the signal before any judgment is made at the receiving point
as to the original message. Increasing the sample size always sharpens the
possible statistical assertions.

The content of theorem 11 and its proof can be formulated in a somewhat
different way which exhibits the connection with the noiseless case more
clearly. Consider the possible signals of duration T and suppose a subset
of them is selected to be used. Let those in the subset all be used with equal
probability, and suppose the receiver is constructed to select, as the original
signal, the most probable cause from the subset, when a perturbed signal
is received. We define N(T, q) to be the maximum number of signals we
can choose for the subset such that the probability of an incorrect inter-
pretation is less than or equal to q.

Theorem 12: Lim log NT(T, q) = C, where C is the channel capacity, pro-
7' ... 00

vided that q does not equal 0 or 1.
In other words, no matter how we set our limits of reliability, we can

distinguish reliably in time T enough messages to correspond to about CT
bits, when T is sufficiently large. Theorem 12 can be compared with the
definition of the capacity of ~ noiseless channel given in section 1.
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15. EXAMPLE OF A DISCRETE CIIANNEL AND ITS CAPACITY

A simple example of a discrete channel is indicated in Fig. 11. There
are three possible symbols. The first is never affected by noise. The second
and third each have probability p of coming through undisturbed, and q
of being changed into the other of the pair. We have (letting a = - [p log

•

p

•

TRANSMITTED
SYMBOLS

RECElveo
SYMBOLS

P
Fig. II-Example of a discrete channel.

p + q log q] and P and Q be the probabilities of using the first or second
symbols)

ll(x) == -P logP - 2Qlog Q

H,,(x) = 2Qa

We wish to choose P and Q in such a way as to maximize H(x) - 11,,(x),
subject to the constraint P + 2Q = 1. Hence we consider

u == -P log P - 2Q log Q - 2Qa + X(P + 2Q)

auap = -1 - log P + x = 0

au
aQ = - 2 - 2 log Q- 2a + 2>' = o.

Eliminating x
log P = log Q+ a

p = Ql~ = Q{3

P 1
P=P+2 Q=P+2'

The channel capacity is then

1i+2
C = log-fj-.



42 c. E. Shannon

s = 1,2, ....

Note how this checks the obvious values in the cases p = 1 and p == i .
In the first, {j = 1 and C = log 3, which is correct since the channel is then
noiseless with three possible symbols. If p = !, (j = 2 and C = log 2.
Here the second and third symbols cannot be distinguished at all and act
together like one symbol. The first symbol is used with probability P ==
I and the second and third together with probability 1. This may be
distributed in any desired way and still achieve the maximum capacity.

For intermediate values of p the channel capacity will lie between log
2 and log 3. The distinction between the second and third symbols conveys
some information but not as much as in the noiseless case. The first symbol
is used somewhat more frequently than the other two because of its freedom
from noise.

16. TUE CIIANNEL CAPACITY IN CERTAIN SPECIAL CASES

If the noise affects successive channel symbols independently it can be
described by a set of transition probabilities Pii. This is the probability,
if symbol i is sent, that j will be received. The maximum channel rate is
then given by the maximum of

L Pi,Pii log L Pi Pij - L r, Pij log Pi;
i.j i i. i

where we vary the Pi subject to 'XPi = 1. This leads by the method of
Lagrange to the equations,

~ P.;
~ Pti log" p.p .. = p.

, L-" '1
i

Multiplying by P, and summing on s shows that p = -C. Let the inverse
of Pd (if it exists) be 1,,, so that L: ""p.j = &'i' Then:

•

Hence:

L Pi pi' = exp [C L h" + L: 11" p.j log p,;)
i .,ei

or,

Pi = E /z., exp [C1: 11" + 1: II" p,j log P,j].
, , •. i

This is the system of equations for determining the maximizing values of
P, , with C to be determined so that ~ P, = 1. When this is done C will be
the channel capacity, and the Pi the proper probabilities for the channel
symbols to achieve this capacity.
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If each input symbol has the same set of probabilities on the lines emerging
from it, and the same is true of each output symbol, the capacity can be
easily calculated. Examples are shown in Fig. 12. In such a case H,,(y)
is independent of the distribution of probabilities on the input symbols, and
is given by -~ p, log p, where the Piare the values of the transition proba-
bilities from any input symbol. The channel capacity is

Max [O(y) - Hz(y»)

= Max H(y) +1; Pilog p,.

The maximum of IICy) is clearly log m where m is the number of output

'/2

abc
Fig. 12-Examples of discrete channels with the same transition probabilities for each

nput and for each output.
i

symbols, since it is possible to make them all equally probable by making
the input symbols equally probable. The channel capacity is therefore

C = log m + 1; Pi log Pi.
In Fig. 12a it would be

C = log 4 - log 2 = log 2.

This could be achieved by using only the 1st and 3d symbols. In Fig. 12b

C = log 4 - ! log 3 - 1 log 6

= log 4 - log 3 - i log 2

= log 12'.
In Fig. 12c we have

C = log 3 - I log 2 - i log 3 - 1 log 6

3
= log 21 316' •
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Suppose the symbols fall into several groups such that the noise never
causes a symbol in one group to be mistaken for a symbol in another group.
Let the capacity for the 11th group be eft when we use only the symbols
in this group. Then it is easily shown that, for best use of the entire set,
the total probability P ft of all symbols in the nth group should be

2e,.
P; = l;2C,. •

Within a group the probability is distributed just as it would be if these
were the olll~ symbols being used. The channel capacity is

C = log ~2c",

17. AN EXAMPLE OF EFFICIENT CODING

The following example, although somewhat unrealistic, is a case in which
exact matching to a noisy channel is possible. There are two channel
symbols, 0 and 1, and the noise affects them in blocks of seven symbols. A
block of seven is either transmitted without error, or exactly one symbol of
the seven is incorrect. These eight possibilities are equally likely. We have

C = Max [H(y) - Hz(Y)]

= 't [7+ I log 1]
= t bits/symbol.

An efficient code, allowing complete correction of errors and transmitting at
the rate C, is the following (found by a method due to R. Hamming):

Let a block of seven symbols be Xl, X 2, ••• X 7- Of these Xa, Xi, X. and
X7 are message symbols and chosen arbitrarily by the source. The other
three are redundant and calculated as follows:

X. is chosen to make a = X. + XI + Xe + X7 even

X 2 II II II " {J = X 2 + Xa + X. + X 7 u

Xl fC U U II ,,= Xl + Xa + Xi + X7 cc

When a block of seven is received a, {J and 'Yare calculated and if even called
zero, if odd called one. The binary number a (j 'Y then gives the subscript
of the Xi that is incorrect (if 0 there was no error).

APPENDIX 1

TnE GROWTH OF THE NUMBER OF BLOCKS OF SYMBOLS WIT}I A
FINITE STATE CONDITION

Let N ,(L) be the number of blocks of symbols of length L ending in state
i. Then we have

Nj(L) = :E N,(L - b~i»
i.
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where b~j , b~j , ••• b":i are the length of the symbols which may be chosen
in state i and lead to state j. These are linear difference equations and the
behavior as L --. 00 must be of the type

N, == AjW£

Substituting in the difference equation

Aj W£ = L Ai w~rt~:)
i.s

or

For this to be possible the determinant

D(W) = laijl == 11: W-rt\j) - 8ijl
B

must vanish and this determines W, which is, of course, the largest real root
of D = o.

The quantity C is then given by

C L· log ~Aj w£ 1 W= tnt = og
£ ....00 L

and we also note that the same growth properties result if we require that all
blocks start in the same (arbitrarily chosen) state.

APPENDIX 2

DERIVATION OF 1/ == -1: Pi log Pi

Let H (!,~, ···,!) = A (u), From condition (3) we can decompose
n n n

a choice from s" equally likely possibilities into a series of m choices each
from s equally likely possibilities and obtain

A (s"') == 11. A (s)

Similarly

A(t") = n A(I)

We can choose n arbitrarily large and find an m to satisfy

$'" s tft < s(...+1)



A(t) == -K log'

or 1'~ _A.(/)I< E
11 A(s)

46

Thus, taking logarithms and dividing by n log s,

~ ~ Jog t s ~ +! or I~ _log t I< e
,~ log s "" 11 log s

where e is arbitrarily small.
Now from the monotonic property of A ('J)'

A (s"') s A (tft ) ~ A (S"'+I)

111 A (s) ~ uA(I) ~ (11J + 1)A(s)

Hence, dividing by nA(s),

~ < A(l) < ~ + ~
11 - A(s) - " "

IA (t) _ log tI< 2e
A(s) log s -

C. E. Shannon

where K must be positive to satisfy (2).
Now suppose we have a choice from", possibilities with commensurable prob-

abilities Pi = :. where the IIi arc integers. We can break down a choice
un

from 1;u, possibilities into a choice from n possibilities with probabilities
Pi ... p,. and then, if the ilh was chosen, a choice {rom n , with equal prob-
abilities. Using condition 3 again, we equate the total choice (rom ~lIi

as computed by two methods

K log1;"i = II(p. , .... ' Pre) + Kl; Pi log IJi

Hence

If the Pi are incommeasurable, they may be approximated by rationals and
the same expression must bold by our continuity assumption. Thus the
expression holds in general. The choice of coefficient K is a matter of con-
venience and amounts to the choice of a unit of measure.

APPENDIX 3

THEOREMS ON ERGODIC SOURCES

If it i~ possible to go from any state with P > 0 to any other along a path
of probability P > 0, the system is ergodic and the strong law of large num-
bers can be applied. Thus the number of times a given path Pij in the net-
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work is traversed in a long sequence of length N is about proportional to the
probability of being at i and then choosing this path, P .PijN. If N is large
enough the probability of percentage error ± ain this is less than E so that
for all but a set of small probability the actual numbers lie within the limits

. (P 'Pij ± lJ)N

Hence nearly aU sequences have a probability p given by

p = np~i'Pi/:t:I)N

and lOy is limited by

log p
l{ = xtr, Pi; ± 8) log Pi;

or

IlotP - 1:Pd'ii log PiiI< ,.,.

This proves theorem 3.
Theorem 4 follows immediately from this on calculating upper and lower

bounds for n(q) based on the possible range of values of p in Theorem 3.
In the mixed (not ergodic) case if

L = 1; p. L,

and the entropies of the components are HI ~ 112 ~ ••• ~ H; we have the

Theorem: Lim IOgNn(q) = tp(q) is a decreasing step function,
N-+oo

--I _

tp(q) = II. in the interval L a, < q < L ai ,
I 1

To prove theorems 5 and 6 first note that FN is monotonic decreasing be-
cause increasing N adds a subscript to a conditional entropy. A simple
substitution for PSi (Sj) in the definition of FN shows that

FN = NGN - (N - 1)GN - 1

and summing this for all N gives GN = ~ 1: FN. Hence GN ~ FNand GN

monotonic decreasing. Also they must approach the same limit. By using
theorem 3 we see that Lim ON = H.

N .... oo

APPENDIX 4

MAXIMIZING THE RATE FOR A SYSTEM OF CONSTRAINTS

Suppose we have a set of constraints on sequences of symbols that is of
the finite state type and can be represented therefore by a linear graph.
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Let l~j) be the lengths of the various symbols that can occur in passing from
state i to state j. What distribution of probabilities Pi for the different
states and p~i) for choosing symbol s in state i and going to statej maximizes
the rate of generating information under these constraints? The constraints
define a discrete channel and the maximum rate must be less than or equal
to the capacity G of this channel, since if all blocks of large length were
equally likely, this rate would result, and if possible this would be best. We
willshow that this rate can be achieved by proper choice of the P, and p1i' .

The rate in question is

-1;PiP1i) log p~i) N
~p(.)p~i) t~i) == M·

Let ei ; = L t~i). Evidently for a maximum p~1 == k exp e~·l. The con-
•

straints on maximization are ~p i = 1, L Pij == 1, ~ P .(Pij - Bij) == O.
i

Hence we maximize

-T,P,/Ji; log Pi; ~
U == -XP,Pijlij + X £.r P' + 'XlAiPij + 'XfIiPi(Pij - au)

au == _M~i(I+1ogPij)+NPiti;+A+ .+ .p.::o
apt; M2 P.I 'I., ·

Solving for Pij

Since

E Pij == 1,
j

A,I == E BjD-til
i

BiD-I"
Pi; == L s.trs- ·

•
The correct value of D is the capacity C and the B, are solutions of

-l ..
B. == }; BjG 'I

for then

or
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So that if A. satisfy

49

Pi == Btl'i

Both of the sets of equations for B i and 'Yican be satisfied since C is such that

IC- t i l
- 8ij I == 0

In this case the rate is

but

T,P, Pi;(log B, - log B.) = L Pj log B, - };P, log B; == 0
i

Hence the rate is C and as this could never be exceeded this is the maximum'
justifying the assumed solution.
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PART III: MATHEMATICAL PRELIMINARIES

In this final installment of the paper we consider the case where the
signals or the messages or both are continuously variable, in contrast with
the discrete nature assumed until now. To a considerable extent the con-
tinuous case can be obtained through a limiting process from the discrete
caseby dividing the continuum of messages and signals into a large but finite
number of small regions and calculating the various parameters involved on
a discrete basis. As the size of the regions is decreased these parameters in
general approach as limits the proper values for the continuous case. There
are, however, a few .new effects that appear and also a general change of
emphasis in the direction of specialization of the general results to particu-
lar cases.

We will not attempt, in the continuous case, to obtain our results with
the greatest generality, or with the extreme rigor of pure mathematics, since
this would involve a great deal of abstract measure theory and would ob-
scure the main thread of the analysis. A preliminary study, however, indi-
cates that the theory can be formulated in a completely axiomatic and
rigorous manner which includes both the continuous and discrete cases and
many others. The occasional liberties taken with limiting processes in the
present analysis can be justified in all cases of practical interest.

18. SETS AND ENSEMBLES OF FUNCTIONS

We shall have to deal in the continuous case with sets of functions and
ensembles of functions. A set of functions, as the name implies, is merely a
class or collection of functions, generally of one variable, time. It can be
specified by giving an explicit representation of the various functions in the
set, or implicitly by giving a property which functions in the set possess and
others do not. Some examples are:
1. The set of functions:

/.(1) = sin (I + 0).

Each particular value of (J determines a particular function in the set.
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2. The set of all functions of time containing no frequencies over W cycles
per second.

3. The set of all functions limited in band to Wand in amplitude to A.
4. The set of all English speech signals as functions of time.

An ensemble of functions is a set of functions together with a probability
measure whereby we may determine the probability of a function in the
set having certain properties.' For example with the set,

j.(t) = sin (I + (J),

we may give a probability distribution for 9, P(9). The set then becomes
an ensemble.

Some further examples of ensembles of functions are:
1. A finite set of functions /,,(1) (k = 1, 2, · · · , n) with the probability of

j. being p•.
2. A finite dimensional family of functions

j(at , aJ , •• • , a.. ; I)

with a probability distribution for the parameters a. :
p(al, ... , a,,)

For example we could consider the ensemble defined by

"
feat J • •• , a" , 01 , • •• J 6" ; t) = L: a" sin n(ldl + 6..)

"_I

with the amplitudes a, distributed normally and independently, and the
phrases 8i distributed uniformly (from 0 to 2".) and independently.

3. The ensemble

j( t)
_ -s: sin 1r(2~Vt - n)

a, , - LJ4" )
"_-00 1r(2We - "

with the 4, normal and independent all with the same standard deviation
vii. This is a representation of "white" noise, band-limited to the band
from 0 to W cycles per second and with average power N.2

lIn mathematical terminology the functions belong to a measure space whose total
measure is unity.

I This representation can be used as a definition of band limited white noise. It has
certain advanta,es in that it involves fewer limiting o~era lions than do definitions that
have been used In the past. The name "white noise, , already firmly intrenched in the
literature, is perhaps somewhat unfortunate. In optics white light means either any
continuous spectrum as contrasted with a point spectrum, or a spectrum' which is nat withwa",'",,'" (which is not the same as a spectrum flat with frequency).
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4. Let points be distributed on the I axis according to a Poisson distribu-
tion. At each selected point the function /(t) is placed and the different
functions added, giving the ensemble

where the t" are the points of the Poisson distribution. This ensemble
can be considered as a type of impulse or shot noise where all the impulses
are ideo tical.

5. The set of English speech functions with the probability measure given
by the frequency of occurrence in ordinary use.

An ensemble of functions u» is slaliolJary if the same ensemble results
when all functions are shifted any fixed amount in time. The ensemble

(,(I) = sin (I + 8)

is stationary if 8 distributed uniformly from 0 to 2.... If we shift each func-
tion by 11 we obtain

(,(I + '1) = sin (t + 11 + 8)

= sin (I + f(J)

with f(J distributed uniformly from 0 to 2r. Each function has changed
but the ensemble as a whole is invariant under the translation. The other
examples given above are also stationary.

An ensemble is ergodic if it is stationary, and there is no subset of the func-
tions in the set with a probability different from 0 and 1 which is stationary.
The ensemble

sin (t + 8)

is ergodic. No subset of these functions of probability ¢O, 1 is transformed
into itself under all time translations. On the other hand the ensemble

a sin (I + 8)

with a distributed normally and 8 uniform is stationary but not ergodic.
The subset of these functions with a between 0 and 1 for example is
stationary.

Of the examples given, 3 and 4 are ergodic, and 5 may perhaps be con-
sidered so. If an ensemble is ergodic we may say roughly that each func-
tion in the set is typical of the ensemble. More precisely it is known that
with an ergodic ensemble an average of any statistic over the ensemble is
equal (with probability 1) to an average over all the time translations of a
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particular function in the set.' Roughly speaking, each function can be ex-
pected, as time progresses, to go through, with the proper frequency J all the
convolutions of any of the functions in the set.

Just as we may perform various operations on numbers or functions to
obtain new numbers or functions, we can perform operations on ensembles
to obtain new ensembles. Suppose, for example, we have an ensemble of
functions faCt) and an operator T which gives for each function faCt) a result
ga(t):

gael) = Tfa(t)

Probability measure is defined for the set ga(/) by means of that Cor the set
fd(t). The probability of a certain subset of the gael) functions is equal
to that of the subset of the fll(/) functions which produce members of the
given subset of g functions under the operation T. Physically this corre-
sponds to passing the ensemble through some device, for example, a filter,
a rectifier or a modulator. The output functions of the device form the
ensemble ga(L).

A device or operator T will be called invariant if shifting the input merely
shifts the output, i.e., if

implies

for all faCt) and all 11. It is easily shown (sec appendix 1) that if T is in-
variant and the input ensemble is stationary then the output ensemble is
stationary, Likewise if the input is ergodic the output will also be ergodic.

A filter or a rectifier is invariant under all time translations. The opera-
tion of modulation is not since the carrier phase gives a certain time struc-
ture. However, modulation is invariant under all translations which arc
multiples of the period of the carrier.

Wiener has pointed out the intimate relation between the invariancc of
physical devices under time translations and Fourier theory." He has

3 This is the famous ergo.lie theorem or rather one aspect of this theorem which was
proved is somewhat different formulations hy Hirkhoff, von Neumann, and Koopman, and
subsequently generalized by Wiener, Hopl, Hurcwicz and others. The literature on ergodic
theory is quite extensive and the reader is referred to the papers of these writers for pre-
cise and general formulations; e.g., E. Hopf "Ergodcntheoric" Ergebnisse rler Mathematic
und ihrer Grcnzgebiete, Vol. 5, CIOn Causality Statistics and Probability" journal of
Mathematics and Physics, Vol. XIII, No.1, 1934; N. Weiner "The Ergodic 'Theorem"
Duke Mathematical journal, Vol. 5, 1939.

4 Communication theory is heavily indebted to Wiener for much of its basic philosophy
and theory. His classic NDRC report "The Interpolation, Extrapolation, and Smoothing
or Stationary Time Series," to appear soon in hook Iorm, contains the first clear-cut
formulation of communication theory as a statistical problem, the study of operations
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shown, in fact, that if a device is linear as well as invariant Fourier analysis
is then the appropriate mathematical tool for dealing with the problem.

An ensemble of functions is the appropriate mathematical representation
of the messages produced by a continuous source (for example speech), of
the signals produced by a transmitter, and of the perturbing noise. Com-
munication theory is properly concerned, as has been emphasized by Wiener,
not with operations on particular functions, but with operations 011 en-
sembles of functions. A communication system is designed not for a par-
ticular speech function and still less for a sine wave, but for .the ensemble of
speech functions.

19. BAND LIMITED ENSEMBLES OF FUNCTIONS

If a function of time I(t) is limited to the band Irom 0 to lV cycles per
second it is completely determined by giving its ordinates at a series of dis-

crete points spaced 2~ seconds apart in the manner indicated by the follow-

ing resul t.6

Theorem 13: Let /(1) contain no frequencies over IV.
Then

jet) = i: x, sin1l"(2JVt - It)
-00 1r(2IVt - n)

where

x, = j C';V) ·
In this expansion j(t) is represented as a sum oC orthogonal functions.

The coefficients X n of the various terms can be considered as coordinates in
an infinite dimensional "function space." In this space each function cor-
responds to precisely one point and each point to one function.

A function can be considered to be substantially limited to a time T if all
the ordinates X n outside this interval of time arc zero. In this case all but
2TJVof the coordinates will be zero. 'rhus functions limited Lo a band W
and duration T correspond to points in a space of 2TJ1' dimensions,

A subset of the functions of band lV and duration T corresponds to a re-
gion in this space. For example, the functions whosc tolal energy is less

on time series. This work, although chiefly concerned with the linear prediction and
filtering problem, is an important collateral reference in connection with the prescnt paper.
We may also refer here to Wiener's forthcoming book "Cybernetics" dealing with the
general problems of communication and control.

'l:or a proof of this theorem and further discussion see the author's paper "Communi..
cation in the Presence of Noise" to be published in the Proceedings of lite Institute of Radio
Engineers.
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than or equal to E correspond to points in a 2TW dimensional sphere with
radius r = V2WE.

An ensemble of functions of limited duration and band will be represented
by a probability distribution ;(Xl · · · x,,) in the corresponding n dimensional
space. If the ensemble is not limited in time we can consider the 2TW co-
ordinates in a given interval T to represent substantially the part of the
function in the interval T and the probability distribution P(XI , •• · , oX,,)
to give the statistical structure of the ensemble for intervals of that duration.

20. ENTROPY OF A CONTINUOUS DISTRIBUTION

The entropy of a discrete set of probabilities PI , · · · pre has been defined as:

II = - 2: Pi log Pi ·

In an analogous manner we define the entropy of a continuous distribution
with the density distribution function p(x) by:

II = - L: p(x) log p(x) dx

With an n dimensional distribution P(Xl' · .. ,x,,) we have

II = - f··· J/(Xl · · · x,,) log P(Xl, · · · , x,,) dXl • · · dx".

If we have two arguments x and y (which may themselves be multi-dimen-
sional) the joint and conditional entropies of p(x, y) are given by

II(x, y) = - JJp(x, y) log p(x, y) dx dy

and

lIa(y) = - JJp(x, y)log p~~~r) dx dy

II,,(x) = - JJp(x, y) log p~~~r) dx dy

where

p(x) = Jp(x, y) dy

p(y) = Jp(x, y) d»,

The entropies of continuous distributions have most (but not all) of the
properties of the discrete case. In particular we Itave the following:
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1. If X is limited to a certain volume v in its space, then flex) is a maximum

and equal to log 11 when p(x) is constant (0 in the volume.

2. With any two variables x, 'Y we have

11(x, y) ~ 11(x) + H(y)

with equality if (and only if) x and 'Yare independent, i.e., p(x, y) = p(x)
p(y) (apart possibly from a set of points of probability zero).

3. Consider a generalized averaging operation of the following type:

p'(y) = Ja(x, y)p(x) dx

with

Ja(x, y) dx = Jo(x, y) dy = 1, a(x, y) ~ o.

Then the entropy of the averaged distribution p'(y) is equal to or greater
than that of the original distribution p(x).

4. We have

ut», y) = H(x) + H.{y) = II(y) + Ilv(x)

and

11.(,) s 11(,).

5. Let p(x) be a one-dimensional distribution. The form of p(x) giving a
maximum entropy subject to the condition that the standard deviation
of x be fixed at (1 is gaussian. To show this we must maximize

H(x) = - Jp(x) log p(x) dx

with

(12 = Jp(x)x2 dx and 1 = f p(x) d»

as constraints. This requires, by the calculus of variations, maximizing

J[-p(x) log p(x) + Xp(x)x2 + pp(x)J dx,

The condition for this is

-1 - log p(x) + ""x2 + P = 0

and consequently (adjusting the constants to satisfy the constraints)

( ) 1 -(%'/2.1,

px = y'2;de ·
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Similarly in n dimensions, suppose the second order moments of
P(XI , • •• ,x,,) arc fixed at Aij :

Aij == f··· JXiXjP(Xl, .,. ,Xn ) dXl ••• s«,

Then the maximum entropy occurs (by a similar calculation) when
P(XI , • .. ,x,,) is the n dimensional gaussian distribution with the second
order moments A l] •

6. The entropy of a one-dimensional gaussian distribution whose standard
deviation is (T is given by

[l(x) = log v'2ret1.

This is calculated as follows:

p(x) = _1_ e-(sl/2.t )
y'2;u

x2

-log p(x) == log y'2; (J' + 2(12

H(x) = - Jp(x) log p(x) dx

= J»» log V2." (J' d» + Jp(x) :;2 dx

2

= log Vh(J' + ;(12

= log v'2r 0" + log ve
= log v'21reff.

Similarly the II dimensional gaussian distribution with associated
quadratic form aij is given by

P(Xl, • · • , xn) == (12~)~;2 exp (- !'Z/Jij Xi Xj)

and the entropy can be calculated as

II = log (2rc)" /2
1aij I'

where I Oij I is the determinant whose elements are aij •

7. If x is limited to a half line (p(x) = 0 for x S 0) and the first moment of
x is fixed at a:

/J = Le

p(x)x dx,
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then the maximum entropy occurs when

p( ) _ 1 -(ziG)
X - - e

a

c. E. Shannon

and is equal to log ea.
8. There is one important difference between the continuous and discrete

entropies. In the discrete case the entropy measures in an obsohae
way the randomness of the chance variable. In the continuous case the
measurement is relatit'e to lite coordinate sy5Ic11J. If we change coordinates
the entropy will ill general change. In fact if we change to coordinates
Yl • • • y" the new entropy is given by

where J (~) is the Jacobian of the coordinate transformation. On ex-

panding the logarithm and changing variables to Xl • • • x" , we obtain:

II(y) = II(x) - f··· f P(Xl, • · · , x..) log J (;) dx, · · · dx.. ·

Thus the new entropy is the old entropy less the expected logarithm of
the Jacobian. In the continuous case the entropy can be considered a
measure of randomness relative to an assumed standard, namely the co-
ordinate system chosen with each small volume element dx; · · . dx; given
equal weight. When wc change the coordinate system the entropy in
the new system measures the randomness when equal volume clements
dYl · • · dy" in the new system are given equal weight.

In spite of this dependence on the coordinate system the entropy
concept is as important in the continuous case as the discrete case, This
is due to the fact that the derived concepts of information rate and
channel capacity depend on the difference of two entropies and this
difference does not depend on the coordinate frame, each of the two terms
being changed by the same amount.

The entropy of a continuous distribution can be negative. The scale
of measurements sets an arbitrary zero corresponding to a uniform dis-
tribution over a unit VOIUll1e. A distribution which is more confined than
this has less entropy and will be negative. The rates and capacities will,
however, always be non-negative.

9. A particular case of changing coordinates is the linear transformation

Yj = L: aij~·i •

•
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In this case the Jacobian is simply the determinant Iail '-1 and

ll(y) = H(x).+ log Iaii I.
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In the case of a rotation of coordinates (or any measure preserving trans-
formation) J = 1and ll(y) = 11(x).

21. ENTROPY OF AN ENSEMBLE OF FUNCTIONS

Consider an ergodic ensemble of functions limited to a certain band of
width W cycles per second. Let

P(Xl ••• x,,)

be the density distribution function for amplitudes Xl • • • x" at n successive
sample points. We define the entropy of the ensemble per degree of free-
dom by

II' = -Lim! f··· JP(XI · · · x,,) log P(Xl, · · · , x,,) dXl • · · dx".
"'-'00 ",

We may also define an entropy H per second by dividing, not by II, but by
the time T in seconds for n samples. Since n = 2TW, II' = 2WH.

With white thermal noise p is gaussian and we have

II' = log V27reN,

II = W log 21f'cN.

For a given average power N, white noise has the maximum possible
entropy. This follows from the maximizing properties of the Gaussian
distribution noted above.

The entropy for a continuous stochastic process has many properties
analogous to that for discrete processes. In the discrete case the entropy
was related to the logarithm of the probability of long sequences, and to the
number of reasonably probable sequences of long length. In the continuous
case it is related in a similar fashion to the logarithm of the probability
density for a long series of samples, and the volume of reasonably high prob-
ability in the function space.

More precisely, if we assume P(XI • • · xn ) continuous in all the Xi for all e
then for sufficiently large n

IIO~ P _ H' I< E

for all choices of (.'tl , · · · , xn) apart from a set whose total probability is
less than 8', with ~ and E arbitrarily small. This Iollows from the ergodic
property if we divide the space into a large number of small cells.
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The relation of H to volume can be stated as follows: Under the same as-
sumptions consider the n dimensional space corresponding to P(Xl' •.• ,x,,).
Let V,,(q) be the smallest volume in this space which includes in its interior
a total probability q. Then

Lim log V.(q) == II'
" .... 00 n

provided q does not equal 0 or 1.
These results show that for large n there is a rather well-defined volume (at

least in the logarithmic sense) of high probability, and that within this
volume the probability density is relatively uniform (again in the logarithmic
sense).

In the white noise case the distribution function is given by

( ) 1 1 2

P Xl • • • x" = (2rN)fI/2 exp - 2N ~Xi •

Since this depends only on ~x~ the surfaces of equal probability density
are spheres and the entire distribution has spherical symmetry. The region
of high probability is a sphere of radius ¥nN. As n~ ex> the probability

of being outside a sphere of radius y,,(N + E) approaches zero and! times
11

the logarithm of the volume of the sphere approaches log Y21reN.
In the continuous case it is convenient to work not with the entropy II of

an ensemble but with a derived quantity which we will call the entropy
power. This is defined as the power in a white noise limited to the same
band as the original ensemble and having the same entropy. In other words
it H' is the entropy of all ensemble its enlropy power is

N l = 2-.!..- exp 211'.
'Ire

In the geometrical picture this amounts to measuring the high probability
volume by the squared radius of a sphere having the same volume, Since
white noise has the maximum entropy for a given power, the entropy power
of any noise is less than or equal to its actual power.

22. ENTROPY Loss IN LINEAR FILTERS

Theorem 14: If an ensemble having an entropy III per degree of freedom
in band W is passed through a filter with characteristic ]'(f) the output
ensemble has an entropy

112 = 111 + ~Llog IrU) 12 df·
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The operation of the filter is essentially a linear transformation of co-
ordinates. If we think of the different frequency components as the original
coordinate system, the new frequency components are merely the old ones
multiplied by factors. The coordinate transformation matrix is thus es-

TABLE I

GAIN

1-tAI -----..

0 flJ

,- 412 ----..

OJ

,- Cd3 ----..

0 fA}

-V, - c.J2----.

0 6J

o

ENTROPY
POWER
FACTOR

0.384

ENTROPY
POWER GAIN
IN DECIBELS

-8.68

-5.32

-4.15

-2.66

-8.68 a

IMPULSE RESPONSE

6 [cos t - 1 _ COS t + SIN t]
t 4 2t2 t 3

11 J 1 (t)
2" --t-

a 1t
2 [cos (I-a)t-cost]

sentially diagonalized in terms of these coordinates. The Jacobian of the
transformation is (for 11 sine and 1J cosine components)

"
J = II IIT(!.) 1

2

'_1



62 C. E. Shannon

where the Ii arc equally spaced through the band W. This becomes in
the limit

exp ~Llog IY(j) /2 df.

Since J is constant its average value is this same quantity and applying the
theorem on the change of entropy with a change of coordinates, the result
follows. We may also phrase it in terms of the entropy power. Thus if
the entropy power of the first ensemble is N1 that of the second is

The final entropy power is the initial entropy power multiplied by the geo-
metric mean gain of the filter. If the gain is measured in db, then the
output entropy power will be increased by the arithmetic mean db gain
over W.

In Table I the entropy power loss has been calculated (and also expressed
in db) for a number of ideal gain characteristics. The impulsive responses
of these filters are also given for IV = 271'", with phase assumed to be o.

The entropy loss for many other cases can be obtained from these results.

For example the entropy power factor ~ for the first case also applies to any
e

gain characteristic obtained from 1 - CI) by a measure preserving transforma-
tion of the 6J axis. In particular a linearly increasing gain G(w) = w, or a
"saw tooth" characteristic between 0 and 1 have the same entropy loss.

The reciprocal gain has the reciprocal factor. Thus! has the factor e2•
w

Raising the gain to any power raises the factor to this power,

23. ENTROPY OF TIlE SUAI OF Two ENSEMBLES

If we have two ensembles of functions faCt) and g/J(t) we can form a new
ensemble by "addition." Suppose the first ensemble has the probability
density function P(XI , ••• J XII) and the second q(Xl , · · · ,xn ) . Then the
density function for the sum is given by the convolution:

'(Xl, · · · ,x,,) = f··· JP(YI, · • • , y,,)

• q(Xt - Yl J • • • , Xn - )'n) d)'l, d)'2, • • • J d)'n •

Physically this corresponds to adding the noises or signals represented by
the original ensembles of functions.
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The following result is derived in Appendix 6.
Theorem 15: Let the average power of two ensembles be NI and N" and

let their entropy powers be HI and H". Then the entropy power of the
sum, H, , is bounded by

HI + 9" s H, ~ N I + N" .

White Gaussian noise has the peculiar property that it can absorb any
other noise or signal ensemble which may be added to it with a resultant
entropy power approximately equal to the sum of the white noise power and
the signal power (measured from the average signal value, which is normally
zero), provided the signal power is small, in a certain sense, compared to
the noise.

Consider the function space associated with these ensembles having 1J

dimensions. The white noise corresponds to a spherical Gaussian distribu-
tion in this space. The signal ensemble corresponds to another probability
distribution, not necessarily Gaussian or spherical. Let the second moments
of this distribution about its center of gravity be aij. That is, if
P(X1, · •• , xft ) is the density distribution function

aii = f··· Jp(;t:; - «;)(X; - «;) dXl, • • • , dx;

where the at are the coordinates of the center of gravity. Now aij is a posi-
tive definite quadratic form, and we can rotate our coordinate system to
align it with the principal directions of this form. aij is then reduced to
diagonal form bu . We require that each bii be small compared to N, the
squared radius of the spherical distribu tion,

In this case the convolution of the noise and signal produce a Gaussian
distribution whose corresponding quadratic form is

N + bu.

The entropy power of this distribution is

or approximately

The last term is the signal power, while the first is the noise power.
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PART IV: THE CONTINUOUS CI-IAKNEL

C. E. Shannon

24. TIlE CAPACITY OF A CONTlf\UOUS CIIANNEL

In a continuous channel the input or transmitted signals will be con-
tinuous functions of timeJ(t) belonging to a certain set.rand the output or
received signals will be perturbed versions of these. We will consider only
the case where both transmitted and received signals are limited to a certain
band W. They can then be specified, for a time T, by 2TW numbers, and
their statistical structure by finite dimensional distribution functions.
Thus the statistics of the transmitted signal will be determined by

P(XI , · · • , x,,) = P(x)

and those of the noise by the conditional probability distribu tidh

Pel.···.1t.(Yl, • • • ,YII) == Pa(y).

The rate of transmission of information for a continuous channel is defined
in a way analogous to that for a discrete channel, namely

R = H(x) - H,,(x)

where ll(x) is the entropy of the input and H,,(x) the equivocation. The
channel capacity C is defined as the maximum of R when we vary the input
over all possible ensembles. This means that in a finite dimensional ap-
proximation we must vary P(x) =. P(XI , · · · , x,,) and maximize

- JP(x) log P(x) dx +JJP(x, y) log P;~~t d» dy.

This can be written

JJP(x, y) log A'~)P~;) d» dy

using the fact thatJJP(x, y) log P(x) dx dy = JP(x) log P(x) dx. The

channel capacity is thus expressed

C = ;~~ ~~~ ~JJp(x, y) log ;;;pf;) dx dy.

It is obvious in this form that Rand C are independent of the coordinate

· I d denominator i I P( x, Y) ell b I ·system since t ie numerator an enominator In og P(x)P(y) WI e mu ti-

plied by the same factors when x and yare transformed in anyone to one
way. This integral expression iotC is more general than ll(x) - lIt/ex).
Properly interpreted (see Appendix 7) it willalways exist while H(x) - H,,(x)
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may assume an indeterminate form 00 - co in some cases. This occurs, for
example, if x is limited to a surface of fewer dimensions than", in its" dimen-
sional approximation.

If the logarithmic base used in computing fl(x) and lI,,(x) is two then C
is the maximum number of binary digits that can be sent per second over the
channel with arbitrarily small equivocation, just as in the discrete case.
This can be seen physically by dividing the space of signals into a large num-
ber of small cells, sufficiently small so that the probability density P,,(y)
of signal x being perturbed to point y is substantially constant over a cell
(either of x or y). If the cells are considered as distinct points the situation
is essentially the same as a discrete channel and the proofs used there will
apply. Dut it is clear physically that this quantizing of the volume into
individual points cannot in any practical situation alter the final answer
significantly, provided the regions arc sufficiently small. Thus the capacity
will be the limit of the capacities for the discrete subdivisions and this is
just the continuous capacity defined above.

On the mathematical side it can he shown first (sec Appendix 7) that if u
is the message, x is the signal, y is the received signal (perturbed by noise)
and v the recovered message then

/1(x) - 11,,(x) ~ 11(u) - 11,,(u)

regardless of what operations are performed on u to obtain x or on y to obtain
v. Thus no matter how we encode the binary digits to obtain the signal, or
how we decode the received signal to recover the message, the discrete rate
for the binary digits does not exceed the channel capacity we have defined.
On the other hand, it is possible under very general conditions to find a
coding system for transmitting binary digits at the rate C with as small an
equivocation or frequency of errors as desired. This is true, for example, if,
when we take a finite dimensional approximating space for the signal func-
tions, P(x, y) is continuous in both x and y except at a set of points of prob-
ability zero.

All important special case occurs when the noise is added to the signal
and is independent of it (in the probability sense). Then Pz(y) is a function
only of the difference n = (y - x),

Ps(y) = Q(y - x)

and we can assign a definite entropy to the noise (independent of the sta-
tistics of the signal), namely the entropy of the distribution Q(,,,). This
entropy will be denoted by ll(n).

Theorem 16: If the signal and noise are independent and the received
signal is the sum of the transmitted signal and the noise then the rate of
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transmission is

R = H(y) - H(n)

c. E. Shannon

i.e., the entropy of the received signal less the entropy of the noise. The
channel capacity is

C = Max ll(y) - 11(",).
P(~)

We have, since 'Y = x + n:

[l(x, y) = H(x, n).

Expanding the left side and using the fact that x and n arc independent

H(y) + H,,(x) = H(x) + H(n).

Hence

R == 11(x) - H,,(x) = H(y) - H(n).

Since lien) is independent of P(x), maximizing R requires maximizing
II(y), the entropy of the received signal. If there are certain constraints on
the ensemble of transmitted signals, the entropy'of the received signal must
be maximized subject to these constraints.

25. CHANNEL CAPACITY WITH AN AVERAGE POWER LIMITATION

A simple application of Theorem 16 is the case where the noise is a white
thermal noise and the transmitted signals arc limited to a certain average
power 1;'. Then the received signals have an average power P + N where
N is the average noise power. The maximum entropy for the received sig-
nals occurs when they also form a white noise ensemble since this is the:
greatest possible entropy for a power P + N and can be obtained by a
suitable choice of the ensemble of transmitted signals, namely if they form a
white noise ensemble of power P. The entropy (per second) of the re-
ceived ensemble is then

H{y) = W log 2re{P + N),

and the noise entropy is

lien) .= W log 2reN.

The channel capacity is

P+N
C = 11(y) - II(n) = W log ---w- ·

Summarizing we have the following:
Theoret" 17: The capacity of a channel of band W perturbed by white
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thermal noise of power N when the average transmitter power is P is given by

P+N
C = lV log N •

This means of course that by sufficiently involved encoding systems we

can transmit binary digits at the rate W log, p t N bits per second, with

arbitrarily small frequency of errors. It is not possible to transmit at a
higher rate by any encoding system without a definite positive frequency of
errors.

To approximate this limiting rate of transmission the transmitted signals
must approximate, in statistical properties, a white noise." Asystem which
approaches the ideal rate may be described as follows: Let M = 2' samples
of white noise be constructed each of duration T. These are assigned
binary numbers from 0 to (ilf - 1). At the transmitter the message se-
quences are broken up into groups of s and for each group the corresponding
noise sample is transmitted as the signal. At the receiver the M samples are
known and the actual received signal (perturbed by noise) is compared with
each of them. The sample which has the least R.M.S. discrepancy from the
received signal is chosen as the transmitted signal and the corresponding
binary number reconstructed. This process amounts to choosing the most
probable (a posteriori) signal. The number M of noise samples used will
depend on the tolerable frequency E of errors, but for almost all selections of
samples we have

u L· log M(E, T) _ TV 1 P + N
im r.un T -rog N'

e-.O T-uo

so that 110 matter how small E is chosen, we can, by taking T sufficiently

large, transmit as near as we wish to TW log P t N binary digits in the

time T.

Formulas similar to C = JV log~t N for the white noise case have

been developed independently by several other writers, although with some-
what different interpretations. We may mention the work of N. \Viener,7
\V. G. Tuller,8 and H. Sullivan in this connection.

In the case of an arbitrary perturbing noise (not necessarily white thermal
noise) it does not appear that the maximizing problem involved in deter-

• This and other properties of the white noise case are discussed from the geometrical
point of view in "Communication in the Presence of Noise," loc. cit.

7 "Cybernetics,' loc. cit.
·Sc. D. thesis, Department or Electrical Engineering. ~I.I.T., 1948



68 c. E. Shannon

mining the channel capacity C can be solved explicitly. However, upper
and lower bounds can be set for C in terms of the average noise power N
and the noise entropy power N«, These bounds are sufficiently close to-
gether in most practical cases to Iurnish a satisfactory solution to the
problem.

Theorem 18: The capacity of a channel of band IV perturbed by an arbi-
trary noise is bounded by the inequalities

W 10 P + Nt < C < JIll P + Ng N, - - og N,

where
P = average transmitter power
N == average noise power
N1 = entropy power of the noise.
Here again the average power of the perturbed signals will be P + N.

The maximum entropy for this power would occur if the received signal
were white noise and would be W log 211'c(P + N). It may not be possible
to achieve this; i.e, there may not be any ensemble of transmitted signals
which, added to the perturbing noise, produce a white thermal noise at the
receiver, but at least this sets an upper bound to l/(y). We have, therefore

C = max H(y) - H(,,,)

S W log 2re(P + N) - W log 2rcNl •

This is the upper limit given in the theorem. The lower limit can be ob-
tained by considering the rate if we make the transmitted signal a white
noise, of power P. In this case the entropy power of the received signal
must be at least as great as that of a white noise of power P + N, since we
have shown in a previous theorem that the entropy power of the ~um of two
ensembles is greater than or equal to the sum of the individual entropy
powers. Hence

max II(y) ~ W log 21re(P + N l )

and

c ~ 'IV log 211'e(P + Nt) - IV log 2reNl

IV I P + Nl
== og N

1
•

As P increases, the upper and lower bounds approach each other, so we
have as an asymptotic rate

WI P+Nog--
Nt
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If the noise is itself white, N = N 1 and the result reduces to the formula
proved previously:

C = W log (1 + ~) .
If the noise is Gaussian but with a spectrum which is not necessarily flat,

1\'1 is the geometric mean of the noise power over the various frequencies in
the band W. Thus

Nl = exp~Llog N(j) dJ

where N(f) is the noise power at frequency f.
Theorem 19: If we set the capacity for a given transmitter power P

equal to

C WI P+N-."= og----N l

then." is monotonic decreasing as P increases and approaches 0 as a limit.
Suppose that for a given power P, the channel capacity is

W I PI + N - '11
og N

1

This means that the best signal distribution, say p(x), when added to the
noise distribution q(x), gives a received distribution r(y) whose entropy
power is (PI + N - '11). Let us increase the power to PI + ~p by adding
a white noise of power ~p to the signal. The entropy of the received signal
is now at least

ll(y) = W log 2re{PI + N - '11 + ~P)

by application of the theorem on the minimum entropy power of a sum.
Hence, since we can attain the II indicated, the entropy of the maximizing
distribution must be at least as great and ." must be monotonic decreasing.
To show that." -+ 0 as P -. 00 consider a signal which is a white noise with
a large P. Whatever the perturbing noise, the received signal will be
approximately a white noise, if P is sufficiently large, in the sense of having
an entropy power approaching P + N.

26. TIlE CHANNEL CAPACITY WITJI A PEAK POWER LIAIITATION

In some applications the transmitter is limited not by the average power
output but by the peak instantaneous power. The problem of calculating
the channel capacity is then that of maximizing (by variation of the ensemble
of transmitted symbols)

H(y) - H(IJ)
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subject to the constraint that all the functions f(l) in the ensemble be less
than or equal to VS, say, for all t. A constraint of this type does not work
out as well mathematically as the average power limitation, The most we

have obtained lor this case is a lower bound valid for all ~, an "asymptotic"

upper band (valid for large ~) and an asymptotic value of C for ~ small.

Theorem 20: The channel capacity C for a band IV perturbed by white
thermal noise of power N is bounded by

2 S
C> Wlog--

- 1rel N'

where S is the peak allowed transmitter power. For sufficiently large ~

!S+N
C ~ W log re N (1 + E)

where E is arbitrarily small. As ~ -+ 0 (and provided the band W starts

at 0)

We wish to maximize the entropy of the received signal. If ~ is large

this will occur very nearly when we maximize the entropy of the trans-
mitted ensemble.

The asymptotic upper bound is obtained by relaxing the conditions on
the ensemble. Let us suppose that the power is limited to S not at every
instant of time, but only at the sample points. The maximum entropy of
the transmitted ensemble under these weakened conditions is certainly
greater than or equal to that under the original conditions. This altered
problem can be solved easily. The maximum entropy occurs if the different
samples are independent and have a distribution function which is constant
from - 0 to +0. The entropy can be calculated as

W log 4S.

The received signal will then have an entropy less than

W log (4S + 2reN)(l + E)
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with e -. 0 as ~ -. 00 and the channel capacity is obtained by subtracting

the entropy of the white noise, W log 2rcN

!:..S+N
IV log (45 + 211'cN)(1 + e) - IV log (211'eN) = W log lI'e N (1 + e).

This is the desired upper bound to the channel capacity.
To obtain a' lower bound consider the same ensemble of functions. Let

these functions be passed through an ideal filter with a triangular transfer
characteristic. The gain is to be unity at frequency 0 and decline linearly
down to gain 0 at frequeney W. We first show that the output functions
of the filter have apeak power limitation S at all times (not just the sample

· ) F· h 1 sin 2rWt · · h fil dpoints. 41rst we note t at a pu se 2rWt gomg Into t e ter pro uces

1 sin2 ".Wt
2 (rWt)!

in the output. This function is never negative. The input function (in
the general case) can be thought of as the sum of a series of shifted functions

sin 2".TVt
a -2...-W-'-

where a, the amplitude of the sample, is not greater than VS. Hence the
output is the sum of shifted functions of the non-negative form above with
the same coefficients. These functions being non-negative, the greatest
positive value for any t is obtained when all the coefficients a have their
maximum positive values, i.e. 0. In this case the input function was a
constant of amplitude VS and since the filler has unit gain for D.C., the
output is the same. Hence the output ensemble has a peak power S.

The entropy of the output ensemble can be calculated from that of the
input ensemble by using the theorem dealing with such a situation. The
output entropy is equal to the input entropy plus the geometrical mean
gain of the tilter;

lW log G2 dj = lW log CV;- jY dj = -2W

Hence the output entropy is

4S
~v log 4S - 2lV = W log 2"

e
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and the channel capacity is greater than

2 S
Wlog· N- ·re

C. E. Shannon

We now wish to show that, for small ~ (peak signal power over average

white noise power), the channel capacity is approximately

C = W log (1 + ~) .

More precisely C/W log (1 + ~) -- 1as ~ -- O. Since the average signal

power P is less than or equal to the peak S, it follows that for all ~

C ~ W log (1 + ~) s 1V log (1 + ~) .

Therefore, if we can find an ensemble of functions such that they correspond

to a rate nearly W log ( 1 + ~) and are limited to band IV and peak S the

result will be proved. Consider the ensemble of functions of the following
type. A series of t samples have the same value, either + VS or -"\/S,
then the next t samples have the same value, etc. The value for a series
is chosen at random, probability 1 for +VS and ! for - VS If this
ensemble be passed through a filter with triangular gain characteristic (unit
gain at D.C.), the output is peak limited to ±S. Furthermore the average
power is nearly S and can be made to approach this by taking I sufficiently
large. The entropy of the sum of this and the thermal noise can be found
by applying the theorem on the sum of a noise and a small signal, This
theorem will apply if

is sufficiently small. This can be insured by taking ~ small enough (after

t is chosen). The entropy power will be S + N to as close an approximation
as desired, and hence the rate of transmission as near as we wish to

(S+ N)W log --pr- .
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PART V: THE RATE FOR A COKTINUOUS SOURCE

27. FIDELITY EVALUATION FUNCTIONS
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In the case of a discrete source of information we were able to determine a
definite rate of generating information, namely the entropy of the under-
lying stochastic process. With a continuous source the situation is con-
siderably more involved. In the first place a continuously variable quantity
can assume an infinite number of values and requires, therefore, an infinite
number of binary digits for exact specification. This means that to transmit
the output of a continuous source with exact recovery at the receiving point
requires, in general, a channel of infinite capacity (in bits per second).
Since, ordinarily, channels have a certain amount of noise, and therefore a
finite capacity, exact transmission is impossible.

This, however, evades the real issue. Practically, we are not interested
in exact transmission when we have a continuous source, but only in trans-
mission to within a certain tolerance. The question is, can we assign a
definite rate to a continuous source when we require only a certain fidelity
of recovery, measured in a suitable way. Of course, as the fidelity require-
ments are increased the rate will increase. It will be shown that we can, ill
very general cases, define such a rate, having the property that it is possible,
by properly encoding the information, to transmit it over a channel whose
capacity is equal to the rate in question, and satisfy the fidelity requirements.
A channel of smaller capacity is insufficient.

It is first necessary to give a general mathematical formulation of the idea
of fidelity of transmission. Consider the set of messages of a long duration,
say T seconds. The source is described by giving the probability density,
in the associated space, that the source will select the message in question
P(x). A given communication system is described (from the external point
of view) by giving the conditional probability Pz(y) that if message x is
produced by the source the recovered message at the receiving point will
be y. The system as a whole (including source and transmission system)
is described by the probability function P(x, y) of having message x and
final output y. If this function is known, the complete characteristics of
the system from the point of view of fidelity are known. Any evaluation
of fidelity must correspond mathematically to an operation applied to
Pi«, y). This operation must at least have the properties of a simple order-
ing of-systems; i.e. it must be possible to say of two systems represented by
Pl(X, y) .and P2(X, y) that, according to our fidelity criterion, either (1) the
first has higher fidelity, (2) the second has higher fidelity, or (3) they have
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equal fidelity. This means that a criterion of fidelity can be represented by
a numerically valued function:

l1(P(X, )'»
whose argument ranges over possible probability functions P(x, y).

We will now show that under very general and reasonable assumptions
the function l1(P(X, )'» can be written in a seemingly much more specialized
form, namely as an average of a function p(x, y) over the set of possible values
of x and y:

lI(P(X, ,» = JJP(x, ,) p(x, ,) dx dy

To obtain this we need only assume (1) that the source and syslem are
ergodic so that a very long sample will be, with probability nearly 1, typical
of the ensemble, and (2) that the evaluation is "reasonable" in the sense
that it is possible, by observing a typical input and output Xl and }'1, to
form a tentative evaluation on the basis of these samples; and if these
samples are increased in duration the tentative evaluation will, with proba-
bility 1, approach the exact evaluation based on a full knowledge of P(x, y).
Let the tentative evaluation be p(x, y). Then the function p(x, y) ap-
proaches (as T --+ 00) a constant for almost all (x, y) which are in the high
probability region corresponding to the system:

p(x, y) --. v(P(x, y»

and we may also write

p(x, y) -+ JJn», y)p(x, y) dx, dy

since

JJp(x, y) dx dy = 1

This establishes the desired result.
The function p(x, y) has the general nature of a "distance" between x

andy.' It measures how bad it is (according to our fidelity criterion) to
receive y when x is transmitted. The general result given above can be
restated as follows: Any reasonable evaluation can be represented as an
average of a distance function over the set of messages and recovered mes-
sages x and y weighted according to the probability P(x, y) of getting the
pair in question, provided the duration T of the messages be taken suffi-
ciently large.

• It is not a "metric" in the strict sense, however, since in general it does not satisfy
either p(z, y) - p(y, z) or p(z, y) + p(",,) ~ p(z, e).
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The following are simple examples of evaluation functions:
1. R.M.S. Criterion.

75

v = (x(/) - y(/»2

In this very commonly used criterion of fidelity the distance function
p(x, y) is (apart from a constant factor) the square of the ordinary
euclidean distance between the points x and 'Y in the associated function
space,

1 17'p(x, y) = T 0 [x(t) - y(t)]2 dt

2. Frequency weighted R.M.S. criterion. More generally onc can apply
different weights to the different frequency components before using an
R.M.S. measure of fidelity. This is equivalent to passing the difference
X(/) - y(/) through a shaping filter and then determining the average
power in the output. Thus let

e(l) = x(l) - y{l)

and

then

3. Absolute error criterion.

1 17'p(x, y) = T 0 Ix(t) - yet) Idt

4. The structure of the ear and brain determine implicitly an evaluation, or
rather a number of evaluations, appropriate in the case of speech or music
transmission. There is, for example, an "intelligibility" criterion in
which p(x, y) is equal to the relative frequency of incorrectly interpreted
words when message x(l) is received as y(I). Although we cannot give
an explicit representation of p(x, y) in these cases it could, in principle,
be determined by sufficient experimentation. Some of its properties
follow from well-known experimental results in hearing, e.g., the ear is
relatively insensitive to phase and the sensitivity to amplitude and fre-
quency is roughly logarithmic.

5. The discrete case can be considered as a specialization in which we have
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tacitly assumed an evaluation based on the frequency of errors. The
function p(x, y) is then defined as the number of symbols in the sequence
y differing from the corresponding symbols in x divided by the total num-
ber of symbols in x.

28. TIlE RATE FOR A SOURCE RELATIVE TO A FIDELITY EVALUATION

We are now in a position to define a rate of generating information for a
continuous source. We are given P(x) for the source and an evaluation v
determined by a distance function p(x, y) which will be assumed continuous
in both x and y. With a particular system P(x, y) the quality is measured by

11 = JJ p{x, y) rt», y) d» dy ,

Furthermore the rate of flow of binary digits corresponding to P(x, y) is

R = JJ P{x, y) log ~~~i!c~) dx dy.

We define the rate R1 of generating information for a given quality VI of
reproduction to be the minimum of R when we keep v fixed at VI and vary
Pz(y). That is:

s, = ~:~ II rt», y) log ~~;i!c~) d» dy

subject to the constraint:

III == II P{x, y)p(x, y) dx dy.

This means that we consider, in effect, all the communication systems that
might be used and that transmit with the required fidelity. The rate of
transmission in bits per second is calculated for each one and we choose that
having the least rate. This latter rate is the rate we assign the source for
the fidelity in question.

The justification of this definition lies in the following result:
Theorem 21: If a source has a rate R1 for a valuation VI it is possible to

encode the output of the source and transmit it over a channel of capacity C
with fidelity as near VI as desired provided R1 ~ C. This is not possible
if R1 > C.

The last statement in the theorem follows immediately from the definition
of R1 and previous results. If it were not true we could transmit more than
C bits per second over a channel of capacity c. The first part of the theorem
is proved by a method analogous to that used for Theorem 11. We may, in
the first place, divide the (x, y) space into a large number of small cells and
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represent the situation as a discrete case. This will not change the evalua-
tion function by more than an arbitrarily small amount (when the cells are
very small) because of the continuity assumed for p(x, y). Suppose that
Pl(X, y) is the particular system which minimizes the rate and gives R J • We
choose from the high probability y's a set at random containing

2(Ba + t}r

members where E --. 0 as T -. 00. With large T each chosen point will be
connected by a high probability line (as in Fig. 10) to a set of x's. A calcu-
lation similar to that used in proving Theorem 11 shows that with large T
almost all x's are covered by the fans from the chosen y points for almost
all choices of the y's. The communication system to be used operates as
follows: The selected points are assigned binary numbers. When a message
~. is originated it will (with probability approaching 1 as T --. 00) lie within
one at least of the fans. The corresponding binary number is transmitted
(or one of them chosen arbitrarily if there arc several) over the channel by
suitable coding means to give a small probability of error. Since R1 ::; C
this is possible. At the receiving point the corresponding y is reconstructed
and used as the recovered message.

The evaluation v~ for this system can be made arbitrarily close to 'ttl by
taking T sufficiently large. This is due to the fact that for each long sample
or message ~'(l) and recovered message ,'(I) the evaluation approaches VJ

(with probability 1).
It is interesting to note that, in this system, the noise in the recovered

message is actually produced by a kind of general quantizing at the trans-
mitter and is not produced by the noise in the channel. It is more or less
analogous to the quantizing noise in P.C.M.

29. TIlE CALCULATION OF }{ATES

The definition of the rate is similar in many respects to the definition of
channel capacity. In the former

R = ~:~) JJ P(x, y) log l~~~'lc~) dx dy

with P(x) and v. = JI P(x, y)p(x, y) dx dy fixed. In the latter

c = ~:,x If P(x, y) log ~~;i~~) dx dy

with P;(y) fixed and possibly one or more other constraints (e.g., an average
power limitation) of the form K = f r Pi», ,,) "(x, y) dx dYe
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A partial solution of the general maximizing problem for determining the
rate of a source can be given. Using Lagrange's method we consider

JJ [P(x, y) log ;~~P~~) + JJ rt». y)p(x, y) + .,(x)P(x, y)J ax oy

The variational equation (when we take the first variation on P(x, y»
leads to

P,,(x) = R(x) e-)pb:.II)

where X is determined to give the required fidelity and B(x) is chosen to
satisfy

J B(X)C-A,(~.,,) dx = 1

This shows that, with best encoding, the conditional probability of a cer-
tain cause for various received y, P,,(~·) will decline exponentially with the
distance function p{x, y) between the x and y is question.

In the special case where the distance function p(x, y) depends only on the
(vector) difference between x and ",

p(x, y) = p(x - y)

we have

JB(X)C-A,(~-,,) d» = 1.

Hence B(x) is constant, say OJ and

P ( ) -)p(%-,,>
"x = ae

Unfortunately these Cormal solutions arc difficult to evaluate in particular
cases and seem to be of little value. In fact, the actual calculation of rates
has been carried out in only a Iew very simple cases.

If the distance function p{x, y) is the mean square discrepancy between
x and yand the message ensemble is white noise, the rate can be determined.
In that case we have

R = Min rIJ(x) - II.,(x)] = [lex) - Max II,,{x)

with IV = (x - y)2. But the Max lI.,(x) occurs when y - x is a white noise,
and is equal to lVI log 2re 1\1 where IVI is the bandwidth of the message en-
semble. Therefore

R = ~VI log 21rcQ - JVI log 21rc]\l

= W1log Q
N

where Q is the average message power, This proves the following:
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Theorem 22: The rate for a white noise source of power Q and band lVI

relative to an R.l\I.S. measure of fidelity is

Q
R = lVtlog-

N

where N is tl.e allowed mean square error between original and recovered
messages.

More generally with any message source we can obtain inequalities bound-
ing the rate relative to a mean square error criterion.

Theorem 23: The rate for any source of band Wt is bounded by

WI log~ s R s WI log~

where Q is the average power of the source, Ql its entropy power and N the
allowed mean square error.

The lower bound follows from the fact that the max II.,(x) for a given
(x - y)2 = N occurs in tbe white noise case. The upper bound results if we
place the points (used in the proof of Theorem 21) not in the best way but.
at random in a sphere of radius VQ - N.

ACKNOWLEDGMENTS

The writer is indebted to his colleagues at the Laboratories, particularly
to Dr. H. W. Bode, Dr. J. R. Pierce, Dr. B. McMillan, and Dr. B. M. Oliver
for many helpful suggestions and criticisms during the course of this work,
Credit should also be given to Professor N. Wiener, whose elegant solution
of the problems of filtering and prediction of stationary ensembles has con-
siderably influenced the writer's thinking in this field.

APPENDIX 5

Let St be any measurable subset of the g ensemble, and S2 the subset of
the! ensemble which gives S: under the operation T. Then

s, = TS2•

Let II). be the operator which shifts all functions in a set by the time ~.

Then

trs, = HATS
2 = TH AS 2

since T is invariant and therefore commutes with II).. Hence if m[S] is the
probability measure of the set S

m[II).Sl] :::: m[THAS
2] = ",[HAS

2]

= 111[S2] = n,lSI]
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where the second equality is by definition of measure in the g space the
third since the! ensemble is stationary, and the last by definition of g meas-
ure again.

To prove that the ergodic property is preserved under invariant operations,
let Sl be a subset of the g ensemble which is invariant under II)., and let S2
be the set of all functions! which transform into SI. Then

trs, = lIl TS2 = TII"'S2 = S,

so that II"'St is included inSv for all A. Now, since

m[lllS2] = mrSl]

this implies

II"'S2 = S2

for all ~ with III(S2] F 0, 1. This contradiction shows that S, does not exist.

APPENDIX 6

The upper bound, Ha ~ N, + N2 , is due to the fact that the maximum
possible entropy for a power N I + N2 occurs when we have a white noise of
this power. In this case the entropy power is N I + N 2•

To obtain the lower bound, suppose we have two distributions in 11 dimen-
sions P(Xi) and q(Xi) with entropy powers NI and N2• What form should
Pand q have to minimize the entropy power Na of their convolution r(xi):

rex,) == f p(y,)q(x, - y.) dy, •

The entropy H, of, is given by

11, == - f r(x.) log rex,) dx«,

\Ve wish to minimize this subject to the constraints

111 == - f p(x,) log p(x,) dx,

H. == - f q(Xi) log q(Xi) dx, ·

We consider then

u == - f (r(x) log rex) + 'Ap(x) log p(x) + pq(x) log q(x») d»

fJU == - f [(1 + log r(x»)fJr(x) + A[1 + log p(x»)fJp(x)

+ p[l + log q(x)8q(x)]J ax.
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If p(x) is varied at a particular argument Xi = s., the variation in rex) is

~r(x) = q(~~i - s,)

and

and similarly when q is varied. Hence the conditions for a minimum arc

f q(x; - $;) log rex;) -). log p(s;)

f p(x; - $;) log rex;) = -11 log q(Si).

If we multiply the first by P(Si) and the second hy q(Si) and integrate with
respect to S we obtain

/13 = -X III

/13 = -p. 112

or solving for ~ and p. and replacing in the equations

1I1 f q(x; - Si) log r(.,:;) dx, = -1l3 log pes;)

1/2 f fI(x; - S;) logr(x;) dx; = -1l31og pes;).

Now suppose P(Xi) and q(Xi) are normal

IAi·I"/2
p(x;) = (2:)"'2 exp - !2;A;jx;Xj

IBi·I"/2
q(x;) = (2:),,72 exp - ~2;B;j x; Xj •

Then r(xi) will also be normal with quadratic form Cu, If the inverses of
these forms are OJ;, bi;, eij then

Cij = aij + bi j •

\Ve wish to show that these functions satisfy the minimizing conditions if
and only if aij = Kb., and thus give the minimum 113 under the constraints.
First we have

log rex;) = i log 2~ IC;j I - ~2;Cijx;x;

f q(Xi - Si) log r(xi) = ~ log 2~ IC;;\ - ~2;C;jSiSj - !};C;jb;j.
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This should equal

c. E. Shannon

II, [" 1 JIII 2 log 211" IA iii - !J;AijSi S;

hi h · A II. CW rc requires ij = Ii" ii ·

In this case Ai; = ~: Hi; and both equations reduce to identities.

APPENDIX 7

The following will indicate a more general and more rigorous approach to
the central definitions of communication theory, Consider a probability
measure space whose elements are ordered pairs (x, y). The variables x, y
are to be identified as the possible transmitted and received signals of some
long duration T. Let us call the set of all points whose x belongs to a subset
S, of .x points the strip over S. , and similarly the set whose y belongs to S2
the strip over S2. \\'e divide x and y into a collection of non-overlapping
measurable subsets Xi and ll'i approximate to the rate of transmission R by

where

P(X.) is the probability measure of the strip over Xi
P(y.) is the probability measure of the strip over )/i

P(X i, Yi) is the probability measure of the intersection of the strips.

A further subdivision can never decrease R l • For let Xl be divided into
X, = X; + X~' and let

P(ll'l) = a

J-)(X~) = b

( "P Xl) = C

P(X1) = b + c

reX;, l'"l) = d
( "PX1,Yt)=e

P(XJ, ]l) = d + e

Then. in the sum we have replaced (for the Xl, 1"1 intersection)

d+e d e
(d + e) log a(b +C) by d log ab + clog ac'

It is easily shown that with the limitation we have on b, c, d, e,

[
d + eJd+. < tt c·
b + c - IJdc·
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and consequently the sum is increased. Thus the various possible subdivi-
sions form a directed set, with R monotonic increasing with refinement of
the subdivision. We may define R unambiguously as the least upper bound
for the R1 and write it

1 JJ rt»; y)R = T P(x, y) log P(x)P(y) dx dy.

This integral, understood in the above sense, includes both the continuous
and discrete cases and of course many others which cannot be represented
in either form. It is trivial in this formulation that if x and u are in one-to-
one correspondence, the rate from u to y is equal to that from x to y. If v
is any function of y (not necessarily with an inverse) then the rate from x to
y is greater than or equal to that from x to v since, in the calculation of the
approximations, the subdivisions of yare essentially a finer subdivision of
those for v. More generally if y and v are related not functionally but
statistically, i.e., we have a probability measure space (y, v), then R(x, v) ~
R(x, y). This means that any operation applied to the received signal, even
though it involves statistical elements, does not increase R.

Another notion which should be defined precisely in an abstract formu-
lation of the theory is that of "dimension rate," that is the average number
of dimensions required per second to specify a member of an ensemble. In
the band limited case 2W numbers per second are sufficient, A general
definition can be framed as follows. Let/.(l) be an ensemble of functions
and let PT[!a(I),!,,(t)] be a metric measuring the "distance" from f. to IfJ
over the time T (for example the R.M.S. discrepancy over this interval.)
Let N(E, 3, T) be the least number of elements! which can be chosen such
that all elements of the ensemble apart from a set of measure 8 are within
the distance E of at least one of those chosen. Thus we are covering the
space to within E apart from a set of small measure 3. We define the di-
mension rate ~ for the ensemble by the triple limit

'- L' L· L' log N(E, 8, T)
~ = 1m 1m 1m •

.....0 ....0 ,. ...00 T log E

This is a generalization of the measure type definitions of dimension in
topology, and agrees with the intuitive dimension rate for simple ensembles
where the desired result is obvious.



Communication Theory of Secrecy Systems·

By C. B. SHANNON

1. INTRODUCTION AND SUlOIARY

T HE problems of cryptography and secrecy systems furnish an interest-
ing application of communication theory.' In this paper a theory of

secrecy systems is developed. The approach is on a theoretical level and is
intended to complement the treatment found in standard works on cryp-
tography.! There, a detailedstudy is made of the many standard types of
codes and ciphers, and of the ways of breaking them. We will be more con-
cerned with the general mathematical structure and properties of secrecy
systems.

The treatment is limited in certain ways. First, there are three general
types of secrecy system: (1) concealment systems, including such methods
as invisible ink, concealing a message in an innocent text, or in a fake cover-
ing cryptogram, or other methods in which the existence of the message is
concealed from the enemy; (2) privacy systems, for example speech inver-
sion, in which special equipment is required to recover the message; (3)
"true" secrecy systems where the meaning of the message is concealed by
cipher, code, etc., although its existence is not hidden, and the enemy is
assumed to have any special equipment necessary to intercept and record
the transmitted signal. We consider only the third type-concealment
systems are primarily a psychological problem, and privacy systems a
technological one.

Secondly, the treatment is limited to the case of discrete information,
where the message to be enciphered consists of a sequence of discrete sym-
bols, each chosen from a finite set. These symbols may be letters in a lan-
guage, words of a language, amplitude levelsof a "quantized" speech or video
signal, etc., but the main emphasis and thinking has been concerned with
the case of letters.

The paper is divided into three parts. The main results will now be briefly
summarized. The first part deals with the basic mathematical structure of
secrecy systems. As in communication theory a language is considered to

* The material in this paper appeared originally in a confidential report "A Mathe-
matical Theory of Cryptography" dated Sept. 1, 1945, which has now been declassified.

1 Shannon, C. E., etA Mathematical Theory of Communication," Bell System Technicat
Journal, July 1948, p. 379; Oct. 1948, p, 623.

2 See, for example, H. F. Gaines, "Elementary Cryptanalysis," or M. Givierge, "Cours
de Cryptographie."
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be represented by a stochastic processwhich produces a discrete sequence of
symbols in accordance with some system of probabilities. Associated with a
language there is a certain parameter D which we call the redundancy of
the language. D measures, in a sense, how much a text in the language can
be reduced in length without losing any information. As a simple example,
since u always follows q in English words, the 11may be omitted without loss.
Considerable reductions are possible in English due to the statistical struc-
ture of the language, the high frequencies of certain letters or words, etc.
Redundancy is of central importance in the study of secrecy systems.

A secrecy system is defined abstractly as a set of transformations of one
space (the set of possible messages) into a second space (the set of possible
cryptograms). Each particular transformation of the set corresponds to
enciphering with a particular key. The transformations are supposed rever-
sible (non-singular) so that unique deciphering is possible when the key
is known.

Each key and therefore each transformation is assumed to have an a
'Priori probability associated with it-the probability of choosing that key.
Similarly each possible message is assumed to have an associated a priori
probability, determined by the underlying stochastic process. These prob-
abilities for the various keys and messages are actually the enemy crypt-
analyst's a priori probabilities for the choices in question, and represent his
a Fiori knowledge of the situation.

To use the system a key is first selected and sent to the receiving point.
The choice of a key determines a particular transformation in the set
forming the system. Then a message is selected and the particular trans-
formation corresponding to the selected key applied to this message to
produce a cryptogram. This cryptogram is transmitted to the receiving point
by a channel and may be intercepted by the "enemy"." At the receiving
end the inverse of the particular transformation is applied to the cryptogram
to recover the original message.

If the enemy intercepts the cryptogram he can calculate from it the
a posteriori probabilities of the various possible messages and keys which
might have produced this cryptogram. This set of a posteriori probabilities
constitutes his knowledge of the key and message after the interception.
"Knowledge" is thus identified with a set of propositions having associated
probabilities. The calculation of the a posteriori probabilities is the gen-
eralized problem of cryptanalysis.

As an example of these notions, in a simple substitution cipher with ran-
dom key there are 261 transformations, corresponding to the 261 ways we

-The word "enemy," stemming from military applications, is commonly used in cryp-
tographic work to denote anyone who may intercept a cryptogram.
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can substitute for 26 different letters. These are aU equally likely and each
therefore has an a priori probability 1/26!. If this is applied to "normal
English" the cryptanalyst being assumed to have no knowledge of the
message source other than that it is producing English text, the G priori
probabilities of various messages of J.V letters are merely their relative
frequencies in normal English text.

If the enemy intercepts N letters of cryptogram in this system his prob-
abilities change. If N is large enough (say 50 letters) there is usually a single
message of a posteriori probability nearly unity, while all others have a total
probability nearly zero. Thus there is an essentially unique "solution" to
the cryptogram. For N smaller (say a,r = 15) there will usually be many
messages and keys of comparable probability, with no single one nearly
unity. In this case there are multiple "solutions" to the cryptogram.

Considering a secrecy system to be represented in this way, as a set of
transformations of one set of elements into another, there are two natural
combining operations which produce a third system from two given systems.
The first combining operation is called the product operation and cor-
responds to enciphering the message with the first secrecy system Rand
enciphering the resulting cryptogram with the second system S, the keys for
Rand S being chosen independently. This total operation is a secrecy
system whose transformations consist of all the products (in the usual sense
of products of transformations) of transformations in S with transformations
in R. The probabilities are the products of the probabilities for the two
transformations.

The second combining operation is ccweighted addition:"

T = pR + qS p+q=l

It corresponds to making a preliminary choice as to whether system R or
S is to be used with probabilities p and q, respectively. When this is done
R or S is used as originally defined.

It is shown that secrecy systems with these two combining operations
form essentially a "linear associative algebra" with a unit element, an
algebraic variety that has been extensively studied by mathematicians.

Among the many possible secrecy systems there is one type with many
special properties. This type we call a "pure" system. A system is pure if
all keys are equaUy likely and if for any three transformations T i , T;, T.
in the set the product

TITi-iT.

is also a transformation in the set. That is enciphering, deciphering, and
enciphering with any three keys must be equivalent to enciphering with
some key.
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\Vith a pure cipher it is shown that all keys are essentially cquivalent-
they all lead to the same set of a posteriori probabilities. Furthermore, when
a given cryptogram is intercepted there is a set of messages that might have
produced this cryptogram (a "residue class") and the a posteriori prob
abilities of messages in this class are proportional to the a prioriprobabilities.
All the information the enemy has obtained by intercepting the cryptogram
is a specification of the residue class. Many of the common ciphers are pure
systems, including simple substitution with random key. In this case the
residue class consists of all messages with the same pattern of letter repeti-
tions as the intercepted cryptogram.

Two systems Rand S are defined to be "similar' if there exists a fixed
transformation A with an inverse, A-I, such that

R = AS.

If Rand S are similar, a one-to-one correspondence between the resulting
cryptograms can be set up leading to the same (J, posteriori probabilities.
The two systems are crypt analytically the same.

The second part of the paper deals with the problem of "theoretical
secrecy." How secure is a system against cryptanalysis when the enemy has
unlimited time and manpower available for the analysis of intercepted
cryptograms? The problem is closely related to questions of communication
in the presence of noise, and the concepts of entropy and equivocation
developed for the communication problem find a direct application in this
part of cryptography.

"Perfect Secrecy" is defined by requiring of a system that after a crypto-
gram is intercepted by the enemy the Q posteriori probabilities of this crypto-
gram representing various messages be identically the same as the a priori
probabilities of the same messages before the interception. It is shown that
perfect secrecy is possible but requires, if the number of messages is finite,
the same number of possible keys. If the message is thought of as being
constantly generated at a given Urate" R (to be defined later), key must be
generated at the same or a greater rate.

U a seaecy system with a finite key is used, and N letters of cryptogram
intercepted, there will be, for the enemy, a certain set of messages with
certain probabilities, that this cryptogram could represent. As N increases
the field usually narrows down until eventually there is a unique "solution'
to the cryptogram; one message with probability essentially unity while all
others are practicaUy zero. A quantity H(i.V) is defined, called the equivoca-
tion, which measures in a statistical way how near the average cryptogram
of N letters is to a unique solution; that is, how uncertain the enemy is of the
original message after intercepting a cryptogram of N letters. Various
properties of the equivocation are deduced-for example, the equivocation
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of the key never increases with increasing N. This equivocation is a theo-
retical secrecy index-theoretical in that it allows the enemy unlimited time
to analyse the cryptogram.

The function H(lV) for a certain idealized type of cipher called the random
cipher is determined. With certain modificationsthis function can be applied
to many cases of practical interest. This gives a way of calculating approxi-
mately how much intercepted material is required to obtain a solution to a
secrecy system. It appears from this analysis that with ordinary languages
and the usual types of ciphers (not codes) this "unicity distance" is approxi-
mately H(K)/D. Here H(K) is a number measuring the "size" of the key
space. If all keys are a priori equally likely H(K) is the logarithm of the
number of possible keys. D is the redundancy of the language and measures
the amount of "statistical constraint" imposed by the language. In simple
substitution with random key H(K) is loglo 26! or about 20 and D (in decimal
digits per letter) is about .7 for English. Thus unicity occurs at about 30
letters.

It is possible to construct secrecy systems with a finite key for certain
"languages" in which the equivocation does not approach zero as N ....... co.

In this case, no matter how much material is intercepted, the enemy still
does not obtain a unique solution to the cipher but is left with many alter-
natives, all of reasonable probability. Such systems we call ideal systems.
It is possible in any language to approximate such behavior-e-i.e., to make
the approach to zero of H(N) recede out to arbitrarily large N. However,
such systems have a number of drawbacks, such as complexity and sensi-
tivity to errors in transmission of the cryptogram.

The third part of the paper is concerned with "practical secrecy." Two
systems with the same key size may both be uniquely solvable when N
letters have been intercepted, but differ greatly in the amount of labor
required to effect this solution. An analysis of the basic weaknesses of sec-
recy systems is made. This leads to methods for constructing systems which
will require a large amount of work to solve. Finally, a certain incompat-
ibility among the various desirable qualities of secrecy systems is discussed.

PART I

MATHEMATICAL STRUCTURE OF SECRECY SYSTEMS

2. SECRECY SYSTEMS

As a first step in the mathematical analysis of cryptography, it is neces-
sary to idealize the situation suitably, and to define in a mathematically
acceptable way what we shall mean by a secrecy system. A "schematic"
diagram of a general secrecy system is shown in Fig. 1. At the transmitting
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end there are two information sources-a message source and a key source.
The key source produces a particular key from among those which are
possible in the system. This key is transmitted by some means, supposedly
not interceptible, for example by messenger, to the receiving end. The
message source produces a message (the "clear") which is enciphered and
the resulting cryptogram sent to the receiving end by a possibly inter-
ceptible means, for example radio. At the receiving end the cryptogram and
key are combined in the decipherer to recover the message.

ENEMY
CRYPTANALYST

E

E

KEY I'.

KEY .....----~-----K

KEY
SOURCE

Fig. I-Schematic of a general secrecy system.

Evidently the encipherer performs a functional operation. H M is the
message, K the key, and E the enciphered message, or cryptogram, we have

E = f(M, K)

that is E is a function of M and K. It is preferable to think of this, however,
not as a function of two variables but as a (one parameter) family of opera-
tions or transformations, and to write it

E = TiM.

The transformation T, applied to message M produces cryptogram E. The
index i corresponds to the particular key being used.

We will assume, in general, that there are only a finite number of possible
keys, and that each has an associated probability Pi . Thus the key source is
represented by a statistical process or device which chooses one from the set
of transformations T1 , T", ... , T", with the respective probabilities P1 ,
f!t, "., 1'.· Similarly we will generally assume a finite number of possible
messages MJ , M2, .", M" with associated a priori probabilities ql , q2,
• • •, qft • The possible messages, for example, might be the possible sequences
of English letters all of length N, and the associated probabilities are then
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the relative frequencies of occurrence of these sequences in normal English
text.

At the receiving end it must be possible to recover M, knowing E and K.
Thus the transformations T i in the family must have unique inverses
17"1 such that TiTi l = I, the identity transformation. Thus:

M = rt's.
At any rate this inverse must exist uniquely for every -E which can be
obtained from an M with key i. Hence we arrive at the definition: A secrecy
system is a family of uniquely reversible transformations T, of a set of
possible mssages into a set of cryptograms, the transformation T, having
an associated probability Pi. Conversely any set of entities of this type will
be called a "secrecy system." The set of possible messages will be called,
for convenience, the "message space" and the set of possible cryptograms
the "cryptogram space."

Two secrecy systems will be the same if they consist of the same set of
transformations T" with the same message and cryptogram space (range
and domain) and the same probabilities for the keys.

A secrecy system can be visualized mechanically as a machine with one
or more controls on it. A sequence of letters, the message, is fed into the
input of the machine and a second series emerges at the output. The par-
ticular setting of the controls corresponds to the particular key being used.
Some statistical method must be prescribed for choosing the key from all
the possible ones.

To make the problem mathematically tractable we shall assume that
the enemy knoui: the systembeing 'Used. That is, he knows the family of trans-
formations T«, and the probabilities of choosing vario.us keys. It might be
objected that this assumption is unrealistic, in that the cryptanalyst often
does not know what system was used or the probabilities in question. There
are two answers to this objection:

1. The restriction is much weaker than appears at first, due to our broad
definition of what constitutes a secrecy system. Suppose a cryptog-
rapher intercepts a message and doesnot know whether a substitution,
transposition, or Vigenere type cipher was used. He can consider the
messageas being enciphered by a system in which part of the key is the
specification of which of these types was used, the next part being the
particular key for that type. These three different possibilities are
assigned probabilities according to his best estimates of the a priori
probabilities of the encipherer using the respective types of cipher.

2. The assumption is actually the one ordinarily used in cryptographic
studies. It is pessimistic and hence safe, but in the long run realistic,
since one must expect his system to be found out eventually. Thus,



Communication Theory of Secrecy Systems 91

even when an entirely new system is devised, so that the enemy cannot
assign any a priori probability to it without discovering it himself,
one must still live with the expectation of his eventual knowledge.

The situation is similar to that occurring in the theory of games' where it
is assumed that the opponent "finds out" the strategy of play being used.
In both cases the assumption serves to delineate sharply the opponent's
knowledge.

A second possible objection to our definition of secrecy systems is that no
account is taken of the common practice of inserting nulls in a message and
the use of multiple substitutes. In such cases there is not a unique crypto-
gram for a given message and key, but the encipherer can choose at will
from among a number of different cryptograms. This situation could be
handled, but would only add complexity at the present stage, without sub-
stantially altering any of the basic results.

If the messages are produced by a Markoff process of the type described
in (I) to represent an information source, the probabilities of various mes-
sages are determined by the structure of the Markoff process. For the present,
however, we wish to take a more general view of the situation and regard
the messages as merely an abstract set of entities with associated prob-
abilities, not necessariy composed of a sequence of letters and not neces-
sarily produced by a Markoff process.

It should be emphasized that throughout the paper a secrecy system
means not one, but a set of many transformations. After the key is chosen
only one of these transformations is used and one might be led from this to
define a secrecy system as a single transformation on a language. The
enemy, however, does not know what key was chosen and the "might have
been" keys are as important for him as the actual one. Indeed it is only the
existence of these other possibilities that gives the system any secrecy.
Since the secrecy is our primary interest, we are forced to the rather elabor-
ate concept of a secrecy system defined above. This type of situation, where
possibilities are as important as actualities, occurs frequently in games of
strategy. The course of a chess game is largely controlled by threats which
are not carried out. Somewhat similar is the "virtual existence" of unrealized
imputations in the theory of games.

It may be noted that a single operation on a language forms a degenerate
type of secrecy system under our definition-a system with only one key of
unit probability. Such a system has no secrecy-the cryptanalyst finds the
message by applying the inverse of this transformation, the only one in the
system, to the intercepted cryptogram. The decipherer and cryptanalyst
in this case possess the same information. In general, the only difference be-
tween the decipherer's knowledge and the enemy cryptanalyst's knowledge

• See von Neumann and Morlenstern "The Theory of Games," Princeton 1947.
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is that the decipherer knows the particular key being used, while the crypt-
analyst knows only the a priori probabilities of the various keys in the set.
The process of deciphering is that of applying the inverse of the particular
transformation used in enciphering to the cryptogram. The process of crypt-
analysis is that of attempting to determine the message (or the particular
key) given only the cryptogram and the a priori probabilities of various
keys and messages.

There are a number of difficult epistemological questions connected with
the theory of secrecy, or in fact with any theory which involves questions of
probability (particularly a priori probabilities, Bayes' theorem, etc.) when
applied to a physical situation. Treated abstractly, probability theory can
be put on a rigorous logical basis with the modern measure theory ap-
prcach.P As applied to a physical situation, however, especially when
"subjective" probabilities and unrepeatable experiments are concerned,
there are many questions of logical validity. For example, in the approach
to secrecy made here, a priori probabilities of various keys and messages
are assumed known by the enemy cryptographer-how can one determine
operationally if his estimates are correct, on the basis of his knowledge of the
situation?

One can construct artificial cryptographic situations of the "urn and die"
type in which the a priori probabilities have a definite unambiguous meaning
and the idealization used here is certainly appropriate. In other situations
that one can imagine, for example an intercepted communication between
Martian invaders, the a priori probabilities would probably be so uncertain
as to be devoid of significance. Most practical cryptographic situations lie
somewhere between these limits. A cryptanalyst might be willing to classify
the possible messages into the categories "reasonable," "possible but un-
likely" and "unreasonable," but feel that finer subdivision was meaningless.

Fortunately, in practical situations, only extreme errors in a Fiori prob-
abilities of keys and messages cause significant errors in the important
parameters. This is because of the exponential behavior of the number of
messages and cryptograms, and the logarithmic measures employed.

3. REPRESENTATION OF SYSTEMS

A secrecy system as defined above can be represented in various ways.
One which is convenient for illustrative purposes is a line diagram, as in
Figs. 2 and 4. The possible messages are represented by points at the left
and the possible cryptograms by points at the right. If a certain key, say key
1, transforms message M J into cryptogram E4 then M 2 and E4 are connected

4 See J. L. Doob, "Probability as Measure," Annals of Math. Stal., v. 12, 1941, pp.
206-214.

I A. Kolmogorofl, "Grundbegriffe der Wahrscheinlichkeits rechnung," Ergebnisse d~
Mathematic, v, 2, No.3 (Berlin 1933).
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by a line labeled 1, etc. From each possible message there must be exactly
one line emerging for each different key. If the same is true for each
cryptogram, we will say that the system is closed.

A more common way of describing a system is by stating the operation
one performs on the message for an arbitrary key to obtain the cryptogram.
Similarly, one defines implicitly the probabilities for various keys by de-
scribing how a key is chosen or what we know of the enemy's habits of key
choice. The probabilities for messages are implicitly determined by stating
our a prioriknowledge of the enemy's language habits, the tactical situatioi.
(which will influence the probable content of the message) and any special
information we may have regarding the cryptogram,

E,

U,
M,

E2
U,

U3

£1

CLOSED SYSTEU NOT CLOSED

Fig. 2-Line drawings for simple systems.

4. SOME EXAMPLES OF SECRECY SYSTEMS

In this section a number of examples of ciphers will be given. These will
often be referred to in the remainder of the paper for illustrative purposes.

1. Simple Substitution Cipher.

In this cipher each letter of the message is replaced by a fixed substitute,
usually also a letter. Thus the message,

where ml , In! , ... are the successive letters becomes:

E = eteJtae.· · ·
= !(ml)!(mt)!(ma)!(m4) ...

where the functionf(m) is a function with an inverse. The key is a permuta-
tion of the alphabet (when the substitutes are letters) e.g. X G U A C D
T B F H R S L M QV Y Z W I E J 0 K N P. The first letter X is the
substitute for A, G is the substitute for B, etc.
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2. Transposition (Fixed Period d).

The message is divided into groups of length d and a permutation applied
to the first group, the same permutation to the second group, etc. The per-
mutation is the key and can t,e represented by a permutation of the first d
integers. Thus, for d = 5, we might have 2 3 1 5 -1 as the permutation.
This means that:

ml 1111 mJ fn. m, me m7 m. fJlt mlO •.• becomes
'112 '"a ml m, Jn4 m7 tn, 1tJe In10 nl. • •• •

Sequential application of two or more transpositions will be calJed compound
transposition. If the periods are d1 J d,. , .•. , d, it is clear that the result is
a transposition of period d, where d is the least common multiple of d1 J

d, , "., d, .

3. Vigc:nere, and Variatic>r.s.

In the Vigenere cipher the key consists of a series of d letters. These are
written repeatedly below the message and the two added modulo 26 (con-
sidering the alphabet numbered from A ': 0 to Z == 25. Thus

ei == m, + It, (mod 26)

where ki is of period d in the index i, For example, with the key G A H,
we obtain

message N 0 IV 1ST HE· · ·
repeated key G A H G A II GA· · ·
cryptogram T 0 DOS A ~\T E·· ·

The Vigenere of period 1 is called the Caesar cipher. It is a simple substi-
tution in which each letter of M is advanced a fixed amount in the alphabet.
This amount is the key, which may be any number from 0 to 25. The so-
called Beaufort and Variant Beaufort are similar to the Vigenere, and en-
cipher by the equations

and

'i =- "'i - lei (mod 26)

respectively. The Beaufort of period one is called the reversed Caesar
cipher.

The application of two or more Vigeneres in sequence will be called the
compound Vigen~re. It has the equation

'4 - ., + 114 + I, + ... + I, (mod 26)
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where It, , l«, ... , s, in general have different periods. The period of their
sum,

k. + I, + ... + s,

as in compound transposition, is the least common multiple of the individual
periods.

When the Vigenere is used with an unlimited key, never repeating, we
have the Vernam system,' with

e, = m, + k, (mod 26)

the k, being chosen at random and independently among 0, I, .", 25. If
the key is a meaningful text we have the "running key" cipher.

4. Digram, Trigram, and lV-gram substitzdion.

Rather than substitute for letters one can substitute for digrams, tri-
grams, etc. General digram substitution requires a key consisting of a per-
mutation of the 262 digrams. It can be represented by a table in which the
row corresponds to the first letter of the digram and the column to the second
letter, entries in the table being the substitutes (usually also digrams).

5. Si'Jgk Mixed AlpluJ!Jel Vigenere.

This is a simple substitution followed by a Vigenere.

e, == !(mi) + k,
tn, == I-lee, - ki )

The "inverse" of this system is a Vigenere followed by simple substitution

e, = g(mi + ki )

m, = g-l(ei) - ki

6. Matrix System. 7

One method of n-gram substitution is to operate on successive n-grams
with a matrix having an inverse. The letters are assumed numbered from
oto 25, making them elements of an algebraic ring. From the n-gram ml m2
· · · "''' of message, the matrix at; gives an n-gram of cryptogram

"e, = E aij m,
i-I

i = 1, ... ,n

• G. S. Vernam, "Cipher Printing Telegraph Systems for Secret Wire and Radio Tele-
graphic Communications," Journal American Institute of Electrical Engineers, v, XLV,
pp. 109-115, 1926.

1 See L. S. Hill, "Cryptography in an Algebraic Alphabet," American jfath. A~{onlhl)',

v. 36, No.6, 1, 1929, pp. 306-312; also "Concerning Certain Linear Transformation
Apparatus of Cryptography," v. 38, No.3, 1931, pp. 135-154.
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The matrix a,j is the key, and deciphering is performed with the inverse
matrix. The inverse matrix will exist if and only if the determinant Iatj I
has an inverse element in the ring.

7. The Play/air Cipher.

This is a particular type of digram substitution governed by a mixed 25
letter alphabet written in a 5 x 5 square. (The letter J is often dropped in
cryptographic work-it is very infrequent, and when it occurs can be re-
placed by I.) Suppose the key square is as shown below:

LZQCP
AGNOU
RD}Y[[ F
KYHVS
X B T E lV

The substitute for a digram AC, for example, is the pair of letters at the
other corners of the rectangle defined by A and C, i.e., W, the L taken first
since it is above A. If the digram letters are on a horizontal line as RI, one
uses the letters to their right DF; RF becomes DR. If the letters are on a
vertical line, the letters below them are used. Thus PS becomes UW. If
the letters are the same nulls may be used to separate them or one may be
omitted, etc.

8. Multiple Jrfixed Alphabet Substitution.

In this cipher there are a set of d simple substitutions which are used
in sequence. If the period d is four

becomes

fl(ml) !'].(t1fIl) !3(mJ) !4(m4) It(m,,) !2(tnt} ...

9. Au/oiey Cipher.

A Vigenere type system in which either the message itself or the resulting
cryptogram is used for the "key" is called an autokey cipher. The encipher-
ment is started with a "priming key" (which is the entire key in our sense)
and continued with the message or cryptogram displaced by the length of
the priming key as indicated below, where the priming key is COMET.
The message used as "key":

Message
Key

Cryptogram

SEN DS U P P LIE S .
COM E T S E lV D SUP .
USZHLMTCOAYB
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The cryptogram used as "key":"

97

Message
Key

Cryptogram

SENDS UPPLI ES ...
COMETUSZHLOH···

USZHLOHOSTS

10. Fractional Ciphers.

In these, each letter is first enciphered into two or more letters or num-
bers and these symbols are somehow mixed (e.g. by transposition). The
result may then be retranslated into the original alphabet. Thus, using a
mixed 2S-letter alphabet for the key, we may translate letters into two-digit
quinary numbers by the table:

o 1 2 3 4
OLZQCP
lAGNOU
2RDMI F
3KYHVS
4XBTEW

Thus B becomes 41. After the resulting series of numbers is transposed in
some way they are taken in pairs and translated back into letters.

11. Codes.

In codes words (or sometimes syllables) are replaced by substitute letter
groups. Sometimes a cipher of one kind or another is applied to the result.

5. VALUATIONS OF SECRECY SYSTEMS

There are a number of different criteria that should be applied in esti-
mating the value of a proposed secrecy system. The most important of
these are:

1. Amount of Secrecy.

There are some systems that are perfect-the enemy is no better off after
intercepting any amount of material than before. Other systems, although
giving him some information, do not yield a unique "solution" to intercepted
cryptograms. Among the uniquely solvable systems, there are wide varia-
tions in the amount of labor required to effect this solution and in the
amount of material that must be intercepted to make the solution unique.

• This system is tri vial from the secrecy standpoint since, with the exception of the
first d letters, the enemy is in possession of the entire "key."
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2. Size of Key.

The key must be transmitted by non-interceptible means from transmit-
ting to receiving points. Sometimes it must be memorized. It is therefore
desirable to have the key as small as possible.

3. Complexity of Enciphering and Deciphering Operations.

Enciphering and deciphering should, of course, be as simple as possible.
If they are done manually, complexity leads to loss of time, errors, etc. If
done mechanically, complexity leads to large expensive machines.

4. Propagation of Errors.

Itt certain types of ciphers an error of one letter in enciphering or trans-
mission leads to a large number of errors in the deciphered text. The errors
are spread out by the deciphering operation, causing the loss of much in-
formation and frequent need for repetition of the cryptogram. It is naturally
desirable to minimize this error expansion.

5. Expansion of Message.

In some types of secrecy systems the size of the message is increased by
the enciphering process. This undesirable effect may be seen in systems
where one attempts to swamp out message statistics by the addition of
many nulls, or where multiple substitutes are used. It also occurs in many
"concealment" types of systems (which are not usually secrecy systems in
the sense of our definition).

6. THE ALGEBRA OF SECRECY SYSTEMS

If we have two secrecy systems T and R we can often combine them in
various ways to form a new secrecy system S. If T and R have the same
domain (message space) we may form a kind of "weighted sum,"

S = pT + qR

where p + q = 1. This operation consists of first making a preliminary
choice with probabilities p and q determining which of T and R is used.
This choice is part of the key of S. After this is determined T or R is used as
originally defined. The total key of S must specify which of T and R is used
and which key of T (or R) is used.

If T consists of the transformations T1 , ••• , T". with probabilities PI ,
· · ·, pm and R consists of R) , · .. , Rk with probabilities ql , · · · , qk then S =
pT + qR consists of the transformations T] , T2 , ••• J T"., R1 , ' •• , Rk

with probabilities PPI J PP2 J ••• , pp". , qql , qq'l, ... , qqk respectively.
More generally we can form the sum of a number of systems.
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We note that any system T can be written as a sum of fixed operations

T = PITt + p.J.T2 + ... + pmTm

T, being a definite enciphering operation of T corresponding to key choice
i, which has probability Pi.

A second way of combining two secrecy systems is by taking the "prod-
uct," shown schematically in Fig. 3. Suppose T and R are two systems and
the domain (language space) of R can be identified with the range (crypto-
gram space) of T. Then we can apply first T to our language and then R

Fig. 3-Product of two systems S = RT.

to the result of this enciphering process. This gives a resultant operation S
which we write as a product

S = RT

The key for S consists of both keys of T and R which are assumed chosen
according to their original probabilities and independently. Thus, if the
m keys of T are chosen with probabilities

PI /J2 ••• pm

and the n keys of R have probabilities

" ,1'1 P2 ... p" ,

then S has at most mn keys with probabilities PiP; . In many cases some of
the product transformaions RiTj will be the same and can be grouped to-
gether, adding their probabilities.

Product encipherment is often used; for example, one follows a substi-
tution by a transposition or a transposition by a Vigenere, or applies a code
to the text and enciphers the result by substitution, transposition, frac-
tionation, etc.



100 C. E. Shannon

It may be noted that multiplication is not in general commutative, (we
do not always have RS = SR), although in special cases, such as substitu-
tion and transposition, it is. Since it represents an operation it isdefinition-
ally associative. That is R(ST) = (RS)T = RST. Furthermore we have
the laws

p(p'T + q'R) + qS = pp'T+ pq'R + qS

(weighted associative law for addition)

T(pR + qS) = pTR + qTS
(pR + qS)T = pRT + qST

(right and left hand distributive laws)
and

/JJT + p2T + p,R = (PI + /J2)T + PaR

It should be emphasized that these combining operations of addition
and multiplication apply to secrecy systems as a whole. The product of two
systems TR should not be confused with the product of the transformations
in the systems TJ?j, which also appears often in this work. The former TR
is a secrecy system, i.e., a set of transformations with associated prob-
abilities; the latter is a particular transformation. Further the sum of two
systems pR + qT is a system-the sum of two transformations is not de-
fined. The systems T and R may commute without the individual T. and R;
commuting, e.g., if R is a Beaufort system of a given period, all keys equally
likely,

R,Rj =1= RjRi

in general, but of course RR does not depend on its order; actually

RR = V

the Vigenere of the same period with random key. On the other hand, if
the individual T, and R, of two systems T and R commute, then the sys-
tems commute.

A system whose M and E spaces can be identified, a very common case
as when letter sequences are transformed into letter sequences, may be
termed endomorphic. An endomorphic system T may be raised to a power T» .

A secrecy system T whose product with itself is equal to T, i.e., for which

TT = T,

will be called idempotent. For example, simple substitution, transposition
of period p, Vigenere of period p (all with each kf;y equally likely) are
idempotent.
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The set of all endomorphic secrecy systems defined in a fixed message
space constitutes an "algebraic variety," that is, a kind of algebra, using
the operations of addition and multiplication. In fact, the properties of
addition and multiplication which we have discussed may be summarized
as follows:
The set of endomorphic ciphe,s with the same message space and the two com-
bining operations of weighted addition and multiplicationform a linear associ-
ative algebra with a unit element, aportfrom the fact that the cotifficients in a
weighted addition must be non-negative and sum to unity.

The combining operations give us ways of constructing many new types
of secrecy systems from certain ones, such as the examples given. We may
also use them to describe the situation facing a cryptanalyst when attempt-
ing to solve a cryptogram of unknown type. He is, in fact, solving a secrecy
system of the type

T = PIA + /'2B + ... + p,S + piX L.,p=l

where the A, B, ... , S are known types of ciphers, with the Pi their a priori
probabilities in this situation, and p'X corresponds to the possibility of a
completely new unknown type of cipher.

7. PURE AND MIXED CIPHERS

Certain types of ciphers, such as the simple substitution, the transposi-
tion of a given period, the Vigenere of a given period, the mixed alphabet
Vigenere, etc. (all with each key equally likely) have a certain homogeneity
with respect to key. Whatever the key, the enciphering, deciphering and
decrypting processes are essentially the same. This may be contrasted with
the cipher

pS+ qT

where S is a simple substitution and T a transposition of a given period.
In this case the entire system changes for enciphering, deciphering and de-
cryptment, depending on whether the substitution or transposition is used.

The cause of the homogeneity in these systems stems from the group
property-we notice that, in the above examples of homogeneous ciphers,
the product TiTj of any two transformations in the set is equal to a third
transformation T" in the set. On the other hand TSj does not equal any
transformation in the cipher

pS + 'qT

which contains only substitutions and transpositions, no products.
We might define a "pure" cipher, then, as one whose T; form a group.

This, however, would be too restrictive since it requires that the E space
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be the same as the M space, i.e. that the system be endomorphic. The
fractional transposition is as homogeneous as the ordinary transposition
without being endomorphic. The proper definition is the following: A cipher
T is pure if for every T', , T, , T" there is a T, such that

T,r?TIr, = T,
and every key is equally likely. Otherwise the cipher is mixed. The systems of
Fig. 2 are mixed. Fig. 4 is pure if all keys are equally likely.
Theorem 1: In a purecipher the operations tt'r, which transform the message

space into itself form a group whose order is m, the number of
dijJerent keys.

For

'r/Tlr,li/Tj = I

so that each element has an inverse. The associative law is true since these
are operations, and the group property follows from

r;lTjT1,!T, = r.1Tk 'I, ,!T , = r.1T,

using our assumption that TilTj = rtr, for some s.
The operation r/Tj means, of course, enciphering the message with key

j and then deciphering with key i which brings us back to the message space.
If T is endomorphic, i.e. the T, themselves transform the space OM into itself
(as is the case with most ciphers, where both the message space and the
cryptogram space consist of sequences of letters), and the T, are a group and
equally likely, then T is pure, since

T.Ti1T" = T.Tr == T•.

Theorem 2: The product of two pure ciphers which commute is pure.
For if T and R commute T;,Ri == R,T". for every i,j with suitable I, m, and

T~i(T"RI)-lT.R,.= T,RjR-,lri/T.R,.
= RuR-;,1RwTr'r -.1T,

= R,.Tf/.

The commutation condition is not necessary, however, for the product to
be a pure cipher.

A system with only one key, i.e., a single definite operation T1 , is pure
since the only choice of indices is

T1T11T
1 = T1 •

Thus the expansion of a general cipher into a sum of such simple trans-
formations also exhibits it as a sum of pure ciphers.

An examination of the example of a pure cipher shown in Fig. 4 discloses
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certain properties. The messages fall into certain subsets which we will call
rtsidue classes, and the possible cryptograms are divided into corresponding
residue classes. There is at least one line from each message in a class to
each cryptogram in the corresponding class, and no line between classes
which do not correspond. The number of messages in a class is a divisor of
the total number of keys. The number of lines "in parallel" from a message
M to a cryptogram in the corresponding class is equal to the number of
keys divided by the number of messages in the class containing the message
(or cryptogram). It is shown in the appendix that these hold in general for
pure ciphers. Summarized formally, we have:

ME$SAGE CRYPTOGRAM
RESIDUE RESIDUE

CLASSES CLASSES
M. £.

Ul [,

C. C~

EJ

U.. E..

PURE SYSTEM

Fig. 4--Pure system.

Theorem J: In a puresystem themessages canbe divided into a setof "residtt6
classes" C1 , C", ···,C, andthecryptograms into a corresponding
setof residue classes C~ , C~ , · · " C; with thefollowing properties:
(1) The message residue classes are mutually exclusive and col-

lectifJely contain all possible messages. Similarly for the
cryptogram residue classes.

(2) Enciphering any tMssage in C, with any key produces a
cryptogram in C~. Deciphering any cryptogram in C; with
any key leads toa message in Ci •

(3) The number of messages in C. , say tp. , is equal to thenumber
of cryptograms in C; and is a divisor of k thenumber of keys.
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(4) Each message in C, can be enciphered. into eacl, cryptogram
in C: by exactly k/.pidifferent keys.Similarly for decipherment.

The importance of the concept of a pure cipher (and the reason for the
name) lies in the fact that in a pure cipher all keys are essentially the same.
Whatever key is used for a particular message, the a posteriori probabilities
of all messages are identical. To see this, note that two different keys ap-
plied to the same message lead to two cryptograms in the same residue class,

say C~ . The two cryptograms therefore could each be deciphered by!.
tpi

keys into each message in C, and into no other possible messages. All keys
being equally likely the a posteriori probabilities of various messages are
thus

P (M) = P(M)P.,(E) = P(M)P.,(E) P(M)
• P(E) IMP(M)PJI(E) = P(C,)

where M is in C, , E is in C; and the sum is over all messages in C•. If E
and M are not in corresponding residue classes, P.(M) = o. Similarly it
can be shown that the a posteriori probabilities of the different keys are
the same in value but these values are associated with different keys when
a different key is used. The same set of values of P.(K) have undergone a
permutation among the keys. Thus we have the result
Theorem 4: In a pure systemthea posteriori probabilities of various messages

P.(M) are intUpende1d of the key that is chosen. The a posteriori
probabilities of the keys P.(K) are the same in value but underg»
a permutation with a differe,zt key choice.

Roughly we may say that any key choice leads to the same cryptanalytic
problem in a pure cipher. Since the different keys all result in cryptograms
in the same residue class this means that all cryptograms in the same residue
class are cryptanalytically equivalent-they lead to the same a posteriori
probabilities of messages and, apart from a permutation, the same prob-
abilities of keys.

As an example of this, simple substitution with all keys equally likely is
a pure cipher. The residue class corresponding to a given cryptogram E is
the set of all cryptograms that may be obtained from E by operations
r.r:E. In this case TiTi I is itself a substitution and hence any substitution
on E gives another member of the same residue class. Thus, if the crypto-
gram is

E = X C P P G C F Q,
then

E1 = R D H H G D S N
Et=ABCCDBEF
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etc. are in the same residue class. It is obvious in this case that these crypto-
grams are essentially equivalent. All that is of importance in a simple sub-
stitution with random key is the pat/ern of letter repetitions, the actual
letters being dummy variables. Indeed we might dispense with them en-
tirely, indicating the pattern of repetitions in E as follows:

r
r-,

This notation describes the residue class but eliminates all information as
to the specific member of the class. Thus it leaves precisely that information
which is cryptanalytically pertinent. This is related to one method of attack-
ing simple substitution ciphers-the method of pattern words.

In the Caesar type cipher only the first differences mod 26 of the crypto-
gram are significant. Two cryptograms with the same !:1ei are in the same
residue class. One breaks this cipher by the simple process of writing down
the 26 members of the message residue class and picking out the one which
makes sense.

The Vigenere of period d with random key is another example of a pure
cipher. Here the message residue class consists of all sequences with the
same first differences as the cryptogram, for letters separated by distance d.
For d = 3 the residue class is defined by

mt- m.=el-e4
m2- m.=e2-e,
ma - me = ea - ee
m4 - m7 = t4 - e7

where E = eJ, et, ... is the cryptogram and m, , ~, ... is any M in the
corresponding residue class.

In the transposition cipher of period d with random key, the residue class
consists of all arrangements of the e, in which no e, is moved out of its block
of length d, and any two e, at a distance d remain at this distance. This is
used in breaking these ciphers as follows: The cryptogram is written in
successive blocks of length d, one under another as below (d = 5):

el et ea e. e,
e, e7 e. eg elO

en eu ·
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The columns arc then cut apart and rearranged to make meaningful text.
\Vhen the columns arc cut apart, the only information remaining is the
residue class of the cryptogram.
Theorem 5: If T is pure then TiT/IT = T where T,Tj are auy two trans-

formations of T. Conversely if this is truefor auy T,Tj in a system
T tile" T is pure.

The first part of this theorem is obvious from the definition of a pure
system. To prove the second part we note first that, if ra;'r = T, then
TiT/IT, is a transformation of T. It remains to show that all keys are equi-
probable. We have T = L p,T, and

•
E p,TiT/1T. = E p.T•., ,

The term in the left hand sum with s = j yields pjT,. The only term in T,
on the right is piT,. Since all coefficients are nonnegative it follows that

Pi ~ Pi.

The same argument holds with i andj interchanged and consequently

Pi = Pi
and T is pure. Thus the condition that rat'r = T might be used as an
alternative definition of a pure system.

8. SIr-ULAR SYSTE~IS

Two secrecy systems Rand S will be said to be similar if there exists a
transformation A having an inverse A-I such that

R = AS

This means that enciphering with R is the same as enciphering with S
and then operating on the result with the transformation A. If we write
R ~ S to mean R is similar to S then it is clear that R ~ S implies S ~ R.
Also R ::::::: Sand S ~ T imply R ~ T and finally R ~ R. These are sum-
marized by saying that similarity is an equivalence relation.

The cryptographic significance of similarity is that if R ~ S then Rand
S are equivalent from the cryptanalytic point of view, Indeed if a crypt-
analyst intercepts a cryptogram in system S he can transform it to one in
system R by merely applying the transformation A to it. A cryptogram in
system R is transformed to one in S by applying A-I. If Rand S are ap-
plied to the same language or message space, there is a one-to-one correspond-
ence between the resulting cryptograms. Corresponding cryptograms give
the same distribu tion of a posteriori probabili ties for all messages.

If one has a method of breaking the system R then any system S similar



Communication Theory of Secrecy Systems 107

to R can be broken by reducing to R through application of the operation A.
This is a device that is frequently used in practical cryptanalysis.

As a trivial example, simple substitution where the substitutes are not
letters but arbitrary symbols is similar to simple substitution using letter
substitutes. A second example is the Caesar and the reversed Caesar type
ciphers. The latter is sometimes broken by first transforming into a Caesar
type. This can be done by reversing the alphabet in the cryptogram. The
Vigenere, Beaufort and Variant Beaufort are all similar, when the key is
random. The "autokey" cipher (with the message used as "key") primed
with the key K] K 2 ••• K d is similar to a Vigenere type with the key alter-
nately added and subtracted Mod 26. The transformation A in this case is
that of "deciphering" the autokey with a series of d A's for the priming key

PART II

THEORETICAL SECRECY

9. INTRODUCTION

We now consider problems connected with the "theoretical secrecy" of
a system. How immune is a system to cryptanalysis when the cryptanalyst
has unlimited time and manpower available for the analysis of crypto-
grams? Does a cryptogram have a unique solution (even though it may
require an impractical amount of work to find it) and if not how many rea-
sonable solutions does it have? How much text in a given system must be in-
tercepted before the solution becomes unique? Are there systems which never
become unique in solution no matter how much enciphered text is inter-
cepted? Are there systems for which no information whatever is given' to
the enemy no matter how much text is intercepted? In the analysis of these
problems the concepts of entropy, redundancy and the like developed in
"A Mathematical Theory of Communication" (hereafter referred to as
MTC) will find a wide application.

10. PERFECT SECRECY

Let us suppose the possible messages are finite in number M], ' .. , M n

and have a priori probabilities P(M1) , ••• , P(Mn), and that these are en-
ciphered into the possible cryptograms E1 , ••• , Em by

E = TiM.

The cryptanalyst intercepts a particular E and can then calculate, in
principle at least, the a posteriori probabilities for the various messages,
P.(M). It is' natural to define perfect secrecy by the condition that, for all E
the a posteriori probabilities are equal to the a priori probabilities inde-
pendently of the values of these. In this case, intercepting the message has
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P(E)
PB(M)

given the cryptanalyst no information.' Any action of his which depends on
the information contained in the cryptogram cannot be altered, for all of
his probabilities as to what the cryptogram contains remain unchanged. On
the other hand, if the condition is not satisfied there will exist situations in
which the enemy has certain a pritwi probabilities, and certain key and
message choices may occur for which the enemy's probabilities do change.
This in turn may affect his actions and thus perfect secrecy has not been
obtained. Hence the definition given is necessarily required by our intuitive
ideas of what perfect secrecy should mean.

A necessary and sufficient condition for perfect secrecy can be found
as follows: We have by Bayes' theorem

P (M) = P(M)PM(E)
• P(E)

in which:
P(M) a priori probability of message M.
PM(E) = conditional probability of cryptogram E if message M is

chosen, i.e. the sum of the probabilities of all keys which pro-
duce cryptogram E from message M.
probability of obtaining cryptogram E from any cause.
a posteriori probability of message M if cryptogram E is
intercepted.

For perfect secrecy P.(M) must equal P(M) for all E and all M. Hence
either P(M) = 0, a solution that must be excluded since we demand the
equality independent of the values of P(M), or

P II (E) = peE)

for every M and E. Conversely if PM(E) = peE) then

P.(M) = P(M)

and we have perfect secrecy, Thus we have the result:
Theorem 6: A necessary and sufficient condition for perfect secrecy is tkat

for all M and E. That is, PII (E) must be independent of M.
Stated another way, the total probability of all keys that transform Mi

• A purist might object that the enemy has obtained some information in that he knows
a message was sen t. This may be answered by having among the messages a "blank"
corresponding to "no message." If no message is originated the blank is enciphered and
sent as a cryptogram. Then even this modicum of remaining information is eliminated.



Communication Theory of Secrecy Systems 109

into a given cryptogram E is equal to that of all keys transforming M j

into the same E, for all M«, M j and E.
Now there must be as many E's as there are M's since, for a fixed i, T,

gives a one-to-one correspondence between all the M's and some of the E's.
For perfect secrecy PJI(E) = P(E) ¢ 0 for any of these E's and any M.
Hence there is at least one key transforming any M into any of these E's.
But all the keys from a fixed M to different E's must be different, and
therefore the number of different keys is at least as great as the numberof M's.
It is possible to obtain perfect secrecy with only this number of keys, as

~I.o...o:-----------:. [,

~--'------------';:.E~

Fig. 5-Perrect system.

one shows by the following example: Let the M i be numbered 1 to nand
the E, the same, and using. n keys let

TiM; = E,

1
where s = i + .i (Mod n). In this case we see that P.(M) = - = P(E)

n
and we have perfect secrecy. An example is shown in Fig. 5 with s =
i + j - 1 (Mod 5).

Perfect systems in which the number of cryptograms, the number of
messages, and the number of keys are all equal are characterized by the
properties that (1) each M is connected to each E by exactly one line, (2)
all keys are equally likely. Thus the matrix representation of the system
is a "Latin square."

In MTC it was shown that information may be conveniently measured
by means of entropy. If we have a set of possibilities with probabilities
PI , Pt, ... , p", the entropy H is given by:

H = - L Pi log Pi.
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In a secrecy system there are two statistical choices involved, that of the
message and of the key. We may measure the amount of information pro-
duced when a message is chosen by H(M):

H(M) = - L P(M) log P(M),

the summation being over all possible messages. Similarly, there is an un-
certainty associated with the choice of key given by:

H(K) = - L P(K) log P(K).

In perfect systems of the type described above, the amount of informa-
tion in the message is at most log n (occurring when all messages are equi-
probable). This information can be concealed completely only if the key un-
certainty is at least log n. This is the first example of a general principle
which will appear frequently: that there is a limit to what we can obtain
with a given uncertainty in key-the amount of uncertainty we can intro-
duce into the solution cannot be greater than the key uncertainty.

The situation is somewhat more complicated if the number of messages
is infinite. Suppose, for example, that they are generated as infinite se-
quences of letters by a suitable Markoff process. It is clear that no finite key
will give perfect secrecy. We suppose, then, that the key source generates
key in the same manner, that is, as an infinite sequence of symbols. Suppose
further that only a certain length of key L" is needed to encipher and de-
cipher a length LJI of message. Let the logarithm of the number of letters
in the message alphabet be R JI and that for the key alphabet be RIC. Then,
from the finite case, it is evident that perfect secrecy requires

RJlLJI ~ RxLx.

This type of perfect secrecy is realized by the Vernam system.
These results have been deduced on the basis of unknown or arbitrary

a priori probabilities for the messages. The key required for perfect secrecy
depends then on the total number of possible messages.

One would expect that, if the message space has fixed known statistics,
so that it has a definite mean rate R of generating information, in the sense
of MTC, then the amount of key needed could be reduced on the average

in just this ratio~ I and this is indeed true. In fact the message can be

passed through a transducer which eliminates the redundancy and reduces
the expected length in just this ratio, and then a Vernam system may be
applied to the result. Evidently the amount of key used per letter of message

is statistically reduced by a factor ~ and in this case the key source and

information source are just matched-a bit of key completely conceals a
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bit of message information. It is easily shown also, by the methods used in
MTC, that this is the best that can be done.

Perfect secrecy systems have a place in the practical picture-they may be
used either where the greatest importance is attached to complete secrecy-
e.g., correspondence between the highest levels of command, or in cases
where the number of possible messages is small. Thus, to take an extreme
example) if only two messages "yes" or "no" were anticipated, a perfect
system would be in order, with perhaps the transformation table:

M K A B

yes 0 1

no 1 0

The disadvantage of perfect systems for large correspondence systems
is, of course, the equivalent amount of key that must be sent. In succeeding
sections we consider what can be achieved with smaller key size, in par-
ticular with finite keys.

11. EQUIVOCATION

Let us suppose that a simple substitution cipher has been used on English
text and that we intercept a certain amount, N letters, of the enciphered
text. For N fairly large) more than say 50 letters, there is nearly always a
unique solution to the cipher; i.e., a single good English sequence which
transforms into the intercepted material by a simple substitution. With a
smaller N, however, the chance of more than one solution is greater; with
N = 15 there will generally be quite a number of possible fragments of text
that would fit, while with N = 8 a good fraction (of the order of 1/8) of
all reasonable English sequences of that length are possible, since there is
seldom more than one repeated letter in the 8. With N = 1 any letter is
clearly possible and has the same a posteriori probability as its a priori
probability. For one letter the system is perfect.

This happens generally with solvable ciphers. Before any material is
intercepted we can imagine the a fWiori probabilities attached to the vari-
ous possible messages, and also to the various keys. As material is inter-
cepted, the cryptanalyst calculates the a posteriori probabilities; and as N
increases the probabilities of certain messages increase, and, of most, de-
crease, until finally only one is left, which has a probability nearly one,
while the total probability of all others is nearly zero.

This calculation can actually be carried out for very simple systems. Table
I shows the a posteriori probabilities for a Caesar type cipher applied to
English text, with- the key chosen at random from the 26 possibilities. To
enable the use of standard letter, digram and trigram frequency tables, the
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text has been started at a random point (by opening a book and putting
a. pencil down at random on the page). The message selected in this way
begins "creases to ..." starting inside the word increases. If the message
were known to start a sentence a different set of probabilities must be used,
corresponding to the frequencies of letters, digrarns, etc., at the beginning
of sen tcnces.

'''ABLE I
II Posterior] Probabilities for a Caesar Type Cryptogram

Declphcrmen ts N-I N-2 N - J N - 4 N - S
C REA S .028 .0377 .1111 .3673 1
D S F B T .038 .0314
ETGCU .131 .0881
FUI/DV .029 .0189
G V lEU' .020
II W J F X .053 .0063
I X K G Y .()(lj .0126
J }' L II Z .00\
K Z All A .OQ.I
LAJVJD .034 .1321 .2500
J\f 8 0 K C .025 .0222
NCPLD .071 .tlQ5
o D Q Af E .080 .0377
PERNF .020 .0818 .4389 .6327
QFSDG .001
RGTPH .068 .0126
S /1 U Q I .061 .0881 .0056
T I YRJ .105 .2830 .1667
U J IV S K .025
VKXTL .009
ivL Y U M .015 .0056
X A[ Z V N .002
Y N A WO .020
ZOBXP .001
APCYQ .082 .0503
BQDZR .014

II (decimal digits) 1.2425 .9686 .6034 .285 0

The Caesar with random key is a pure cipher and the particular key chosen
does not affect the a posteriori probabilities. To determine these we need
merely list the possible decipherments by all keys and calculate their a

priori probabilities. The a posteriori probabilities are these divided by their

sum. These possible decipherments are found by the standard process of
"running down the alphabet" from the message and are listed at the left.
These form the residue class for the message, For one intercepted letter the
a posteriori probabilities are equal to the a priori probabilities for letters'?
and are shown in the column headed N = 1. For two intercepted letters
the probabilities are those for digrams adjusted to sum to unity and these
are shown in the column N = 2.

10 The probabilities for this table were taken from frequency tables given by Fletcher
Pratt in a book "Secret and Urgent" published by Blue Ribbon Books, New York, J939.
Although not complete, they are sufficient for present purposes.
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Trigram frequencies have also been tabulated and these are shown in the
column N = 3. For four- and five-letter sequences probabilities were ob-
tained by multiplication from trigram frequencies since, roughly,

p(ijkl) = p(ijk)pj1c(I).

Note that at three letters the field has narrowed down to four messages
of fairly high probability, the others being small in comparison. At four
there are two possibilities and at five just one, the correct decipherment.

In principle this could be carried out with any system but, unless the key
is very small, the number of possibilities is so large that the work involved
prohibits the actual calculation.

This set of a posteriori probabilities describes how the cryptanalyst's
knowledge of .the message and key gradually becomes more precise as
enciphered material is obtained. This description, however, is much too
involved and difficult to obtain for our purposes. What is desired is a sim-
plified description of this approach to uniqueness of the possible solutions.

A similar situation arises in communication theory when a transmitted
signal is perturbed by noise. It is necessary to set up a suitable measure of
the uncertainty of what was actually transmitted knowing only the per-
turbed version given by the received signal. In MTC it was shown that a
natural mathematical measure of this uncertainty is the conditional en-
tropy of the transmitted signal when the received signal is known. This
conditional entropy was called, for convenience, the equivocation.

From the point of view of the cryptanalyst, a secrecy system is almost
identical with a noisy communication system. The message (transmitted
signal) is operated on by a statistical element, the enciphering system, with
its statistically chosen key. The result of this operation is the cryptogram
(analogous to the perturbed signal) which is available for analysis. The
chief differences in the two cases are: first, that the operation of the en-
ciphering transformation is generally of a more complex nature than the
perturbing noise in a channel; and, second, the key for a secrecy system is
usually chosen from a finite set of possibilities while the noise in a channel
is more often continually introduced, in effect chosen from an infinite set.

With these considerations in mind it is natural to use the equivocation
as a theoretical secrecy index. It may be noted that there are two signifi-
cant equivocations, that of the key and that of the message. These will be
denoted by H.(K) and H.(M) respectively. They are given by:

H.(K) = E peE, K) log P.(K)
••lC

11.(M) = E peE, M) log P.(K)
a.M
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in which E, M and K are the cryptogram, message and key and
peE, K) is the probability of key K and cryptogram E
P.(K) is the a posteriO[i probability of key K if cryptogram E is

intercepted
P(E, M) and P.(M) are the similar probabilities for message instead

of key.
The summation in H.(K) is over all possible cryptograms of a certain length
(say N letters) and over all keys. For H.(M) the summation is over all
messages and cryptograms of length N. Thus H.(K) and H.(M) are both
functions of N, the number of intercepted letters. This will sometimes be
indicated explicitly by writing H.(K, N) and H.(M, N). Note that these
are "total" equivocations; i.e., we do not divide by N to obtain the equiv-
ocation rate which was used in MTC.

The same general arguments used to justify the equivocation as a measure
of uncertainty in communication theory apply here as well. We note that
zero equivocation requires that one message (or key) have unit prob-
ability, all others zero, corresponding to complete knowledge. Considered
as a function of N, the gradual decrease of equivocation corresponds to
increasing knowledge of the original key or message. The two equivocation
curves, plotted as functions of N, will be called the equivocation charac-
teristics of the secrecy system in question.

The values of H.(K, N) and H.(M, N) for the Caesar type cryptogram
considered above have been calculated and are given in the last row of
Table I. H.(K, N) and H.(M, N) are equal in this case and are given in
decimal digits (i.e. the logarithmic base 10 is used in the calculation). It
should be noted that the equivocation here is for a particular cryptogram,
the summation being only over M (or K), not over E. In general the sum-
mation would be over all possible intercepted cryptograms of length N
and would give the average uncertainty. The computational difficulties
are prohibitive for this general calculation.

12. PROPERTIES OF EQUIVOCATION

Equivocation may be shown to have a number of interesting properties,
most of which fit into our intuitive picture of how such a quantity should
behave. We will first show that the equivocation of key or of a fixed part
of a message decreases when more enciphered material is intercepted.
Theorem 7: The equivocation of key H.(K, N) is a non-increasing junction

oj N. The equivocation of the first A leiters of the message is a
non-increasing junctio« of the number N which have been inter-
cepted. If N letters have been intercepted, the equivocation of the
first N letters of message is less than or equal to that of the key.
These may be Millen:
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S~N,

S ~ N (H for first A letters of text)
HE(K, S) ~ fl.(K, N)
Hg(M, S) s H.(M, N)
HIl(M, N) s HIl(K, N)

The qualification regarding A letters in the second result of the theorem
is so that the equivocation will not be calculated with respect to the amount
of message that has been intercepted. If it is, the message equivocation may
(and usually does) increase for a time, due merely to the fact that more
letters stand for a larger possible range of messages. The results of the
theorem are what we might hope from a good secrecy index, since we would
hardly expect to be worse off on the average after intercepting additional
material than before. The fact that they can be proved gives further justi-
fication to our use of the equivocation measure.

The results of this theorem are a consequence of certain properties of con-
ditional entropy proved in MTC. Thus, to show the first or second state-
ments of Theorem 7, we have for any chance events A and B

H(B) ~ H A(B).

If we identify B with the key (knowing the first S letters of cryptogram)
and A with the remaining N - S letters we obtain the first result. Similarly
identifying B with the message gives the second result. The last result fol-
lows from

H.(M) S H.(K, M) = BII(K) + IIs, 1C(M )

and the fact that H•.K(M) = 0 since K and E uniquely determine M.
Since the message and key are chosen independently we have:

H(M, K) = H(M) + H(K).

Furthermore,

H(M, K) = B(E, K) = H(E) + H.(K),

the first equality resulting from the fact that knowledge of M and K or of
E and K is equivalent to knowledge of all three. Combining these two we
obtain a formula for the equivocation of key:

BIl(K) = H(M) + H(K) - B(E).

In particular, if H(AJ) = B(E) then the equivocation of key, H.(K), is
equal to the a priori uncertainty of key, H(K). This occurs in the perfect
systems described above.

A formula for the equivocation of message can be found by similar means.
We have:

H(M, E) = H(E) + H.(M) = H(M) + H M(E)

H.(M) = H(M) + H M(E) - B(E).
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If we have a product system S = TR, it is to be expected that the second
enciphering process will not decrease the equivocation of message. That this
is actually true can be shown as follows: Let M, E1 , E2 be the message and
the first and second encipherments, respectively. Then

PB1B 2(M ) = PB 1(M).

Consequently

HB 1B 2(M) = HB1(M).

Since, for any chance variables, x, y, z, Hz,,(z) ~ H,,(z), we have the desired
result, H E 2(Af) ~ H B 1(M).

Theorem 8: The equivocation in message of a product system S = TR is not
less than that when only R is used.

Suppose now we have a system T which can be written as a weighted sum
of several systems R, S, ... , U

T = p1R + P2S + ... + pmU

and that systems R, S, ' .. , U have equivocations HI, H 2 , H 3 , ••• , Hm •

Theorem 9: The equivocation H of a weighted sum of systems is bounded
by the inequalities

These are best limits possible. The H's may be equivocations
either of key or message.

The upper limit is achieved, for example, in strongly ideal systems (to
be described later) where the decomposition is into the simple transforma-
tions of the system. The lower limit is achieved if all the systems R, S,
... , U go to completely different cryptogram spaces. This theorem is also
proved by the general inequalities governing equivocation,

We identify A with the particular system being used and B with the key
or message.

There is a similar theorem for weighted sums of languages. For this we
identify A with the particular language.
Theorem 10: Suppose a system can be applied /0 languages L] , I«, ... , L".

and has equivocation characteristics HI, H2 , •• ', H« . Wizen
applied to the weighted sum :E PiLi, the equivocation H is
bounded by

E piHi s II s E piHi - E Pi log Pi.



Communication Theory of Secrecy Systems 117

These limits are the best possible and the equivocations in ques-
tion can be either for key or message.

The total redundancy DN for N letters of message is defined by

DN = log G - H(M)

where G is the total number of messages of length Nand H(M) is the un-
certainty in choosing one of these. In a secrecy system where the total
number of possible cryptograms is equal to the number of possible messages
of length N, B(E) ~ log G. Consequently

H.(K) = H(K) + H(M) - B(E)

~ H(K) - [log G - H(M)].

Hence

H(K) - H.(K) ~ DN •

This shows that, in a closed system, for example, the decrease in equivoca-
tion of key after N letters have been intercepted is not greater than the
redundancy of N letters of the language. In such systems, which comprise
the majority of ciphers, it is only the existence of redundancy in the original
messages that makes a solution possible.

Now suppose we have a pure system. Let the different residue classes of
messages be C1 , C2 , Ca , • · ., C, , and the corresponding set of residue classes
of cryptograms be C; , C~, ... , C;. The probability of each E in C: is the
same:

P(E) = P(Ci)
fJi

E a member of C,

where tfJi is the number of different messages in Ci . Thus we have

H(E) = - L 'Pi P(C.) log P(C.)
i 'Pi 'Pi

Substituting in our equation for H.(K) we obtain:
Theorem 11: FOT a pure cipher

H.(K) = H(K) + H(M) + L P(C i ) log P(C i) .
i tfJi

This result can be used to compute IIa(K) in certain cases of interest.



118 C. E. Shannon

13. EQUIVOCATION FOR SIMPLE SUBSTITUTION ON A Two LETTER LANGUAGE

We will now calculate the equivocation in key or message when simple
substitution is applied to a two letter language, with probabilities p and q
for 0 and 1, and successive letters chosen independently. We have

H.(M) = H.(K) = - L P(E)P.(K) log P.(K)

The probability that E contains exactly sO's in a particular permutation is:

~
\ -.
\ ~

\ -,
\ -,
\ ,,~, '"r-,
\ <,, pcz/), q"'/~

\ ~--;

\ r-,
~ ....,

r\ ---r-.........
~"'"-

\ r---. r----.

'" r-, p·Y•• ,,_'/.

~
00 2 ... • 8 •0 .2 • ... I 8 I 8 20

NUUBER Of" LETTERS I N

Fig. 6-Equivocation for simple substitution on two-letter language.
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and the a posteriori probabilities of the identity and inverting substitutions
(the only two in the system) are respectively:

P (0) - P'qN-, P (1)
• - (p'qN-. + q'pN-.) E

There are (~) terms for each s and hence

(N) r N-.H K N = - , N-. 10 (}.( ,) ~ s p q g (f'q'H + q'pN-.) .
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For P = i, q = J, and for p = 1. q = }, 11.(K, N) has been calculated and
is shown in Fig. 6.

14. TIlE EQUIVOCATION CUARACTERISTIC FOR A "R.A~"O~I" CIPHER

In the preceding section we have calculated the equivocation charac-
teristic for a simple substitution applied to a two-letter language. This is
about the simplest type of cipher and the simplest language structure pos-
sible, yet already the formulas are so involved as to be nearly useless. What
are we to do with cases of practical interest, say the involved transforma-
tions of a fractional transposition system applied to English with its ex-
tremely complex statistical structure? This complexity itself suggests a
method of approach. Sufficiently complicated problems can frequently be
solved statistically. To facilitate this we define the notion of a "random"
cipher.

We make the following assumptions:
1. The number of possible messages of length N is T = 2"0", thus R« =

10g2 G, where G is the number of letters in the alphabet. The number of
possible cryptograms of length IV is also assumed to be T.

2. The possible messages of length N can be divided into two groups:
one group of high and fairly uniform a priori probability, the second
group of negligibly small total probability. The high probability group
will contain S = 21tH messages, where R = l/(M)/N, that is, R is
the entropy of the message source per letter.

J. The deciphering operation can be thought of as a series of lines, as
in Figs. 2 and 4, leading back from each E to various M'«. We assume
k different equiprobable keys so there will be k lines leading back from
each E. For the random cipher we suppose that the lines from each
E go back to a random selection of the possible messages. Actually,
then, a random cipher is a whole ensemble of ciphers and the equivoca-
tion is the average equivocation for this ensemble.

The equivocation of key is defined by

H.(K) = :E' P(E)P.(K) log P.(K).

The probability that exactly m lines go back from a particular E to the high
probability group of messages is

If a cryptogram with m such lines is intercepted the equivocation is log m.

The probability of such a cryptogram is ;~ I since it can be produced by
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m keys from high probability messages each with probability!.. . Hence the
S

equivocation is:

T Ie (k) (s)m( S)k-mIlg(K) = - L - 1 - - m log m
Skm-l m T T

We wish to find a simple approximation to this when k is large. If the
expected value of In, namely iii = SkfT, is » 1, the variation of log l1J

over the range where the binomial distribution assumes large values will
be small, and we can replace log m by Jog m. This can now be factored out
of the summation, which then reduces to m. Hence, in this condition,

Hg(K) == log S; = log S .- log T + log k

HB(K) == H(K) - DN,

where D is the redundancy per letter of the original language (D = DNIN).
If iii is small compared to the large k, the binomial distribution can be

approximated by a Poisson distribution:

(,~)pml-m == e:~m

Sk
where A = T' Hence

. 1 _). GO Xm
HI!.·(K) = - e L - In Jog In.

X 2 III !

If we replace m by m + 1, we obtain:

GO x"
HB(K) == e-\ L r log (m + 1).

1 Ill.

This may be used in the region where A is near unity. For A « 1, the only
important term in the series is that for m = 1; omitting the others we have:

IIB(K) == e-).A log 2
== A log 2
== 2-NDk log 2 .

To summarize: HE(K), considered as a function of IV, the number of
intercepted letters, starts off at l/(K) when N = O. It decreases linearly

with a slope - D out to the neighborhood of N = He;). After a short

transition region, II.(K) follows an exponential with "half life" distance
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1if D is measured in bits per letter. This behavior is shown in Fig. 7, to-

gether with the approximating curves.
By a similar argument the equivocation of message can be calculated.

It is

H.(M) = RoN for RoN« H.(K)
H.(M) = H.(K) for RoN» H.(K)
H.(M) = H.(K) - (()(N) for RoN'" H.(K)

where (()(N) is the function shown in Fig. 7 with N scale reduced by factor

of ~ . Thus, H.(M) rises linearly with slope Ro , until it nearly intersects

)+2

r-,
N,

I ',J,
t-, ~...

i ie ",
"

HE(K) §,
i

~, ) W
%

~~
HCI<) - NO

""
r-,
~L--- IO"UU-"O LOG 2

r-, f'H--l
0 \----- H(I<) H(I<)•• HlK

NO(D'GITS)

Fig. 7-Equivocation for random cipher.

the H.(K) line. After a rounded transition it follows the H.(K) curve down.
It will be seen from Fig. 7 that the equivocation curves approach zero

rather sharply. Thus we may, with but little ambiguity, speak of a point at
which the solution becomes unique. This number of letters will be called
the unicity distance. For the random cipher it is approximately H(K)jD.

15. APPLICATION TO STANDARD CIPHERS

Most of the standard ciphers involve rather complicated enciphering and
deciphering operations. Furthermore, the statistical structure of natural
languages is extremely involved. It is therefore reasonable to assume that
the formulas derived for the random cipher may be applied in such cases.
It is necessary, however, to apply certain corrections in some cases. The
main points to be observed are the following:
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1. We assumed for the random cipher that the possible decipherments
of a cryptogram are a random selection from the possible messages. While
not strictly true in ordinary systems, this becomes more nearly the case as
the complexity of the enciphering operations and of the language structure
increases. With a transposition cipher it is clear that letter frequencies
are preserved under decipherment operations. This means that the possible
decipherments are chosen from a more limited group, not the entire message
space, and the formula should be changed. In place of Ro one uses R1 the
entropy rate for a language with independent letters but with the regular
letter frequencies. In some other cases a definite tendency toward returning
the decipherments to high probability messages can be seen. If there is no
clear tendency of this sort, and the system is fairly complicated, then it is
reasonable to use the random cipher analysis.

2. In many cases the complete key is not used in enciphering short mes-
sages. For example, in a simple substitution, only fairly long messages
will contain all letters of the alphabet and thus involve the complete key.
Obviously the random assumption does not hold for small N in such a case,
since all the keys which differ only in the letters not yet appearing in the
cryptogram lead back to the same message and are not randomly distrib-
uted. This error is easily corrected to a good approximation by the use of
a "key appearance characteristic." One uses, at a particular N, the effective
amount of key that may be expected with that length of cryptogram.
For most ciphers, this is easily estimated.

3. There are certain "end effects" due to the definite starting of the
message which produce a discrepancy from the random characteristics.
If we take a random starting point in English text, the first letter (when we
do not observe the preceding letters) has a possibility of being any letter
with the ordinary letter probabilities. The next letter is more completely
specified since we then have digram frequencies. This decrease in choice
value continues for some time. The effect of this on the curve is that the
straight line part is displaced, and approached by a curve depending on
how much the statistical structure of the language is spread out over adja-
cent letters. As a first approximation the curve can be corrected by shifting
the line over to the half redundancy point-i.e., the number of letters where
the language redundancy is half its final value.

If account is taken of these three effects, reasonable estimates of the
equivocation characteristic and unicity point can be made. The calcula-
tion can be done graphically as indicated in Fig. 8. One draws the key
appearance characteristic and the total redundancy curve DN (which is
usually sufficiently well represented by the line NDflO) . The difference be-
tween these out to the neighborhood of their intersection is H.(M). With
a simple substitution cipher applied to English, this calculation gave the
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curves shown in Fig. 9. The key appearance characteristic in this case was
estimated by counting the number of different letters appearing in typical
English passages of N letters. In so far as experimental data on the simple
substitution could be found, they agree very well with the curves of Fig. 9,
considering the various idealizations and approximations which have been
made. For example, the unicity point, at about 27 letters, can be shown
experimentally to lie between the limits 20 and 30. With 30 letters there is

REDUNDANCY

I

N

N

Fig. 8-Graphical calculation of equivocation.

nearly always a unique solution to a cryptogram of this type and with 20
it is usually easy to find a number of solutions.

With transposition of period d (random key), H(K) = log d!, or about
d log die (using a Stirling approximation for dO. If we take .6 decimal digits
per letter as the appropriate redundancy, remembering the preservation of
letter frequencies, we obtain about 1.7d log die as the unicity distance
This also checks fairly well experimentally. Note that in this caseHB(M).
is defined only for integral multiples of d.

\Vith the Vigenere the unicity point will occur at about 2d letters, and
this too is about right. The Vigenere characteristic with the same key size
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as simple substitution will be approximately as shown in Fig. 10. The
Vigenere, PJayfair and Fractional cases are more likely to follow the the-
oretical formulas for random ciphers than simple substitution and trans-
position. The reason for this is that they are more complex and give better
mixing characteristics to the messages on which they operate.

The mixed alphabet Vigenere (each of d alphabets mixed independently
and used sequentially) has a key size,

H(K) = d log 26! = 26.3d

and its unicity point should be at about 53d letters.
These conclusions can also be put to a rough experimental test with the

Caesar type cipher. In the particular cryptogram analyzed in Table I,
section 11, the function (HB(K, N) has been calculated and is given below,
together with the values for a random cipher.

N
H (observed)
H (calculated)

Q
1.41
1.41

!
1.24
1.25

a
.97
.98

;l
.60
.54

4
.28
.15

s
o

.03

The agreement is seen to be quite good, especially when we remember
that the observed H should actually be the average of many different cryp-
tograms, and that D for the larger values of N is only roughly estimated.

It appears then that the random cipher analysis can be used to estimate
equivocation characteristics and the unicity distance for the ordinary
types of ciphers.

16. VALIDITY OF A CRYPTOGRAM SOLUTION

The equivocation formulas are relevant to questions which sometimes
arise in cryptographic work regarding the validity of an alleged solution
to a cryptogram. In the history of cryptography there have been many
cryptograms, or possible cryptograms, where clever analysts have found
a "solution." It involved, however, such a complex process, or the material
was so meager that the question arose as to whether the cryptanalyst had
"read a solution" into the cryptogram. See, for example, the Bacon-Shake-
speare ciphers and the "Roger Bacon" manuscript."

In general we may say that if a proposed system and key solves a crypto-
gram for a length of material considerably greater than the unicity distance
the solution is trustworthy. If the material is of the same order or shorter
than the unicity distance the solution is highly suspicious.

This effect of redundancy in gradually producing a unique solution to
a cipher can be thought of in another way which is helpful. The redundancy
is essentially a series of conditions on the letters of the message, which

10 See Fletcher Pratt, loco cit.
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insure that it be statistically reasonable. These consistency conditions pro-
duce corresponding consistency conditions in the cryptogram. The key gives
a certain amount of freedom to the cryptogram but, as more and more
letters are intercepted, the consistency conditions use up the freedom al-
lowed by the key. Eventually there is only one message and key which
satisfies all the conditions and we have a unique solution. In the random
cipher the consistency conditions are, in a sense "orthogonal" to the "grain
of the key" and have their full effect in eliminating messages and keys as
rapidly as possible. This is the usual case. However, by proper design it
is possible to "line up" the redundancy of the language with the "grain of
the key" in such a way that the consistency conditions are automatically
satisfied and H.(K) does not approach zero. These "ideal" systems, which
will be considered in the next section, are of such a nature that the trans-
formations T, all induce the same probabilities in the E space.

17. IDEAL SECRECY SYSTEMS.

We have seen th.u perfect secrecy requires an infinite amount of key if
we allow messages of unlimited length. With a finite key size, the equivoca-
tion of key and message generally approaches zero, but not necessarily so.
In fact it is possible for HE(K) to remain constant at its initial value H(K).
Then, no matter how much material is intercepted, there is not a unique
solution but many of comparable probability. We will define an "ideal"
system as one in which HE(K) and II g(M) do not approach zero as LV --+ ex>.

A "strongly ideal" system is one in which HB(K) remains constant
at H(K).

An example is a simple substitution on an artificial language in which
all letters are equiprobable and successive letters independently chosen.
It is easily seen that HB(K) = H(K) and II g(M) rises linearly along a line
of slope log G (where G is the number of letters in the alphabet) until it
strikes the line H(K), after which it remains constant at this value.

With natural languages it is in general possible to approximate the ideal
characteristic-the unicity point can be made to occur for as large N as is
desired. The complexity of the system needed usually goes up rapidly when
we attempt to do this, however. It is not always possible to attain actually
the ideal characteristic with any system of finite complexity.

To approximate the ideal equivocation, one may first operate on the
message with a transducer which removes all redundancies. After this almost
any simple ciphering system-substitution, transposition, Vigen ere , etc.,
is satisfactory. The more elaborate the transducer and the nearer the
output is to the desired form, the more closely will the secrecy system ap-
proximate the ideal characteristic.
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Theorem 12: A necessary and sufficient condition that T be strongly ideal is
that, for any two keys, rt'r, is a measure preseYving trans/orma-
tion of the message space into itself.

This is true since the a posteriori probability of each key is equal to its
a priori probability if and only if this condition is satisfied.

18. EXAMPLES OF IDEAL SECRECY SYS1'EMS

Suppose our language consists of a sequence of letters all chosen inde-
pendently and with equal probabilities. Then the redundancy is zero, and
from a result of section 12, H.(K) = H(K). We obtain the result
Theorem 13: If all letters are equally likely and independent any closed cipher

is strongly ideal.
The equivocation of message will rise along the key appearance char-

acteristic which will usually approach H(K), although in some cases it
does not. In the cases of n-gram substitution, transposition, Vigenere, and
variations, fractional, etc., we have strongly ideal systems for this simple
language with HB(M) ~ H(K) as N ~ 00.

Ideal secrecy systems suffer from a number of disadvantages.
1. The system must be closely matched to the language. This requires

an extensive study of the structure of the language by the designer. Also a
change in statistical structure or a selection from the set of possible mes-
sages, as in the case of probable words (words expected in this particular
cryptogram), renders the system vulnerable to analysis.

2. The structure of natural languages is extremely complicated, and this
implies a complexity of the transformations required to eliminate redun-
dancy. Thus any machine to perform this operation must necessarily he
quite involved, at least in the direction of information storage, since a
"dictionary" of magnitude greater than that of an ordinary dictionary is
to be expected.

3. In general, the transformations required introduce a bad propagation
of error characteristic. Error in transmission of a single letter produces a
region of changes near it of size comparable to the length of statistical effects
in the original language.

19. FURTHER REMARKS ON EQUIVOCATION AND REDUNDANCY

We have taken the redundancy of "normal English" to he about.7 deci-
mal digits per letter or a redundancy of 50%. This is on the assumption
that word divisions were omitted. It is an approximate figure based on sta-
tistical structure extending over about 8 letters, and assumes the text to
be of an ordinary type, such as newspaper writing, literary work, etc. We
may note here a method of roughly estimating this number that is of some
cryptographic interest.
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A running key cipher is a Vernam type system where, in place of a random
sequence of letters, the key is a meaningful text. Now it is known that fun-
ning key ciphers can usually be solved uniquely. This shows that English
can be reduced by a factor of two to one and implies a redundancy of at
least 50%. This figure cannot be increased very much, however, for a number
of reasons, unless long range "meaning" structure of English is considered.

The running key cipher can be easily improved to lead to ciphering systems
which could not be solved without the key. If one uses in place of one English
text, about 4 different texts as key, adding them all to the message, a
sufficient amount of key has been introduced to produce a high positive
equivocation. Another method would be to use, say, every 10th letter of
the text as key. The intermediate letters are omitted and cannot be used
at any other point of the message. This has much the same effect, since
these spaced letters are nearly independent.

The fact that the vowels in a passage can be omitted without essential
loss suggests a simple way of greatly improving almost any ciphering system.
First delete all vowels, or as much of the message as possible without run-
ning the risk of multiple reconstructions, and then encipher the residue.
Since this reduces the redundancy by a factor of perhaps 3 or 4 to 1, the
unicity point will be moved out by this factor. This is one way of approach-
ing ideal systems-using the decipherer's knowledge of English as part of
the deciphering system.

20. DISTRIBUTION OF EQUIVOCATION

A more complete description of a secrecy system applied to a language
than is afforded by the equivocation characteristics can be found by giving
the distribution of equivocation. For N intercepted letters we consider the
fraction of cryptograms for which the equivocation (for these particular
E's, not the mean H.(M» lies between certain limits. This gives a density
distribution function

P(H.(M), N) dH.(M)

for the probability that for N letters H lies between the limits Hand H +
dB. The mean equivocation we have previously studied is the mean of this
distribution. The function P(B.(M), N) can be thought of as plotted along
a third dimension, normal to the paper, on the H.(M) , N plane. If the
language is pure, with a small influence range, and the cipher is pure, the
function will usually be a ridge in this plane whose highest point follows
approximately the mean H_(M), at least until near the unicity point. In
this case, or when the conditions are nearly verified, the mean curve gives
a reasonably complete picture of the system.
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On the other hand, if the language is not pure, but made up of a set of
pure components

having different equivocation curves with the system, then the total dis-
tribution will usually be made up of a series of ridges. There will be one for
each Li weighted in accordance with its Pi- The mean equivocation char-
acteristic will be a line somewhere in the midst of these ridges and may not
give a very complete picture of the situation. This is shown in Fig. 11. A
similar effect occurs if the system is not pure but made up of several systems
with differen t H curves.

The effect of mixing pure languages which are near to one another in sta-
tistical structure is to increase the width of the ridge. Near the unicity

P(H,N)

Fig. ll-Distribution of equivocation with a mixed language L == ILl + ILt.

point this tends to raise the mean equivocation, since equivocation cannot
become negative and the spreading is chiefly in the positive direction. We
expect, therefore, that in this region the calculations based on the random
cipher should be somewhat low.

PART III

PRACTICAL SECRECY

21. THE WORK CHARACTERISTIC

After the unicity point has been passed in intercepted material there will
usually be a unique solution to the cryptogram. The problem of isolating
this single solution of high probability is the problem of cryptanalysis. In
the region before the unicity point we may say that the problem of crypt-
analysis is that of isola ting all the possible solutions of high probability
(compared to the remainder) and determining their various probabilities.
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Although it is always possible in principle to determine these solutions
(by trial of each possible key for example), different enciphering systems
show a wide variation in the amount of work required. The average amount
of work to determine the key for a cryptogram of N letters, W(N), measured
say in man hours, may be called the work characteristic of the system. This
average is taken over all messages and all keys with their appropriate prob-
abilities. The function W(N) is a measure of the amount of "practical
secrecy" afforded by the system.

For a simple substitution on English the work and equivocation char-
acteristics would be somewhat as shown in FiJ(. 12. The dotted portion of

---- .... ", ,, ,, ,, ,, \, ,, ,, ,
, ', ,,,,,,,,,,,,,,,,,,,,,,,,,,,

N

Fig. 12-Typical work and equivocation characteristics.

the curve is in the range where there are numerous possible solutions and
these must all be determined. In the solid portion after the unicity point
only one solution exists in general, but if only the minimum necessary data
are given a great deal of work must be done to isolate it. As more material
is available the work rapidly decreases toward some asymptotic value-
where the additional data no longer reduces the labor.

Essentially the behavior shown in Fig. 12 can be expected with any type
of secrecy system where the equivocation approaches zero. The scale of
man hours required, however, will differ greatly with different types of
ciphers, even when the H.(M) curves are about the same. A Vigenere or
compound Vigenere, for example, with the same key size would have a
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much better (i.e., much higher) work characteristic. A good practical
secrecy system is one in which the W(N) curve remains sufficiently high,
out to the number of letters one expects to transmit with the key, to prevent
the enemy from actually carrying out the solution, or to delay it to such an
extent that the information is then obsolete.

\Ve will consider in the following sections ways of keeping the function
W(i\r) large, even though II.(K) may be practically zero. This is essentially
a "max min" type of problem as is always the case when we have a battle
of wits." In designing a good cipher we must maximize the minimum amount
of work the enemy must do to break it. It is not enough merely to be sure
none of the standard methods of cryptanalysis work-we must be sure that
no method whatever will break the system easily. This, in fact, has been the
weakness of many systems; designed to resist all the known methods of
solution, they later gave rise to new cryptanalytic techniques which rendered
them vulnerable to analysis.

The problem of good cipher design is essentially one of finding difficult
problems, subject to certain other conditions. This is a rather unusual situa-
tion, since one is ordinarily seeking the simple and easily soluble problems
in a field.

How can we ever be sure that a system which is not ideal and therefore
has a unique solution for sufficiently large N will require a large amount of
work to break with everymethod of analysis? There are two approaches to
this problem; (1) We can study the possible methods of solution available to
the cryptanalyst and attempt to describe them in sufficiently general terms
to cover any methods he might use. We then construct our system to resist
this "general" method of solution. (2) We may construct our cipher in such
a way that breaking it is equivalent to (or requires at some point in the
process) the solution of some problem known to be laborious. Thus, jf we
could show that solving a certain system requires at least as much work as
solving a system of simultaneous equations in a large number of unknowns,
of a complex type, then we would have a lower bound of sorts for the work
characteristic.

The next three sections are aimed at these general problems. It is difficuJt
to define the pertinent ideas involved with sufficient precision to obtain
results in the form of mathematical theorems, but it is believed that the
conclusions, in the form of general principles, are correct.

11 See von Neumann and Morgenstern) loco cit. The situation between the cipher de-
signer and cryptanalyst can be thought of as a "game" of a very simple structure; a zero-
sum two-person game with complete inform~ljon, and just two u~o~es." The ciph~r
designer chooses a system for his u~ove. u 1 hen t~e cryptanalyst IS Informed of this
choice and chooses a method of analysis. The "value of the play IS the average work re-
quired to break a cryptogram in the system by the method chosen.
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22. GENERALITIES ON THE SOLUTION OF CRYPTOGRAMS

Mter the unicity distance has been exceeded in intercepted material,
any system can be solved in principle by merely trying each possible key
until the unique solution is obtained-Le., a deciphered message which
"makes sense" in the original language. A simple calculation shows that this
method of solution (which we may call complete trial and error) is totally
impractical except when the key is absurdly small.

Suppose, for example, we have a key of 26! possibilities or about 26.3
decimal digits, the same size as in simple substitution on English. This is,
by any significant measure, a small key. It can be written on a small slip of
paper, or memorized in a few minutes. It could be registered on 27 switches,
each having ten positions, or on 88 two-position switches.

Suppose further, to give the cryptanalyst every possible advantage, that
he constructs an electronic device to try keys at the rate of one each micro-
second (perhaps automatically selecting from the results by a x2 test for
statistical significance). He may expect to reach the right key about half
way through, and after an elapsed time of about 2 X 1026/2 X 602 X 24 X
365 X 106 or 3 X 1012 years.

In other words, even with a small key complete trial and error will never
be used in solving cryptograms, except in the trivial case where the key is
extremely small, e.g., the Caesar with only 26 possibilities, or 1.4 digits.
The trial and error which is used so commonly in cryptography' is of a
different sort, or is augmented by other means. If one had a secrecy system
which required complete trial and error it would be extremely safe. Such a
system would result, it appears, if the meaningful original messages, all say
of 1000 letters, were a random selection from the set of all sequences of 1000
letters. If any of the simple ciphers were applied to this type of language it
seems that little improvement over complete trial and error would be
possible.

The methods of cryptanalysis actually used often involve a great deal of
trial and error, but in a different way. First, the trials progress from more
probable to less probable hypotheses, and, second, each trial disposes of a
large group of keys, not a single one. Thus the key space may be divided
into say 10 subsets, each containing about the same number of keys. By at
most 10 trials one determines which subset is the correct one. This subset is
then divided into several secondary subsets and the process repeated. With
the same key size (261 == 2 X 1021) we would expect about 26 X 5 or 130
trials as compared to 1026 by complete trial and error. The possibility of
choosing the most likely of the subsets first for test would improve this result
even more. If the divisions were into two compartments (the best way to
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minimize the number of trials) only 88 trials would be required. Whereas
complete trial and error requires trials to the order of the number of keys,
this subdividing trial and error requires only trials to the order of the key
size in bits.

This remains true even when the different keys have different probabilities.
The proper procedure, then, to minimize the expected number of trials is
to divide the key space into subsets of equiprobability. When the proper
subset is determined, this is again subdivided into equiprobability subsets.
If this process can be continued the number of trials expected when each
division is into two subsets will be

h = H(K)
log 2

If each test has S possible results and each of these corresponds to the
key being in one of 5 equiprobability subsets, then

h = H(K)
log S

trials will be expected. The intuitive significance of these results should be
noted. In the two-compartment test with equiprobability, each test yields
one bit of information as to the key. If the subsets have very different prob-
abilities, as in testing a single key in complete trial and error, only a small
amount of information is obtained from the test. Thus with 26! equiprobable
keys, a test of one yields only

[
26 ! - 1 26! - 1 1 1 ]

- 26! log 26! + 261 log 261

or about 10-26 bits of information. Dividing into S equiprobability subsets
maximizes the information obtained from each trial at log 5, and the ex-
pected number of trials is the total information to be obtained, that is
H(K), divided by this amount.

The question here is similar to various coin weighing problems that have
been circulated recently. A typical example is the following: It is known that
one coin in 27 is counterfeit, and slightly lighter than the rest. A chemist's
balance is available and the counterfeit coin is to be isolated by a series of
weighings. What is the least number of weighings required to do this? The
correct answer is 3, obtained by first dividing the coins into three groups of
9 each. Two of these are compared on the balance. The three possible results
determine the set of 9 containing the counterfeit. This set is then divided
into 3 subsets of 3 each and the process continued. The set of coins corre-
sponds to the set of keys, the counterfeit coin to the correct key, and the
weighing procedure to a trial or test. The original uncertainty is log! 27
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bits, and each trial yields logs 3 bits of information; thus, when there is no
"diophantine trouble," log, 27/log2 3 or 3 trials are sufficient.

This method of solution is feasible only if the key space can be divided
into a small number of subsets, with a simple method of determining the
subset to which the correct key belongs. One does not need to assume a
complete key in order to apply a consistency test and determine if the
assumption is justified-an assumption on a part of the key (or as to whether
the key is in some large section of the key space) can be tested. In other words
it is possible to solve for the key bit by bit.

The possibility of this method of analysis is the crucial weakness of most
ciphering systems. For example, in simple substitution, an assumption on
a single letter can be checked against its frequency, variety of contact,
doubles or reversals, etc. In determining a single letter the key space is
reduced by 1.4 decimal digits from the original 26. The same effect is seen
in all the elementary types of ciphers. In the Vigenere, the assumption of
two or three letters of the key is easily checked by deciphering at other
points with this fragment and noting whether clear emerges. The com-
pound Vigenere is much better from this point of view, if we assume a
fairly large number of component periods, producing a repetition rate larger
than will be intercepted. In this case as many key letters are used in en..
ciphering each letter as there are periods. Although this is only a fraction.
of the entire key, at least a fair number of letters must be assumed before
a consistency check can be applied.

Our first conclusion then, regarding practical small key cipher design, is
that a considerable amount of key should be used in enciphering each small
element of the message.

23. STATISTICAL METHODS

It is possible to solve many kinds of ciphers by statistical analysis.
Consider again simple substitution. The first thing a cryptanalyst does with
an intercepted cryptogram is to make a frequency count. If the cryptogram
contains, say, 200 letters it is safe to assume that few, if any, of the letters
are out of their frequency groups, this being a division into 4 sets of well
defined frequency limits. The logarithm of the number of keys within this
limitation may be calculated as

log 2! 9! 9! 6! = 14.28

and the simple frequency count thus reduces the key uncertainty by 12
decimal digits, a tremendous gain.

In genera), a statistical attack proceeds as follows: A certain statistic is
measured on the intercepted cryptogram E. This statistic is such that for
all reasonable messages M it assumes about the same value, SIC, the value
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depending only on the particular key K that was used. The value thus ob-
tained serves to limit the possible keys to those which would give values of
S in the neighborhood of that observed. A statistic which does not depend
on K or which varies as much with M as with K is not of value in limiting
K. Thus, in transposition ciphers, the frequency count of letters gives no
information about K--every K leaves this statistic the same. Hence one
can make no use of a frequency count in breaking transposition ciphers.

More precisely one can ascribe a "solving power" to a given statistic S.
For each value of S there will be a conditional equivocation of the key
Ha(K), the equivocation when S has its particular value, and that is all
that is known concerning the key. The weighted mean of these values

L rts; Hlf(K)

gives the mean equivocation of the key when S is known, peS) being the
a priori probability of the particular value S. The key size H(K), less this
mean equivocation, measures the "solving power" of the statistic S.

In a strongly ideal cipher all statistics of the cryptogram are independent
of the particular key used. This is the measure preserving property of
r.r;' on the E space or Tj1Tk on the M space mentioned above.

There are good and poor statistics, just as there are good and poor methods
of trial and error. Indeed the trial and error testing of an hypothesis is
is a type of statistic, and what was said above regarding the best types of
trials holds generally. A good statistic for solving a system must have the
following properties:

1. It must be simple to measure.
2. It must depend more on the key than on the message if it is meant to

solve for the key. The variation with M should not mask its variation
with K.

3. The values of the statistic that can be "resolved" in spite of the
"fuzziness" produced by variation in M should divide the key space
into a number of subsets of comparable probability, with the statistic
specifying the one in which the correct key lies. The statistic should
give us sizeable information about the key, not a tiny fraction of a bit.

4. The information it gives must be simple and usable. Thus the subsets
in which the statistic locates the key must be of a simple nature in the
key space.

Frequency count for simple substitution is an example of a very good
statistic.

Two methods (other than recourse to ideal systems) suggest themselves
for frustrating a statistical analysis. These we may call the methods of
diffusion and confusion. In the method of diffusion the statistical structure
of M which leads to its redundancy is "dissipated" into long range sta-



Communication Theory of Secrecy Systems 137

tistics-Le., into statistical structure involving long combinations of letters
in the cryptogram. The effect here is that the enemy must intercept a tre-
mendous amount of material to tie down this structure, since the structure
is evident only in blocks of very small individual probability. Furthermore,
even when he has sufficient material, the analytical work required is much
greater since the redundancy has been diffused over a large number of
individual statistics. An example of diffusion of statistics is operating on a
message M = m, , 1n2 , m«, ... with an "averaging" operation, e.g.

,
y" = E mn+i (mod 26),

i-I

adding s successive letters of the message to get a letter Yn . One can show
that the redundacy of the y sequence is the same as that of the m sequence,
but the structure has been dissipated. Thus the letter frequencies in y will
be more nearly equal than in m, the digram frequencies also more nearly
equal, etc. Indeed any reversible operation which produces one letter out for
each letter in and does not have an infinite "memory" has an output with
the same redundancy as the input. The statistics can never be eliminated
without compression, but they can be spread out.

The method of confusion is to make the relation between the simple
statistics of E and the simple description of K a very complex and involved
one. In the case of simple substitution, it is easy to describe the limitation
of K imposed by the letter frequencies of E. If the connection is very in-
volved and confused the enemy may still be able to evaluate a statistic
5J , say, which limits the key to a region of the key space. This limitation.
however, is to some complex region R in the space, perhaps "folded over"
many times, and he has a difficult time making use of it. A second statistic
52 limits K still further to R2 , hence it lies in the intersection region; but
this does not help much because it is so difficult to determine just what the
intersection is.

To be more precise let us suppose the key space has certain "natural co-
ordinates" k1 , k2 , ••• , kp which he wishes to determine. He measures, let
us S:lY, a set of statistics SJ , 52 , • • • , Sn and these are sufficient to determine
the k i • However, in the method of confusion, the equations connecting these
sets of variables are involved and complex. We have, say,

J.(k t , k2 , ••• , kp ) = SI

/2(kl , k2 , ••• , kp ) = S2
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and all the Ii involve all the Il• • The cryptographer must solve this system
simultaneously-a difficult job. In the simple (not confused) cases the func-
tions involve only a small number of the k,--or at least some of these do.
One first solves the simpler equations, evaluating some of the lei and sub-
stitutes these in the more complicated equations.

The conclusion here is that for a good ciphering system steps should be
taken either to diffuse or confuse the redundancy (or both).

24. THE PROBABLE WORD METHOD

One of the most powerful tools for breaking ciphers is the use of probable
words. The probable words may be words or phrases expected in the par-
ticular message due to its source, or they may merely be eommon words or
syllables which occur in any text in the language, such as the, and, tion, thaI,
and the like in English.

In general, the probable word method is used as follows: Assuming a
probable word to be at some point in the clear, the key or a part of the key
is determined. This is used to decipher other parts of the cryptogram and
provide a consistency test. If the other parts come out in the clear, the
assumption is justified.

There are few of the classical type ciphers that use a small key and can
resist long under a probable word analysis. From a consideration of this
method we can frame a test of ciphers which might be called the acid test.
It applies only to ciphers with a small key (less than, say, 50 decimal digits),
applied to natural languages, and not using the ideal method of gaining se-
crecy. The acid test is this: How difficult is it to determine the key or a part
of the key knowing a small sample of message and corresponding crypto-
gram? Any system in which this is easy cannot be very resistant, for the
cryptanalyst can always make use of probable words, combined with trial
and error, until a consistent solution is obtained.

The conditions on the size of the key make the amount of trial and error
small, and the condition about ideal systems is necessary, since these auto-
matically give consistency checks. The existence of probable words and
phrases is implied by the assumption of natural languages.

Note that the requirement of difficult solution under these conditions is
not, by itself, contradictory to the requirements that enciphering and
deciphering be simple processes. Using functional notation we have for
enciphering

E = f(K, M)

and for deciphering

M = g(K, E).
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Both of these may be simple operations on their arguments without the
third equation

K = heM, E)

being simple.
We may also point out that in investigating a new type of ciphering sys-

tem one of the best methods of attack is to consider how the key could be
determined if a sufficient amount of M and E were given.

The principle of confusion can be (and must be) used to create difficulties
for the cryptanalyst using probable word techniques. Given (or assuming)
M = m, , m«, ... , m, and E = ex , e2, ••. , e, the cryptanalyst can set up
equations for the different key elements k] , k«, ... , k, (namely the en-
ciphering equations).

el = II (ml , fn2 , ••• , m, ; kl , , kr )

e2 = it(ml , 1111 , • •• ,m, ; k] , , kr )

e, = j,(ml , 1112, ••• , m, ; kJ , ••• , kr )

All is known, we assume, except the k«, Each of these equations should
therefore be complex in the kt, , and involve many of them. Otherwise the
enemy can solve the simple ones and then the more complex ones by sub-
stitution.

From the point of view of increasing confusion, it is desirable to have the
Ii involve several m«, especially if these are not adjacent and hence less
correlated. This introduces the undesirable feature of error propagation,
however, for then each e, will generally affect several m, in deciphering, and
an error will spread to all these.

We conclude that much of the key should be used in an involved manner
in obtaining any cryptogram letter from the message to keep the work
characteristic high. Further a dependence on several uncorrelated m, is
desirable, if some. propagation of error can be tolerated. We are led by all
three of the arguments of these sections to consider "mixing transforma..
tions."

25. MIXING TRANSFORMATIONS

A notion that has proved valuable in certain branches of probability
theory is the concept of a mixing transformation. Suppose we have a prob-
ability or measure space n and a measure preserving transformation F of
the space into itself, that is, a transformation such that the measure of a
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transformed region [''OR is equal to the measure of the initial region R. The
transformation is called mixing if for any function defined over the space and
any region R the integral of the function over the region F,aR approaches,
as n --. oe , the integral of the function over the entire space {} multiplied
by the volume of R. This means that any initial region R is mixed with
uniform density throughout the entire space if F is applied a large number of
times. In general, FnR becomes a region consisting of a large number of thin
filaments spread throughout o. As n increases the filaments become finer
and their density more constant.

A mixing transformation in this precise sense can occur only in a space
with an infinite number of points, for in a finite point space the transforma-
tion must be periodic. Speaking loosely, however, we can think of a mixing
transformation as one which distributes any reasonably cohesive region in
the space fairly uniformly over the entire space. If the first region could be
described in simple terms, the second would require very complex ones.

In cryptography we can think of all the possible messages of length N
as the space (}and the high probability messages as the region R. This latter
group has a certain fairly simple statistical structure. If a mixing transforma-
tion were applied, the high probability messages would be scattered evenly
throughout the space.

Good mixing transformations are often formed by repeated products of
two simple non-commuting operations. Hopf" has shown, for example, that
pastry dough can be mixed by such a sequence of operations. The dough is
first rolled out into a thin slab, then folded over, then rolled, and then
folded again, etc.

In a good mixing transformation of a space with natural coordinates X, ,
X 2 , ••• , X s the point Xi is carried by the transformation into a point X: ,
with

x~ = !J(XJ , X 2 J ••• J X s) i = 1, 2, ... , S

and the functions Ii are complicated, involving all the variables in a "sensi-
I

tive" way. A small variation of anyone, X, , say, changes all the Xi con-
siderably. If Xa passes through its range of possible variation the point
X~ traces a long winding path around the space.

Various methods of mixing applicable to statistical sequences of the type
found in natural languages can be devised. One which looks fairly good is
to follow a preliminary transposition by a sequence of alternating substi-
tutions and simple linear operations, adding adjacent letters mod 26 for
example. Thus we might take

12 E, Hopi, "On Causality, Statistics and Probability," JourfllJl of Malia. and Physics.
v, 13, pp. 51-102, 1934.
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F = LSLSLT

where T is a transposition, L is a linear operation, and S is a substitution.
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26. CIPHERS OF THE TYPE T"FS j

Suppose that F is a good mixing transformation that can be applied to
sequences of letters, and that T" and S, are any two simple families of trans-
formations, i.e., two simple ciphers, which may be the same. For concrete-
ness we may think of them as both simple substitutions.

It appears that the cipher TFS will be a very good secrecy system from
the standpoint of its work characteristic. In the first place it is clear on
reviewing our arguments about statistical methods that no simple sta-
tistics will give information about the key-any significant statistics derived
from E must be of a highly involved and very sensitive type-the re-
dundancy has been both diffused and confused by the mixing transformation
F. Also probable words lead to a complex system of equations involving all
parts of the key (when the mix is good), which must be solved simultane-
ously.

It is interesting to note that if the cipher T is omitted the remaining
system is similar to S and thus no stronger. The enemy merely "unmixes"
the cryptogram by application of F-l and then solves. If S is omitted the
remaining system is much stronger than T alone when the mix is good, but
still not comparable to TFS.

The basic principle here of simple ciphers separated by a mixing trans-
formation can of course be extended. For example one could use

TkFlSjF2Ri

with two mixes and three simple ciphers. One can also simplify by using the
same ciphers, and even the same keys as well as the same mixing transforma-
tions. This might well simplify the mechanization of such systems.

The mixing transformation which separates the two (or more) appear-
ances of the key acts as a kind of barrier for the enemy-it is easy to carry
a known element over this barrier but an unknown (the key) does not go
easily.

By supplying two sets of unknowns, the key for S and the key for T,
and separating them by the mixing transformation F we have "entangled"
the unknowns together in a way that makes solution very difficult.

Although systems constructed on this principle would be extremely safe
they possess one grave disadvantage. If the mix is good then the propaga-
tion of errors is bad. A transmission error of one letter will affect several
letters on deciphering.
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27. INCOMPATIBILITY OF THE CRITERIA FOR GOOD SYSTEMS

The five criteria for good secrecy systems given in section 5 appear to
have a certain incompatibility when applied to a natural language with its
complicated statistical structure. With artificial languages having a simple
statistical structure it is possible to satisfy all requirements simultaneously,
by means of the ideal type ciphers. In natural languages a compromise must
be made and the valuations balanced against one another with a view
toward the particular application.

If anyone of the five criteria is dropped, the other four can be satisfied
fairly well, as the following examples show:

1. If we omit the first requirement (amount of secrecy) any simple cipher
such as simple substitution will do. In the extreme case of omitting
this condition completely, no cipher at all is required and one sends
the clear!

2. If the size of the key is not limited the Vernam system can be used.
3. If complexity of operation is not limited, various extremely cornpli-

cated types of enciphering process can be used.
4. If we omit the propagation of error condition, systems of the type

TFS would be very good, although somewhat complicated.
5. If we allow large expansion of message, various systems are easily

devised where the "correct" message is mixed with many "incorrect"
ones (misinformation). The key determines which of these is correct.

A very rough argument for the incompatibility of the five conditions may
be given as follows: From condition 5, secrecy systems essentially as studied
in this paper must be used; i.e., no great use of nulls, etc. Perfect and ideal
systems are excluded by condition 2 and by 3 and 4, respectively. The high
secrecy required by 1 must then come from a high work characteristic, not
from a high equivocation characteristic. If the key is small, the system
simple, and the errors do not propagate, probable word methods will gen-
erally solve the system fairly easily, since we then have a fairly simple sys-
tem of equations for the key.

This reasoning is too vague to be conclusive, but the general idea seems
quite reasonable. Perhaps if the various criteria could be given quantitative
significance, some sort of an exchange equation could be found involving

them and giving the best physically compatible sets of values. The two most
difficult to measure numericaUy are the complexity of operations, and the
complexity of statistical structure of the language.

APPENDIX

Proof of Theorem j

Select any message .M1 and group together all cryptograms that can be
obtained from M 1 by any enciphering operation T, . Let this class of crypto-
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grams be C; . Group with M1 aJI messages that can be obtained from M)
by TilTjM] , and call this cJass C] . The same C: would be obtained if we
started with any other M in C1 since

Tslj1T,M1 == T,M}.

Similarly the same C1 would be obtained.
Choosing an M not in CJ (if any such exist) we construct C2 and C~ in

the same way. Continuing in this manner we obtain the residue classes
with properties (1) and (2). Let M 1 and M 2 be in C1 and suppose

M2 = Tl121M
J•

If E 1 is in C: and can be obtained from M 1 by

E1 = TaMI = T6M. = ... = T"M.,

then

E1 == Ta T21TJM2 = Tp12'T1M2 = ...
= T).M2 = T"M2 • • •

Thus each M, in C. transforms into E1 by the same number of keys. Simi-
larly each E i in C; is obtained from any M in C1 by the same number of
keys. It follows that this number of keys is a divisor of the total number
of keys and hence we have properties (3) and (4).



Analogue of the Vernam System for Continuous Time Series-

Claude E. Shannon

Abstract

The perfect secrecy of the Vemam system is proved by probability arguments and an
analogous secrecy system for continuous functions is described.

The well-known Vemam system for obtaining secrecy in telegraphy, or more generally in
any communication system using a discrete sequence of symbols, each being a choice from a
finite number of possibilities, operates as follows. Let

be a message, where the X's are symbols chosen from a finite set ai, ... , a n : A random

sequence of a's is constructed by some means, each element being chosen with probability .l
11

from among the a i, and each element independent of the rest. This sequence, Y 1 , ••• , y s

(say), which is the key to the code, is carried independently of the communication system to the
receiving point, for example by a messenger. The X's and Y's are combined at the transmitter
by adding the a's mod n, that is, if Xi = a,. and Yi = at then ap ' where p == r + t mod n, is
sent in the ith place. At the receiver the inverse of this operation is performed to give the
original sequence Xl' ... , XS'

In a certain sense this type of secrecy system can be said to be theoretically perfect. To
make this precise, let us assume the following:

1. The enemy has a complete knowledge of the system used in encoding the message
including the statistics of the key (i.e., that the Y,. are chosen independently and with equal
probabilities of being any of the a .),

2. The enemy has no further knowledge of the exact key used. The particular key chosen
has been kept entirely secret.

3. The enemy has some knowledge of the message statistics. For example, he may know
that it is in English, which implies certain statistical properties of the sequence of X's. Or he
might know or think it likely that it was addressed to a certain party or dealt with some known
thing, etc. This knowledge, whatever it may be, is an a priori knowledge of the message,
which he had before intercepting the coded message, and can be represented by a probability
distribution in the space of all possible sequences X I , ••• , X s. Those sequences which are a
priori likely have relatively large probabilities, those which are unlikely have small
probabilities.

4. The encoded message is intercepted by the enemy without error. When the message is
intercepted the enemy can compute a posteriori probabilities of various sequences of X's in the
original message, and this process is essentially all that can be done toward breaking the code.
If the coding means used are simple (not the Vemam system), and the message long enough,

* Bell Laboratories Memorandum, May 10, 1943.
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the a posteriori probabilities are distorted in such a way as to make it nearly certain that a
particular sequence of X i was the original message. Thus one particular sequence has an a
posteriori probability nearly equal to 1, and all others are nearly O. If the message is short the a
posteriori probabilities are still distorted when the coding means are simple (as in a substitution
cipher), and may not give a clear-cut solution but only reduce the field of possibilities
considerably. However, in the Vemam system, no information whatever is gained about the
original message apart from the number of symbols it contains. In fact, we have the following:

Theorem. In the Vernam secrecy system the a posteriori probabilities of the original message
possibilities are equal to the a priori probabilities for messages o] the. same number of symbols
as the intercepted message. This is true independently of the original message statistics and of
the partial knowledge of the enemy.

That is, intercepting the message is of no help to the enemy whatever, other than telling the
number of symbols.

This theorem is a simple consequence of Bayes' theorem in inverse probabilities, which
states that the a posteriori probability of a "cause" A when a "result" B has been observed is
given by

P(A)PA(B)
P (A) -

B - P(B)

where P(A) is the a priori probability of A, P A (B) is the probability of 8 if A is known to have
occurred, and P(B) is the probability of B from any cause. In our case A is any particular
uncoded message, of the same number of symbols as the intercepted message. P(A) is the
enemy's a priori probability of the message, P A (B) is the probability of getting the encoded
message B if A actually was the message, and P(B) the probability of getting message B by any
cause (i.e. from any original message). Our theorem states that with the Vemam system

P B (A) = P(A). We have P A (8) = _1_ for any A, B since the Vemam code is equally likely
nS

to transform any A into any B by its method of construction. Also P(B) = 1: P(A) P A (B) =
A

_1_1: P(A) = _1_ since 1: P(A) = 1. Hence the theorem follows.
n5 A nS A

Of course the modicum of information contained in the knowledge of the number of
symbols can be reduced by similar devices, e.g. adding dummy symbols at the end of the
message, the number of dummies being chosen by probability means. The system may also be
used continuously, with no gaps between messages, thus concealing the number of symbols in a
message.

The question arises as to the continuous analogue of this system of encoding, for use with
speech, for example. One might at first think of adding a thermal noise to the signal and
subtracting it at the receiver, but theoretically this is not appropriate, and it is known
experimentally that it takes a large noise to drown a speech signal; if they are of the same order
of magnitude it is possible to understand the speech merely by listening to the combination.

Actually the proper generalization of the Vemam system is as follows. Let us assume that
the signal is band- and amplitude-limited, so that it contains no frequencies over fo and no
amplitudes outside the range - 1 to + 1. Construct a thermal noise with unit RMS value and
with flat spectrum out to fa and no power at higher frequencies, for example by passing
ordinary flat noise through an ideal low-pass filter. Pass this noise through a non-linear device
with a characteristic f given by the integrated error curve doubled and with unity subtracted
(Figs. 1,3):
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The ensemble of functions obtained in this way has the property that the values of the
amplitude are uniformly distributed between - 1 and + I, since before passing through the non-
linear device the amplitudes were distributed normally with unit standard deviation. Also the
values at intervals of 1/(2/0 ) have zero correlation coefficient, since the autocorrelation of flat
thermal noise band limited toto is zero for t = ± 1/(2/0 ) , ± 2/(2/0 ) , ± 3/(2/0 ) ,.... Add
this output Y to the signal in a circular manner: if S(t) is the signal, fonn S(t) + Y(t) ± 1
according as S (t) + Y(r) is negative or positive.

y

X Figure 3

Nonlinear Device
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This circular addition can be performed, as J. R. Pierce has pointed out, by merely adding S
and Y and passing the result through a saw tooth non-linear device (with characteristic shown in
Fig. 4). Pierce has designed a simple electronic circuit for realizing this saw tooth
characteristic. The output of this device can be sampled at periods 1/( 2/0) and the resulting
impulses passed through a low-pass filter, or first it may be passed through a device with the
inverse of characteristic of Fig. 4. In the latter case the output signal is statistically a flat
thermal noise. It can be shown that in either case this system gives perfect secrecy in the same
sense as the ordinary Vernam system. In fact the original message, being of limited frequency
[0' can be represented by giving its values every 1/(2/0) seconds. The non-linear operation on
the thermal noise gives a wave whose values every 1/(2/0) seconds are independent and are
uniformly distributed between the values - 1 and + 1. Adding these in a circle is then precisely
analogous to the Vemam modulo n addition. The result is thus still uniformly distributed
between these limits and successive values are independent. The theorem is then proved in a
similar fashion, the discrete probabilities being replaced by distribution functions in a high-
dimensional space (of dimension 2/0 T, where T is the time of transmission), and the
summation replaced by an integration over this space, using the continuous generalization of
Bayes' theorem.

At the receiver the message is recovered with the inverse operations indicated in Fig. 2.



The Best Detection of Pulses-

Claude E. Shannon

Abstract

The form of pulse detector which best differentiates two types of pulses of known shape
distorted by a thermal noise of known power spectrum is determined, where "best" means
with least probability of erroneous reading.

In telegraphy, teletype, P.C.M. and other communication systems it is necessary to
determine which of two types of pulses was sent at the transmitter when the received signal is
distorted by noise. We consider the problem of how best to accomplish this when by the
"best" method we mean the one giving the least probability of an erroneous determination.

Suppose the two types of pulses are <p (t) and ljI (t) and the distorting noise is a "normal"
noise; i.e... statistically equivalent to a thermal noise which has passed through a linear filter
giving it a power spectrum P(ro). The problem can be thought of geometrically as follows.
The two types of pulses <t> and 'V represent points in function space, and the noise added to the
transmitted signal gives a received signal which is also a point in function space. The ensemble
of noise added to the signal gives a probability distribution in function space. The problem in
differentiating the two types of pulses is to divide functions space into two regions R <t> and R'V '
such that if the received signal is in R6) the probability that the transmitted signal was <t> exceeds
~; if it is in R'V the probability that it was ur exceeds /j.

The general problem for infinite dimensional function space can best be approached by
analogy with a finite dimensional case. We suppose there are two signals represented by
vectors in an n-dimensional vector space; the signals being given in tensor notation by a i and
J3 '. These are distorted in transmission by a normal (gaussian) error Xi whose associated
quadratic form is a ij' i.e., the probability distribution function for the error is given by

~
n

(21t) 2"

1 '.
exp - -a ··X'X)2 ') ,

using the Einstein summation convention.

Let the a priori probability of a i be p and of ~ i be q = I - p. The vector space must be
divided into two regions Ru and R ~ as before, and the dividing surface will be such that on it
the a posteriori probabilities (when a signal lying on the surface has been received) of the
transmitted signal being a or J3 are equal. Using Bayes' theorem this requires that

Pu(S)P(a)

P(S)

where the vector S lies on the surface and

* Bell Laboratories Memorandum, June 22, 1944.

P~(S)P(~)
=

P(S)
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P( (1) = p = a priori probability of (1,

P (~) =q == 1 - p =a priori probability of ~,

p a (5) == probability of receiving S if (1 was sent,

Prl (5) = probability of receiving S if ~ was sent,

P(S) =probability of receiving S.
All these are actually probability densities. Hence we have

~p exp [- ~ aij(S" - (1 ")(Si - ail]
n

(21t) 2

~= q exp [- ~ aij(Si - ~i)(sj - ~j)] .
n

(21t) 2

Taking logarithms, we have for the equation of the dividing surface

149

= 2 In !J....
p

or, by collecting terms and manipulating indices,

2aij(a i
- ~i)Si = aij(aia j - ~i~j) + 2 In p .

q

This is the equation of a hyperplane in S1. If we rotate the axes of our coordinate system to line
up with the principal axes of the quadratic form a i j we obtain the equation

. .. .2.2
1 -I -J 1-1

21: Ai(a. - P)S = ~ A,.(n - ~ ) + 2 In p/q,

where the barred letters are transformed coordinates and the A,. are the eigenvalues of a ij' In
case these Ai are all equal we notice that the dividing plane is normal to the line joining a i and
~ '. Otherwise an affine transformation will make them equal and bring about this
orthogonality.

To determine which signal was sent one should therefore perform on the received signal the
linear operation

a ij ( a i _ ~ i ) Si

and if this quantity exceeds a certain threshold value the most probable signal was (1, while if it
is less than the threshold the most probable signal was B, The threshold is given by the right
members of the last two equations. If p == q == 1/2 the threshold is proportional to the
operator when the noise amplitude varies; thus no change in the operation is required. If we
make a i == - ~ i the threshold is zero and the operation is independent of both noise and
signal amplitudes. This selection is also best from the point of view of signal power for a given
frequency of errors.

The case of pulses <p (z ) and 'V (t) is a direct generalization of these results. The equation
of the plane of separation becomes
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z] ~p(O)-1 [<I> (CO) - \fJ (OO)]S(ro)dro

= f ...}p(ro)-I ['P{ro) 2 - 'V{ro) 2 Jdro + 2 In E. .
q

Here ell (0) and \fJ ( ro) are the spectra of the two pulses and S(oi) is the spectrum of the
received signal. This means that we must modulate the received signal with a gating pulse
whose spectrum is given by

~p(OO)-1 [<I> (00) - 'P (00)]

and integrate this product function. If the integral exceeds the above threshold the most
probable pulse is <1>, otherwise 'J1.

These results can be easily generalized to the separation of more than two pulses. In the
case of three pulses <1>, 'V, 9 there are three hyperplanes obtained by setting the probabilities
equal in pairs. These planes have a hyperline in common and divide the space into six regions.
One pair of adjacent regions corresponds to <t>, another to 'V and the third to 9. To mechanize
this system three gating integrating operations can be performed, and the numerical results
compared.



The Philosophy of PCM*
B. M. OLIVERt, MEMBER, IRE, J. R. PIERCEt, FELLOW, IRE, AND C. E. SHANNONt

Summary-Recent p.perl l .• describe experiment. in trans-
mittinlspeech by PCN (pulse code modulation). This paper shows
In a general way some of the advantages of PCM, and distinguishes
between what can be achieved with PCM and with other broadband
.ylltems, such as larle-index rM. The intent is to explain the various
points simply, rather than to elaborate them in detail. The paper is
for those who want to 8nd out about PCM rather than for those who
want to deaien a system. Many important factors will arise in the
design of a system which are not considered in this paper.

I. PCM AND ITS FEATURES

T H E R E ARE SEVERAL important elements of a
PCM (pulse-code modulation) system. These will
be introduced, and the part each plays in PCM

will be explained in this section.

Sampling

In general, the object of a transmission system is to
reproduce at the output any function of time which ap-
pears at the input. In any practical system only a cer-
tain class of functions, namely, those limited to a finite
frequency band, are admissible inputs. A signal which
contains no frequencies greater than Wo cps cannot as-
sume an infinite number of independent values per sec-
ond. It can, in fact, assume exactly 2W o independent
values per second, and the amplitudes at any set of
points in time spaced To seconds apart, where To = 1/2W"
specify the signal completely. A simple proof of this is
given in Appendix I. Hence, to transmit a band-limited
signal of duration T, we do not need to send the entire
continuous function of time. It suffices to send the finite
set of 2WoT independent values obtained by sampling
the instantaneous amplitude of the signal at a regular
rate of 2W o samples per second.

If it surprises the reader to find that 2WoT pieces of
data will describe a continuous function completely over
the interval T, it should be remembered that the 2WoT
coefficients of the sine and cosine terms of a Fourier se-
ries do just this, if, as we have assumed, the function
contains no frequencies higher than Woo

Reconstruction

Let us now proceed to the receiving end of the system,
and aSSUJ11e that, by some means, the sample values rep-

• Decimal classification: '~148.6. Original manuscript received by
the Institute, May 24,1948.

t Bell Telephone Laboratories, Inc., New York. N. Y.
1 \V. 1\1. Goodall, "Telephony by pulse code modulation," Bell
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In. D. Grieg, "Pulse count modulation system," Tele-Tech, vol.

6, pp, 48-52; September, 1947.
3 D. D. Grieg, "Pulse count modulation," Elec. Commun., vol. 24,

pp. 287-296; September, 1947.
• H. S. Black and J. O. Edson, "PC~f equipment," Elec, Eng.,

\'01. 66, pp. 1123-25; November, 1947.
• A. C. Clavier, D. D. Grieg, and P. F. Panter, "PC~I distortion
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• I.. A. Meacham and E. Peterson, "An experimental multi-
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resenting the signal are there and available in proper
time sequence, and can be used at the regular rate 2W•.
To reconstruct the signal it is merely necessary to gene-
rate from each sample a proportional impulse, and to
pass this regularly spaced series of impulses through an
ideal low-pass filter of cutoff frequency Woo The output
of this filter will then be (except for an over-all time de-
lay and possibly a constant of proportionality) identical
to the input signal. Since the response of an ideal low-
pass filter to an impulse is a sinx/x pulse, and since the
total output is the linear sum of the responses to all in-
puts, this method of reconstruction is simply the physi-
cal embodiment of the method indicated in Appendix I.

Ideally, then, we could achieve perfect reproduction
of a signal if we could transmit information giving us ex-
actly the instantaneous amplitude of the signal at inter-
vals spaced 1/2 Wo apart in time.

Quantisation

It is, of course, impossible to transmit the exact am-
plitude of a sample. The amplitude of a sample is often
transmitted as the amplitude of a pulse, or as the time
position of a pulse. Noise, distortion, and crosstalk be-
tween pulses will disturb the amplitude and position,
and hence cause errors in the recovered information
concerning the size of the sample. Ordinarily the error
becomes greater as the signal is amplified by successive
repeaters, and hence the accumulation of noise sets a
limit to the distance a signal can be transmitted even
with enough amplification.

It is possible, however, to allow only certain discrete
levels of amplitude or position of the transmitted pulse.
Then, when the signal is sam pled, the level nearest the
true signal level is sent. When this is received and am-
plified, it will have a level a little different from any of
the specified levels. If the noise and distortion are not
too great, we can surely tell which level the signal was
supposed to have. Then the signal can be reformed, or a
new signal created, which again has the level originally
sent.

Representing the signal by certain discrete allowed
levels only is called quantizing. It inherently introduces
an initial error in the amplitude of the samples, giving
rise to quantization noise. But once the signal is in a quan-
tized state, it can be relayed for any distance without
further loss in quality, provided only that the added
noise in the signal received at each repeater is not too
great to prevent correct recognition of the particular
level each given signal is intended to represent. By quan-
tizing we limit our "alphabet." If the received signal
lies between a and b, and is closer (say) to b, we guess
that b was sent. If the noise is small enough, we shall
always be right.



152 B. M. Oliver, J. R. Pierce, and C. E. Shannon

TABLE I

Amplitude
Represented

Code

o
1
2
3
4
5
6
7

000
001
010
011
100
101
110
111

The shape of this pulse is shown in Fig. 1. It will be seen
that the pulse centered at time mr will be zero at t =kr
where k~m. Thus, if we sample the pulse train at the
time t = mr, we will see only the pulse belonging to that
time and none of the others.

Bandwidth

If a channel has a bandwidth W cps, it is possible to
send up to 2W independent pulses per second over it.
We can show this very simply. Let the pulses occur (or
not occur) at the time t =0, r, 2r, "', mr where T =
1/2 W, and let each pulse as received be of the form

II. TRANSMISSION REQUIREMENTS FOR PCl\'1

Suppose we consider what requirements exist, ideally,
on the channel which is to carry the encoded PCM sig-
nal; that is, ruling out physically impossible devices, but
allowing ideal components such as ideal filters, ideal
gates, etc.

A Complete PCM System

A PCM systerr, embodies all the processes just de-
scribed. The input signal is band-limited to exclude any
frequencies greater than WI. This signal is then sampled
at the rate 2WI. The samples are then quantized
and encoded. Since only certain discrete code groups
are possible, the selection of the nearest code group
automatically quantizes the sample, and with cer-
tain types of devices it is therefore not necessary to
quantize as a separate, prior operation. The code groups
are then transmitted, either as a time sequence of pulses
(time division) over the same channel, or by frequency
division, or over separate channels. The code groups are
regenerated (i.e., reshaped) at intervals as required. At
the receiver the (regenerated) code groups are decoded to
form a series of impulses proportional to the original
samples (except quantized), and these impulses are
sent through a Jow-pass filter of bandwidth Wo to re-
cover the signal wave.

(1)
1r

- (t - mr)
r

1('

sin - (t - mr)
Tv = Vo--------

Coding

A quantized sample could be sent as a single pulse
which would have certain possible discrete amplitudes.
or certain discrete positions with respect to a reference
position. However, if many allowed sample amplitudes
are required, one hundred, for example, it would be dif-
ficult to make circuits to distinguish these one from an-
other. On the other hand, it is very easy to make a cir-
cuit which will tell whether or not a pulse is present.
Suppose, then, that several pulses are used as a code
group to describe the amplitude of a single sample. Each
pulse can be on (I) or off (0). If we have three pulses, for
instance, we can have the combinations representing the
amplitudes shown in Table I.

The codes are, in fact, just the numbers (amplitudes)
at the left written in binary notation. In this notation,
the place-values are 1,2,4,8,-; i.e., a unit in the right-
hand column represents 1, a unit in the middle (second)
column represents 2, a unit in the left (third) column
represents 4, etc. We see that with a code group of n
on-off pulses we can represent 2" amplitudes. For ex-
ample, 7 pulses yield 128 sample levels.

It is possible, of course, to code the amplitude in terms
of a number of pulses which have allowed amplitudes of
0, 1, 2 (base 3 or ternary code), or 0, 1,2,3 (base 4 or
quaternary code), etc., instead of the pulses with allowed
amplitudes 0, 1 (base 2 or binary code). If ten levels
were allowed for each pulse, then each pulse in a code
group would be simply a digit of an ordinary decimal
number expressing the amplitude of the sample. If n is
the number of pulses and b is the base, the number of
quantizing levels the code can express is bIt.

Decoding

To decode a code group of the type just described, one
must generate a pulse which is the linear sum of all the
pulses in the group, each multiplied by its place value
(1, b, b', b', ..• ) in the code. This can be done in a num-
ber of ways. Perhaps the simplest way which has been
used involves sending the code group in "reverse" order,
i.e., the "units" pulse first, and the pulse with the high-
est place value last. The pulses are then stored as
charge on a capacitor-resistor combination with a time
constant such that the charge decreases by the factor lib
between pulses. After the last pulse, the charge (volt-
age) is sampled.
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Signal
to Noise

p.

N

13.3 db
11.4 db
19.6 db
21.0 db
22.0 db
23.0 db

T.\BLE II

Probabilitv
of Error'

10-1

10-~

10-'
10-'
10-10

10- 11

This Is About
One Error Every

10- S sec
10-1 sec
10 sec
20 min

1 day
3 months
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Further, the pulse given by (1) contains no frequen-
cies higher than W. It is the pulse one would get out of
an ideal low-pass filter of cutoff W, on applying a very
short impulse to the input.

Now, to send a signal of bandwidth Wo by PCM, we
must send 2 Wo code groups per second and each code
group contains (say) n pulse places. We must be pre-
pared, therefore, to send 2n Wo pulses per second, and
this requires a bandwidth IV= n Woo The pulses may be
sent in time sequence over one channel or by frequency
division. In either case the total bandwidth will be the
same. Of course, if double-sideband transmission is
used in the frequency-division case, or if the time-divi-
sion signal is sent as double-sideband rf pulses, the total
bandwidth will be 2n Woo

In short, the bandwidth required for peM is, in the
ideal case, n times as great as that required for direct
transmission of the signal, where n is the number of
pulses per code group.

Threshold Power

To detect the presence or absence of a pulse reliably
requires a certain signal-to-noise ratio. If the pulse power
is too Jow compared to the noise, even the best possible

. sin (1rl/T) -Fig. I-Pulse of the form V, "
r'/Y-

detector will make mistakes and indicate an occasional
pulse when there is none, or vice versa. Let us assume
that we have an ideal detector, i.e., one which makes
the fewest possible mistakes. If the received pulses are of
the form (1), and if the noise is "white" noise (i.e., noise
with a uniform power spectrum and gaussian amplitude
distribution as, for example, thermal noise), ideal detec-
tion could be achieved by passing the signal through an
ideal low-pass filter of bandwidth W ( = n Wo in the ideal
case) and sampling the output at the pulse times kr,
If the signal when sampled exceeds Vo/2, we say a pulse
is present; if less than Vo/2, we say there is no pulse.
The result will be in error if the noise at that instant
exceeds Vo/2 in the right direction. With gaussian noise,
the probability of this happening is proportional to the
complementary error function? of

Vo = ~/P.
2<T 'V 4N

where

(1 = rms noise ampli tude
P.=signal (pulse) "power" = VOl

N =noise power in bandwidth W = (1t.

As the signal power P, is increased, this function de-
creases very rapidly, so that if p.IN is large enough to
make the signal intelligible at all, only a small increase
will make the transmission nearly perfect. An idea of
how rapidly this improvement occurs may be had from
Table II. The last column in the table assumes a pulse
ra te of 10' per second.

Clearly, there is a fairly definite threshold (at about 20
db, say) below which the interference is serious, and
above which the interference is negligible. Comparing
this figure of 20 db with the 60- to 70-odd db required for
high-quality straight AM transmission of speech, it will
be seen that PCM requires much less signal power, even
though the noise power is increased by the n-fold in-
crease in bandwidth.

The above discussion has assumed an on-off (base 2)
system. In this system pulses will be present half the
time, on the average, and the average signal power' will

'Complementary error function of x-t/v2ftj : e- ).I/td)..
• See Appendix II.
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I t will be noticed that. the required signal power in-
creases rapidly with the base b.

be P./2. If a balanced base 2 system were used, i.e.,
one in which 1 is sent as a + pulse (say) and 0 as a
- pulse, the peak-to-peak signal swing would have to be
the same as in the on-off system for the same noise
margin, and this swing would be provided by pulses of
only half the former amplitude. Since either a + or
- pulse would always be present, the signal power
would be P./4.

If pulses are used which have b different amplitude
levels (i.e., a base b system), then a certain amplitude
separation must exist between the adjacent levels to
provide adequate noise margin. Call this separation K«,
where K =a constant. (From the preceding discussion
we see that K is about 10.) The total amplitude range is
therefore Ka(b -1). The signal power will be least if this
amplitude range is symmetrical about zero, i.e., from
-Ka(b -1)/2 to +Ka(b-l)j2. The average signal
power S, assuming all levels to be equally likely, is
then'

Regeneration: The Pay-Off

In most transmission systems, the noise and distor-
tion from the individual links cumulate. For a given
quality of over-all transmission, the longer the system,
the more severe are the requirements on each link. For
example, if 100 links are to be used in tandem, the noise
power added per link can only be one-hundredth as
great as would be permissible in a single link.

Because the signal in a PCM system can be regen-
erated as often as necessary, the effects of amplitude and
phase and nonlinear distortions in one link, if not too
great, produce no effect whatever on the regenerated
input signal to the next link. If noise in a single link
causes a certain fraction pof the pulses to be regenerated
incorrectly, then after m links, if p«I, the fraction in-
correct will be approximately mp. However, to reduce
p to a value p' == plm requires only a slight increase in
the power in each link, as we have seen in the section on
threshold power. Practically, then, the transmission
requirements for a PCM link are almost independent of
the total length of the system. The importance of this
fact can hardly be overstated.

III. PERFORMANCE OF A PCM SYSTEM

We have seen that PCM requires more bandwidth
and less power than is required with direct transmission
of the signal itself, or with straight AM. We have, in a
sense, exchanged bandwidth for power. Has the ex-
change been an efficient one? Are good signal-to-noise
ratios in the recovered signal Ieasible in PCM? And

(3)c = W log! ( 1 + :)

c = 2W log2 b

= W log, b2•

'·C. E. Shannon. "A mathematical theory of communication."
Bell Sys. Teck, Jour., vol. 27, July, October. 1948.

and
m = n log, b

2'" = bra

Thus,

C = sm

where
W::II bandwidth
P == average signal power
N=white noise power.

Two channels having the same C have the same ca-
pacity for transmitting information, even though the
quantities W, P, and N may be different.

In a PCM system, operating over the threshold so
that the frequency of errors is negligible,

how sensitive to interference is PCM? We shall now try
to answer these questions.

Channel Capacity

A good measure of the bandwidth efficiency is the in-
formation capacity of the system as compared with
the theoretical limit {or a channel of the same band-
width and power. The information capacity of a sys-
tem may be thought of as the number of independ-
ent symbols or characters which can be transmitted
without error in unit time. The simplest, most ele-
mentary character is a binary digit t and it is con-
venient to express the information capacity as the
equivalent number of binary digits per second, C, which
the channel can handle. Shannon and others have shown
that an ideal system has the capaci ty'

C = sn log, b.

Now sn is the actual pulse frequency, and is ideally
twice the system bandwidth W.
Therefore,

where

s==sampJing rate==2W.
m == equivalent number of binary digits per code

group.

I~ ~here ar~ l quantizing levels, the number of binary
digits required per code group is given by l == 2", while
the actual number of (base b) digits n will be given by

I = b~.

(2)
12

b2 - 1
S = K2U 2 ---

12

b2 - 1



(4)

The Philosophy of PCM

Substituting for b the power required for this base (from
(2», we have

( 125)
C = W log, 1 + -- .

K2N

Comparing (4) with (3), we see they are identical if
S= (K'/12)P. In other words, PCM requires K'/12 (or
about 8) times the power theoretically required to realize
a given channel capacity for a given bandwidth.

Perhaps the most important thing to notice about (4)
is that the form is right. Power and bandwidth are
exchanged on a logarithmic basis, and the channel
capacity is proportional'" to W. In most broadband
systems, which improve signal-to-noise ratio at the ex-
pense of bandwidth, C is proportional only to log W.

Signal-to-Noise Ratio

There are two types of noise introduced by a peM
system. One of these is the quantizing noise mentioned
in the section on quantization. This is a noise intro-
duced at the transmitting end of the system and
nowhere else. The other is false pulse noise caused by
the incorrect interpretation of the intended amplitude
of a pulse by the receiver or by any repeater. This noise
may arise anywhere along the system, and is cumula-
tive. However, as we have seen earlier, this noise de-
creases so rapidly as the signal power is increased above
threshold that in any practical system it would be made
negligible by design. As a result, the signal-to-noise
ratio in PCM systems is set by the quantizing noise
alone.

If the signal is large compared with a single quantiz-
ing step, the errors introduced in successive samples
by quantizing will be substantially uncorrelated. The
maximum error which can be introduced is one-half of
one quantizing step in either direction. All values of
error up to this maximum value are equally likely. The
rms error introduced is, thererore.l/2 \1'3 times the height
of a single quantizing step.! When the signal is recon-
structed from the decoded samples (containing this
quantizing error), what is obtained is the original signal
plus a noise having a uniform frequency spectrum out
to Wo and an rms amplitude of 1/20 times a quantiz-
ing step height. The ratio of peak-to-peak signal to rms
noise is, therefore,

since bPI is the number of levels. Expressing this ratio in
db, we have

20 loglo R = 20 loglo 2y3 + n(20 loglo b)

= 10.8 + n(20 loglo b). (5)

In a binary system, b= 2, and

20 loglo R "-/ 10.8 + 6n.

10 Provided S is increased in proportion to W to compensate for
the similar increase in N.
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In examining (5) let us remember that n, the number
of digits, is a factor relating the total bandwidth used in
transmission to the bandwidth of the signal to be trans-
mitted, i.e., W =n Woo It is something like the index of
modulation in FM. Now, for every increment of W.
added to the bandwidth used for transmission, n may
be increased by one, and this increases the signal-to-
noise ratio by a constant number of db. In other words,
in PCM t the signal-to-noise ratio in db varies linearly with
the number of digits per code group, and hence with the
bandwidth. Of course, as the bandwidth is increased the
noise power increases, and a proportional increase in
signal power is required to stay adequately above
three-hold.

A binary PCM system using ten times the bandwidth
of the original signal will give a 70-db signal-to-noise
ratio. Higher base systems will require Jess bandwidth..

Ruggedness

One important characteristic of a transmission system
is its susceptibility to interference. We have seen that
noise in a PCM circuit produces no effect unless the
peak amplitude is greater than half the separation be-
tween pulse levels. In a binary (on-off) system, this is
half the pulse height. Similarly. interference such as
stray impulses, or pulse crosstalk from a near-by channel,
will produce no effect unless the peak amplitude of this
interference plus the peak noise is half the pulse height.
The presence of interference thus increases the thresh-
old required for satisfactory operation. But, if an ade-
quate margin over threshold is provided, compara-
tively large amounts of interference can be present with-
out affecting the performance of the circuit at all. A
PCM system. particularly an on-off (binary) system, is
therefore quite "rugged."

When a number of radio communication routes must
converge on a single terminal, or follow similar routes
between cities, the ruggedness of the channels is a par-
ticularly important consideration. If the susceptibility
of the channels to mutual interference is high, many
separate frequency bands will be required, and the total
bandwidth required for the service will be large. AI·
though peM requires an initial increase of bandwidth
for each channel, the resulting ruggedness permits
many routes originating from. or converging toward, a
single terminal to occupy the same frequency band.
Different planes of polarization for two channels over
the same path can often be used, and the directivities
of practical antennas are such that only a small differ-
ence in direction of arrival wilt separate two routes
on the same frequency. As a result, the frequency oc-
cupancy of PCM is exceptionally rood, and its other
transmission advantages are then obtained with little,
if any, increase in total bandwidth.

IV. COMPARISON OF PCM AND FM

One feature of PCM is that the signal-to-noise ratio
can be substantially improved by increasing the trans-
mission bandwidth. This is an advantage shared with
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certain other pulse systems and with FM. As FM is the
best known of these other systems, it is interesting to
compare PCM and FM.

Broadband Gain

In going to high-deviation FM, the gain in signal-to-
noise voltage ratio over AM (with the same power and
the same noise per unit bandwidth) is proportional to
the deviation ratio, or to the ratio of half the bandwidth
actually used in transmission to the bandwidth of the
signal to be transmitted. This ratio corresponds to n in
our notation. If noise power is uniformly distributed
with respect to frequency, and if one desires to provide
the same margin over threshold in FM with various
bandwidths, the transmitter power must be propor-
tional to bandwidth (to n). If we so' vary the power in
varying the bandwidth of wide-deviation FM, the
signal-to-noise voltage ratio will vary as n(n ll l ) , where
the factor n1/ 2 comes about through the increased signal
voltage. Thus the signal-to-noise ratio R will be given
by

R = (const)n I / 2

20 Jaglo R = 30 }aglo n + const. (6)

For binary (on-off) PCM we have, from (5), for the
same simultaneous variation of bandwidth and power

T
(a)

(b)

20 loglo R = 6n + 10.8.

Or, for ternary (base 3) PCM,

Fig. 2-The si~n~l.s in channels Bit BI , B
"
an~ B•. (a) Signal in a

frequency-divIsion PC~1 system. (b) Amplitudes corresponding
to (a). (c) Signal in a quantized FM system. (d) Amplitudes cor-
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20 laglo R = 9.54n + 10.8.

We see that, as the bandwidth (proportional to n) is in-
creased in FM, the signal-to-noise ratio varies as log n,
while in PCM it varies as n. Thus, as bandwidth is in-
creased, PCl\1 is bound to exhibit more improvement in
the end. Further, a more elaborate analysis shows that,
ideally at least, PCM can provide, {or any bandwidth,
nearly as high a signal-to-noise ratio as is possible with
any system of modulation.

Why is PCM so good in utilizing bandwidth to in-
crease the signal-to-noise ratio? A very clear picture of
the reason can be had by considering a simple PCM
system in which four binary digits are transmitted on
four adjacent frequency bands with powers just sufficient
to over-ride noise. In Fig. 2(a) the signals in these four
channels BIt Bit Bat B. are shown versus time. A black
rectangle represents a pulse; a white rectangle, the
absence of a pulse. The rectangles are 1'e== (1/2 Wo) long.
The particular sequence of code groups shown in the
figure represents a quantized approximation to a linear
change of amplitude with time, as shown in Fig. 2(b).

Now suppose, instead. that we confine ourselves to
sending a pulse in only one channel at a time, as shown
in Fig. 2(c). The best quantized representation of the
signal we can get is shown in Fig. 2(d). Here the num-
ber of levels is four, while in Fig. 2(b) there are sixteen.
In other words, Fig. 2(b) represents (our times as good
a signal-to-noise amplitude ratio as Fig. 2(d).
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The total energy transrni tted is in each case repre-
sen ted by the total black area; we see that on the aver-
age twice as much power is used in Fig. 2(a) as in Fig.
2(c). Thus we obtain a 12-db increase in signal-to-noise
ratio with a power increase of only 3 db by sending the
signal according to Fig. 2(a) rather than Fig. 2(c). If we
had started out with six channels instead of four, we
would have obtained a signal-to-noise improvement of
21 db for 4.77 db more average power. The greater the
number of channels, and hence the wider the frequency
band used, the better the method of transmission repre-
sented by Fig. 2(a) as compared to that represented by
Fig.2(c).

Now Fig. 2(a) represents PCM, while Fig. 2(c) repre-
sents what is essentially quantized FM with sampling.
The signal in Fig. 2(c) varies with frequency according
to the amplitude of the signal. Hence, we have compared
PCl\1 and a sort of EM, to the obvious advantage
of PCM.

The trouble with the FM type of signal of Fig. 2(c)
is that only a few of the possible signals which might be
sent in the four bands B1-B. are ever produced; all the
others, those for which there is a signal in more than one
band at a time, are wasted. Ideally, PClvt takes ad-
vantage of every possible signal which can be trans-
mitted over a given band of frequencies with pulses hav-
ing discrete amplitudes."

The relation between FM and PC~1 is closely analo-
gous to the relation between the two types of computing
machines: the so-called analogue machines and the
digital machines. In analogue machines the numbers
involved are represented as proportional to some physi-
cal quantity capable of continuous variation. Typical
examples are the slide rule, network analyzers, and the
differential analyzer. An increase in precision requires,
in general, a proportional increase in the range of
physical variables used to represent the numbers.
Furthermore, small errors tend to accumulate and can-
not be eliminated. In digital machines the numbers are
expressed in digital form, and the digits are represented
by the states of certain physical parts of the machine
which can assume one of a finite set of possible states.
Typical digital machines are the abacus, ordinary desk
computers, and the Eniac. In this type of machine the
precision increases exponen tially with the number of
digits, and hence with the size of the machine. Small
errors, which are not large enough to carry any part
from one state to another state, have no effect and do
not cumulate.

In FM (analogue), the amplitude of the audio signal
is measured by the radio frequency. To improve the pre-
cision by 2 to 1 requires roughly a 2 to 1 increase in
the frequency swing. and hence the bandwidth. In PCM
doubling the bandwidth permits twice the number of
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digits, and therefore squares rather than doubles the
number of distinguishable levels.

Otber Factors

There are other considerations in a comparison be-
tween PCM and ordinary, unquantized FM, however.
For instance, PCM allows the use of regenerative re-
peaters, and FM does not. PCM lends itself, like other
pulse systems, to time-division multiplex. On the other
hand, when the received signal rises considerably above
threshold during good reception. the signal-to-noise
ratio improves with FM but not with PCM. When we
come to consider transmitters and receivers, we find
that, for high signal-to-noise ratios at least, an FM
transmitter and receiver will be somewhat less compli-
cated than those for PCM are at present.

v. CONCLUSIONS

PCM offers a greater improvement in signal-to-noise
than other systems, such as FM, which also depend
upon the use of wide bands.

.By using binary (on-off) PCM, a high quality signal
can be obtained under conditions of noise and interfer-
ence so bad that it is just possible to recognize the
presence of each pulse. Further, by using regenerative
repeaters which detect the presence or absence of pulses
and then emit reshaped, respaced pulses, the initial
signal-to-noise ratio can be maintained through a long
chain of repeaters.

PCM lends itself to time-division multiplex.
PCM offers no improvement in signal-to-noise ratio

during periods of high signal or low noise.
PCM transmitters and receivers are somewhat more

complex than are those used for some other forms of
modulation.

In all, PCM seems ideally suited for multiplex mes-
sage circuits, where a standard quality and high reli-
ability are required.

ApPENDIX I

We wish to show that a function of time J(t) which
contains no frequency components greater than Wo cps
is uniquely determined by the vaJues of J(t) at any set
of sampling points spaced t/2Wo seconds apart. Let
F(w) be the complex spectrum of the function. i.e.,

By assumption, F(w) = 0 (or Iwi > 21r Woo F«(J) can be
expanded in the interval -2".Wo to +2".Wo in a Fourier
series having the coefficients

11 It m!ght be objected th~t o~e could have signals with a finer
str';lc~ure I~ the fre9.ue!'cy direction than those shown in Fig. 2(a).
This IS possible only if T IS made larger, so that the pulses representing
samples occur less frequently, are broader, and have narrower spec-
tra. This means reducing Woo

1 f 2".Wo
aft = --- F(w)e-i(6Jn/2W o>dw.

41rWo -2"Wo

(1)
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ApPENDIX II

We wish to find the average power in a series of pulses
of the form

Now, since F(w) is the Fourier transform of j(I). j(t) is
the inverse transform of F(w).

jet)

t
sin 1r-

T

t
1r-

T

since F(w) is zero outside these limits.
If we let t =n/2 Wo, we have

f(_tt_) = -l-f 2o-WOF(w)eiC..n/2WO>dw. (2)
2Wo 21r -2 ..Wo

Comparing {I) and (2), we see that

1 (-n)a =-f-
'n 2Wo 2Wo '

Thus, if the function f{t) is known at the sam-
pling points,··· - (2/2Wo) , 1/2Wo, 0, 1/2Wo,
2/2 W. · ~ · , then the coefficients a" are determined.
These coefficients determine the spectrum F(w) and
F(w) determines f(t) for all values of t: This shows that
there is exactly one function containing no frequencies
over Wo and passing through a given set of amplitudes
at sampling points 1/2Wo apart.

To reconstruct the function, given these amplitudes,
we note that

F(w) = L ane t(w n / 2W o) for Iwi < 2.,..IVo
n

F(W)4= 0 ' for Iwi> 21rWo•

Taking the inverse transform, we have

~ sin r(2Wot+ n)
f(t) = 2Wo ,L, an -----

" 1r(2Wot+ n)

L f(- _n_) sin r(2Wot + n)

n 2Wo w(2Wot + n)

= L f(~_)Sin 1r,(2Wot - n) .

" 2Wo ".(2Wo' - n)

In other words, the functionf(t) may be thought of as
the sum of a series of elementary functions of the form
sin x/x centered at the sampling points, and each having
a peak value equal to /(t) at the corresponding sampling
point. To reconstruct the functionf(t), then, we merely
need to generate a series of sin x]» pulses proportional
to the samples and add the ensemble.

occurring at the regular rate l/r.
The signal wave may then be written

ft

vet) = L Vk!(t - kT)
h=l

where VA: = peak amplitude of pulse occurring at the time
t =kr, The average "power" (i.e., mean-square ampli-
tude) S of the signal will then be

S = v2 = lim ~ f 00 v2(t )dt
"-00 nT _~

For the assumed pulse shape, the first integral is equal
to T, while the second integral is equal to zero. Thus

1 n

S = lim - L V k
2•

ft-IO n kaal

S is simply the mean-square value of the individual
pulse peak amplitudes, and may also be written

where

p( V)d V =probability that pulse amplitude lies be-
tween V and V +d V.

Suppose the pulses have b discrete amplitude levels
KtT apart, ranging from 0 to (b-l)KCT. Each pulse then
has an amplitude aK(1where a is an integer. The average
power will be

Q=:b-l

S = K2U 2 L p(a)a 2

o-G

where p(a) = probability of level a. If all levels are
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equally likely, p(a) = lIb, and

1 b-l

S = K2q 2 _ I: a 2

b 0

(b - 1)(2b - 1)
S = K2q 2 •

6
The q uan ti ty

1 6-1

-Ea2

b 0

is the square of the radius of gyration (i.e., the mean-
square radius) about one end of a linear array of b
points separated by unit distance. The average power
of any amplitude distribution is the average of the
squares of the amplitudes and is therefore proportional
to the square of the radius of gyration of the distribu-
tion. The radius of gyration about any point is

where

r =radius of gyration about chosen point
ro =radius of gyration about center of gravity
d =distance to center of gravity from chosen point.
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Obviously, ro<r, so that the average power will be least if
the average amplitude is zero. S will be least if the
pulse amplitude range is from -Kcr(b -1)/2 to
+Kcr(b-l)/2, and will then be given by

[
(b - 1)(2b - 1) (b - 1)2JS = K2q 2 - --

6 2

12

This may also be written

At (b + 1)
s=---

12 (b - 1)

where A == total amplitude range == (b -l)Kcr. As b...... 00,

A2
S--+_·

12

Thus, if all amplitude levels in a range A are possible
and equally likely, the rrns amplitude of the distribution
will be yI3'=(A/2v3).



Communication In the Presence of" Noise"
CLAUDE E. SHANNONt, MEMBER, IRE

Summary-A method I. developed for representinl any com-
munication system geometrically. Messages and the corresponding
slpals are points in two "function spaces," and the modulation
proce.. is a mapping of one space into the other. Using this repre-
sentation a Dumber of results in communication theory are deduced
conce~g ezpansion and compression of bandwidth and the
threshold effect. Formulas are found for the muimum rate of trans-
mission of binary digits over a system when the signal is perturbed
by various types of noise. Some of the properties of "ideal" systems
which transmit at this maximum rate are discussed. The equivalent
number of binary digits per second for certain Information sources
is calculated.

I. INTRODUCTION

A G·ENERAL COMMUNICATIONS system is
.tl shown schematically in Fig. 1. It consists essen-

tially of five elernents.
1. A n information source. The source selects one mes-

sage from a set of possible messages to be transmitted to
the receiving terminal. The message may be of various
types; for example, a sequence of letters or numbers, as
in telegraphy or teletype, or a continuous function of
time f(t) , as in radio or telephony.

2. The transmitter. This operates on the message in
some way and produces a signal suitable for transmis-
sion to the receiving point over the channel. In teleph-
ony, this operation consists of merely changing sound
pressure in to a proportional electrical current. In teleg-
raphy, we have an encoding operation which produces a
sequence of dots, dashes, and spaces corresponding to
the letters of the message. To take a more complex
example, in the case of multiplex Pf.M telephony the
different speech functions must be sampled, compressed,
quantized and encoded, and finally interleaved properly
to construct the signal.

• Decimal classification: 621.38. Original manuscript received by
the Institute, July_23, 1940. Presented, 1948 IRE National Con~en­
tion, New York, N. Y., March 24, 1948;and IRE New York Section,
New York, N. Y., November 12, 1947.

t Bell Telephone Laboratories, Murray Hill, N.].
J H: Nyquist, "Certain factors .affecting telegraph speed," Bell

Syst. 1 echo Jour.. vol. 3. n, 324; April, 1924.

3. The channel. This is merely the medium used to
transmit the signal from the transmitting to the receiv-
jog point. I t may be a pair of wires, a coaxial cable, a
band of radio frequencies, etc. During transmission, or
at the receiving terminal, the signal may be perturbed
by noise or distortion. Noise and distortion may be dif-
ferentiated on the basis that distortion is a fixed opera-
tion applied to the signal, while noise involves statistica
and unpredictable perturbations. Distortion can, ir
principle, be corrected by applying the inverse opera-
tion. while a perturbation due to noise cannot always be
removed, since the signal does not always undergo the
same change during transmission.

4. The receiver. This operates on the received signa
and attempts to reproduce, from it, the original mes
sage. Ordinarily it will perform approximately the math
ematical inverse of the operations of the transmitter, al
though they may differ somewhat with best design it
order to combat noise.

S. The destination. This is the person or thing fo
whom the message is intended.

Following Nyquist! and Hartley," it is convenient t.
use a logarithmic measure of information. If a device ha
n possible positions itcan, by definition, store legbn unit
of information. The choice of the base b amounts to .
choice of unit, since 10gb n =log, c loge n, We will use th
base 2 and call the resulting units binary digits or bits
A group of m relays or flip-flop circuits has 2'" possibl
sets of positions, and can therefore store log, 2m = m bits

If it is possible to distinguish reliably M different sig
nal functions of duration T on a channel, we can sa
that the channel can transmit logs M bits in time T. Th
rate of transmission is then log2 MIT. More precisely
the channel capacity may be defined as

. log2 M
C = lim ·

T-.oo T

, R. V. L. Hartley, "The transmission of information," Bell Sys.
Teeh. Jour., vol. 3, p. 535-564; July, 1928.

Fig. I-General communications system.
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where n is any positive or negative integer, we obtain

since F(w) is assumed zero outside the band W. If we
let

A precise meaning will be given later to the requirement
of reliable resolution of the M signals.

(6)

(7)
sin 1r(2Wt - n)

1r(2Wt - n)n=-oo
f(t) = L:

3 J. M. Whittaker, "Interpolatory Function Theory," Cambridge
Tracts in Mathematics and Mathematical Physics, No. 33, Cam-
bridge University Press, Chapt. IV; 1935.

• H. Nyquist, "Certain topics in telegraph transmission theory,"
A.I.E.E. Transactions, p. 617; April, 1928.

6 W. R. Bennett, "Time division multiplex systems," Bell Sys.
Tech. Jour., vol. 20, p. 199; April, 1941, where a result similar to
Theorem 1 is established, but on a steady-state basis.

6 D. Gabor, "Theory of communication," Jour. I.E.E. (London),
vol. 93; part 3, no. 26, p. 429; 1946.

nal function f(t) completely, since a function is deter-
mined if its spectrum is known. Therefore the original
samples determine the function J(t) completely. There
is one and only one function whose spectrum is limited
to a band W, and which passes through given values at
sampling points separated 1/2 W seconds apart. The
function can be simply reconstructed from the samples
by using a pulse of the type

A similar result is true if the band IVdoes not start at
zero frequency but at some higher value, and can be
proved by a linear translation (corresponding physically
to single-sideband modulation) of the zero-frequency
case. In this case the elementary pulse is obtained from
sin x/x by single-side-band modulation.

If the function is limited to the time interval T and
the samples are spaced 1/2 ~v seconds apart, there will
be a total of 2TW samples in the interval. All samples
outside will be substantially zero. To be more precise,
we can define a function to be limited to the time inter-
val T if, and only if, all the samples outside this interval
are exactly zero. Then we can say that any function lim-
ited to the bandwidth Wand the time interval T can be
specified by giving 2TW numbers.

Theorem 1 has been given previously in other forms
by mathematicians" but in spite of its evident impor-
tance seems not to have appeared explicitly in the litera-
ture of communication theory. Nyquist.s-! however, and
more recently Gabor,6 have pointed out that approxi-
mately 2T~V numbers are sufficient, basing their argu-

This function is unity at t = 0 and zero at t = n/2 W, i.e.,
at all other sample points. Furthermore, its spectrum is
constant in the band Wand zero outside. At each sam-
ple point a pulse of this type is placed whose amplitude
is adjusted to equal that of the sample. The sum of these
pulses is the required function, since it satisfies the con-
ditions on the spectrum and passes through the sampled
values.

Mathematically, this process can be described as fol-
lows. Let x" be the nth sample. Then the function f(t)
is represen ted by

(5)

(2)

(4)

(3)

n
t=-

2W

1 fClO- F(w)eiwtdw
21r -0()

1 f +2rW
= - F(w)eiwtdw,

21r -2rW

f(t)

(n) 1 J+2rwf - = - F(w)eiw2';v dw.
2W 2'11'" -2rW

On the left are the values of f(t) at the sampling points.
The integral on the right will be recognized as essen-
tially the nth coefficient in a Fourier-series expansion of
the function F(w), taking the interval - W to +W as a
fundamental period. This means that the values of the
samples f(n/2 W) determine the Fourier coefficients in
the series expansion of F(w). Thus they determine F(w),
since F(w) is zero for frequencies greater than W, and for
lower frequencies F(w) is determined if its Fourier co-
efficients are determined. But F(w) determines the origi-

I I. THE SAMPLING THEOREM

Let us suppose that the channel has a certain band-
width W in cps starting at zero frequency, and that we
are allowed to use this channel for a certain period of
time T. Without any further restrictions this would
mean that we can use as signal functions any functions
of time whose spectra lie entirely within the band W,
and whose time functions lie within the interval T. Al-
though it is not possible to fulfill both of these condi-
tions exactly, it is possible to keep the spectrum within
the band lV, and to have the time function very small
outside the interval T. Can we describe in a more useful
way the functions which satisfy these conditions? One
answer is the following:

THEOREM 1: If a function f(t) contains no frequencies
higher than W cps, it is completely determined by giving
its ordinates at a series of points spaced 1/2W seconds
apart.

This is a fact which is common knowledge in the com-
munication art. The intuitive justification is that, if J(t)
contains no frequencies higher than W, it cannot
change to a substantially new value in a time less than
one-half cycle of the highest frequency, that is, 1/2 W. A
mathematical proof showing that this is not only ap-
proximately, but exactly, true can be given as follows.
Let F(w) be the spectrum of f(t). Then
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point is analogous to the two- and three-dimensional
cases

where X n is the nth sample. Now, since.

using the fact that

(8)

(9)

(11)

(10)

sin 11'"(2 Jlf't - It)
-------dt

r( lVt - It)

{

' 0 In ¢ n

= 1
·--11t = It•
.2lV

1
= 2W L X,,~,

21'lV sin 1r( 2.", t - 1t)
L X n ,

n-l 'lr(21·Vt - II)
J(t)

sin 1r(2lVt - lit)

1r(2lVt - 11t)

we have

ments on a Fourier series expansion of the function over
the time interval T. This gives TW sine and (TW+l)
cosine terms up to frequency W. The slight discrepancy
is due to the fact that the functions obtained in this way
will not be strictly limited to the band W but, because
of the sudden starting and stopping of the sine ana co-
sine components, contain some frequency content out-
side the band. Nyquist pointed out the fundamental
importance of the time interval 1/2W seconds in con-
nection with telegraphy, and we will call this the Ny-
Quist interval corresponding to the band W.

The 2TW numbers used to specify the function need
not be the equally spaced samples used above. For ex-
ample, the samples can be unevenly spaced, although, if
there is considerable bunching, the samples must be
known very accurately to give a good reconstruction of
the function. The reconstruction process is also more
involved with unequal spacing. One can further show
that the value of the function and its derivative at every
other sample point are sufficient. The value and first and
second derivatives at every third sample point give a
still different set of parameters which uniquely deter-
mine the function. Generally speaking, any set of 2TW
independent numbers associated with the function can
be used to describe it.

Hence, the square of the distance to a point is 2W times
the energy (more precisely, the energy into a unit resist-
ance) of the corresponding signal

where P is the average power over the time T. Similarly,
the distance between two points is V2W1' times the
rms discrepancy between the two corresponding signals.

If we consider only signals whose average power is less
than P, these will correspond to points within a sphere
of radius

If noise is added to the signal in transmission, it
means that the point corresponding to the signal has
been moved a certain distance in the space proportional
to the rms value of the noise. Thus noise produces a
small region of uncertainty about each point in the
space. A fixed distortion in the channel corresponds to
a warping of the space, so that each point is moved, but
ina defini te fixed way.

In ordinary three-dimensional space it is possible to
set up many different co-ordinate systems. This is also
possible in the signal space of 2TW dimensions that we
are considering. A different co-ordinate system cor-
responds to a different way of describing the same sig-
nal function. The various ways of specifying a function
given above are special cases of this. One other way of
particular importance in communication is in terms of

I II. GEOMETRICAL REPRESENTATION OF

THE SIGNALS

A set of three numbers Xlt X2, X3, regardless of their
source, can always be thought of as co-ordinates of a
point in three-dimensional space. Similarly, the 2TW
evenly spaced samples of a signal can be thought of as
co-ordinates of a point in a space of 2TW dimensions.
Each particular selection of these numbers corresponds
to a particular point in this space. Thus there is exactly
one point corresponding to each signal in the band W
and with duration T.

The number of dimensions 2TW will be, in general,
very high. A 5-Mc television signal lasting for an hour
would be represented by a point in a space with 2 X5
X l06X602=3.6XI01o dimensions. Needless to say,
such a space cannot be visualized. I t is possible, how-
ever, to study analytically the properties of n-dimen-
sional space. To a considerable extent, these properties
are a simple generalization of the properties of two- and
three-dimensional space, and can often be arrived at
by inductive reasoning from these cases. The advantage
of this geometrical representation of the signals is that
we can use the vocabulary and the results of geometry
in the communication problem. Essentially, we have re-
placed a complex entity (say, a television signal) in a
simple environment (the signal requires only a plane for
its representation as f(t» by a simple entity (a point) in
a complex environment (2TW dimensional space).

If we imagine the 2TW co-ordinate axes to be at right
angles to each other, then distances in the space have a
simple interpretation. The distance from the origin to a

d2 = 2lJ/E

= 2lVTP

r = ,,/2lJ'TP.

(12)

(13)
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frequency components. The function f(t) can be ex-
panded as a sum of sines and cosines of frequencies liT
apart, and the coefficients used as a different set of co-
ordinates. It can be shown that these co-ordinates are
all perpendicular to each other and are obtained by
what is essentially a rotation of the original co-ordinate
system.

Passing a signal through an ideal filter corresponds to
projecting the corresponding point onto a certain region
in the space. In fact, in the frequency-eo-ordinate sys-
tem those components lying in the pass band of the filter
are retained and those outside are eliminated, so that
the projection is on one of the co-ordinate Jines, planes,
or hyperplanes. Any filter performs a linear operation on
the vectors of the space, producing a new vector lin-
early related to the old one.

IV. GEOMETRICAL REPRESENTATION

OF 1\1 ESSAGES

\Ve have associated a space of 2TW dimensions with
the set of possible signals. I n a similar way one can as-
sociate a space with the set of possible messages. Sup-
pose we are considering a speech system and that the
messages consist of all possible sounds which contain no
frequencies over a certain limit WI and last for a time
1\.

Jlist as for the case of the signals, these messages can
be represented in a one-to-one way in a space of 2T1WI
dimensions. There are several points to be noted, how-
ever. In the first place, various.different points may rep-
resent the same message, insofar as the final destination
is concerned. For example, in the case of speech, the ear
is insensitive to a certain amount of phase distortion.
Messages differing only in the phases of their compon-
ents (to a limited extent) sound the same. This may have
the effect of reducing the number of essential dimensions
in the message space. All the points which are equivalent
for the destination can be grouped together and treated
as one point. It may then require fewer numbers to
specify one of these "equivalence classes" than to spec-
ify an arbitrary point. For example, in Fig. 2 we have a
two-dimensional space, the set of points in a square. If
all points on a circle are regarded as equivalent, it re-
duces to a one-dimensional space-a point can now be

specified by one number, the radius of the circle. In the
case of sounds, if the ear were completely insensitive to

Fig. 2-Reduction of dimensionality through
equivalence classes.
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phase, then the number of dimensions would be reduced
by one-half due to this ~ause alone. The sine and cosine
components an and b; for a given frequency would not
need to be specified independently, but only yan

2+ b,,2;
that is, the total amplitude for this frequency. The re-
duction in frequency discrimination of the ear as fre-
quency increases indicates that a further reduction in
dimensionality occurs. The vocoder makes use to a con-
siderable extent of these equivalences among speech
sounds, in the first place by eliminating, to a large de-
gree, phase information, and in the second place by
lumping groups of frequencies together, particularly at
the higher frequencies.

In other types of communication there may not be
any equivalence classes of this type. The final destina-
tion is sensitive to any change in the message within the
full message space of 2TJ WI dimensions. This appears
to be the case in television transmission.

A second point to be noted is that the information
source may put certain restrictions on the actual mes-
sages. The space of 2T] WI dimensions contains a point
for everyfunction of timef(t) limited to the band WI and
of duration T1• The class of messages we wish to trans-
mit may be only a small subset of these functions. For
example, speech sounds must be produced by the human
vocal system. If we are willing to forego the transmission
of any other sounds, the effective dimensionality may be
considerably decreased. A similar effect can occur
through probability considerations. Certain messages
may be possible, but so improbable relative to the oth-
ers that we can, in a certain sense, neglect them. In a
television image, for example, successive frames are
likely to be very nearly identical. There is a fair proba-
bility of a particular picture element having the same
light intensity in successive frames. If this is analyzed
mathematically, it results in an effective reduction of
dimensionality of the message space when T 1 is large.

We will not go further into these two effects at pres-
ent, but let us suppose that, when they are taken into
account, the resulting message space has a dimensional-
ity D, which will, of course, be less than or equal to
2T 1 WI. In many cases, even though the effects are pres-
ent, their utilization involves too much complication in
the way of equipment. The system is then designed on
the basis that all functions are different and that there
are no limitations on the information source. In this
case, the message space is considered to have the full
2T1W1 dimensions.

v. GEOMETRICAL REPRESENTATION OF THE

TRANSMITTER AND RECEIVER

We now consider the function of the transmitter from
this geometrical standpoint. The input to the transmit-
ter is a message; that is, one point in the message space.
Its output is a signal-one point in the signal space.
Whatever form of encoding or modulation is performed,
the transmitter must establish some correspondence be-
tween the points in the two spaces. Every point in the
message space must correspond to a point in the signal
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Communication System

The set of possible signals
A particu lar signal
Distortion in the channel
Noise in the channel

The average power of the
signal

The set of signals of power
p

The set of possible messages
The set of actual messages

distinguishable by the
des tina tion

A message
The transmitter

The receiver

TABLE I

Geometrical Entity

A space of 2TW dimensions
A point in the space
A warping of the space
A region of uncertainty about each

point
(2TW)-1 times the square of the dis-

tance from the origin to the point
The set of poin ts in a sphere of radius

v'2TW P
A space of 2T1WI dimensions
A space of D dimensions obtained by

regarding all equivalent messages
as one poin t, and deleting messages
which the source could not produce

A point in this space
A mapping of the message space into

the signal srace
A mapping 0 the signal space into

the message space

C. E. Shannon

space, and no two messages can correspond to the same
signal. If they did, there would be no way to determine
at the receiver which of the two messages was intended.
The geometrical name for such a correspondence is a
mapping. The transmitter maps the message space into
the signal space.

In a similar way, the receiver maps the signal space
back into the message space. Here, however, it is possi-
ble to have more than one point mapped into the same
point. This means that several different signals are de-
modulated or decoded into the same message. In AM,
for example, the phase of the carrier is lost in demodula-
tion. Different signals which differ only in the phase of
the carrier are demodulated into the same message. In
FM the shape of the signal wave above the limiting
value of the limiter does not affect the recovered mes-
sage. In PCM considerable distortion of the received
pulses is possible, with no effect on the output of the re-
ceiver.

We have so far established a correspondence between
a communication system and certain geometrical ideas.
The correspondence is summarized in Table I.

VI. MAPPING CONSIDERATIONS

It is possible to draw certain conclusions of a general
nature regarding modulation methods from the geo-
metrical picture alone. Mathematically, the simplest
types of mappings are those in which the two spaces
have the same number of dimensions. Single-sideband
amplitude modulation is an example of this type and an
especially simple one, since the co-ordinates in the sig-
nal space are proportional to the corresponding co-ordi-
nates in the message space. In double-sideband trans-
mission the signal space has twice the number of co-
ordinates, but they occur in pairs with equal values. If
there were only one dimension in the message space and,
two in the signal space, it would correspond to mapping

a line onto a square so that the point x on the line is rep-
resented by (x, x) in the square. Thus no significant use
is made of the extra dimensions. All the messages go in to
a subspace having only 2T1 WI dimensions.

In frequency modulation the mapping is more in-
volved. The signal space has a much larger dimensional-
ity than the message space. The type of mapping can be
suggested by Fig. 3, where a line is mapped into a three-
dimensional space. The line starts at unit distance from
the origin on the first co-ordinate axis, stays at this dis-
tance from the origin on a circle to the next co-ordinate
axis, and then goes to the third. It can be seen that the
line is lengthened in this mapping in proportion to the
total number of co-ordinates. It is not, however, nearly
as long as it could be if it wound back and forth through
the space, filling up the internal volume of the sphere it
traverses.

This expansion of the line is related to the improved
signal-to-noise ratio obtainable with increased band-
width. Since the noise produces a small region of uncer-
tainty about each point, the effect of this on the recov-
ered message will be less if the map is in a large scale. To
obtain as large a scale as possible requires that the line

TO NEXT COORO/NATE........_.... -
3

Fig. 3-l\lapping similar to frequency modulation.
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From these two numbers we can construct one number
by taking- digits alternately from x and y:

UNCERTAINTY
DUE TO NOIse

Fig. 4-Efficient mapping of a line into a square.

wander back and forth through the higher-dimensional
region as indicated in Fig. 4, where we have mapped a
line into a square. It will be noticed that when this is
done the effect of noise is small relative to the length of
the line, provided the noise is less than a certain critical
value. At this value it becomes uncertain at the receiver
as to which portion of the line contains the message.
This holds generally, and it shows that any system which
attempts to use the capacities of a wider band to the full ex-
tent possible will suffer from a threshold effect when there
i:, noise. If the noise is small, very little distortion will
occur, but at some critical noise amplitude the message
will become very badly distorted. This effect is well
known in PCl\1.

Suppose, on the other hand, we wish to reduce di-
mensionality, i.e., to compress bandwidth or time or
both. That is, we wish to send messages of band WIand
duration T1 over a channel with TW < T 1WI. It has al-
ready been indicated that the effective dimensionality D
of the message space may be less than 2T1WI due to the
properties of the source and of the destination. Hence we
certainly need no more than D dimension in the signal
space for a good mapping. To make this saving it is nec-
essary, of course, to isolate the effective co-ordinates in
the message space, and to send these only. The reduced
bandwidth transmission of speech by the vocoder is a
case of this kind.

The question arises, however, as to whether further
reduction is possible. In our geometrical analogy, is it
possible to map a space of high dimensionality onto one
of lower dimensionality? The answer is that it is pos i-
ble, with certain reservations. For example, the points of
a square can be described by their two co-ordinates
which could be written in decimal notation

.7 \v. Hurewitz a~d H. Wallman, "Dimension Theory," Princeton
University Press, Princeton, N. l., 1941,

A knowledge of x and y determines a, and z determines
both x and y. Thus there is a one-to-one correspondence
between the points of a square and the points of a line.

This type of mapping, due to the mathematician
Cantor, can easily be extended as far as we wish in the
direction of reducing dimensionality. A space of n di-
mensions can be mapped in a one-to-one way into a
space of one dimension. Physically, this means that the
frequency-time product can be reduced as far as we wish
when there is no noise, with exact recovery of the origi-
nal messages.

In a less exact sense, a mapping of the type shown in
Fig. 4 maps a square into a line, provided we are not too
particular about recovering exactly the starting point,
but are satisfied with a near-by one. The sensitivity we
noticed before when increasing dimensionality now takes
a different form. In such a mapping, to reduce TW, there
will be a certain threshold effect when we perturb the
message. As we change the message a small amount, the
corresponding signal will change a small amount, until
some critical value is reached. At this point the signal
will undergo a considerable change. In topology it is
shown? that it is not possible to map a region of higher
dimension into a region of lower dimension continuously.
It is the necessary discontinuity which produces the
threshold effects we have been describing for communi-
cation systems.

This discussion is relevant to the well-known "Hartley
Law," which states that " ... an upper limit to the
amount of information which may be transmitted is set
by the sum for the various available lines of the product
of the .line-frequency range of each by the time during
which it is available for use. "2 There is a sense in which
this statement is true, and another sense in which it is
false. It is not possible to map the message space into
the signal space in a one-to-one, continuous manner
(this is known mathematically as a topological mapping)
unless the two spaces have the same dimensionality:
i.e., unless D = 2TJtr. Hence, if we limit the transmitter
and receiver to continuous one-to-one operations, there
is a lower bound to the product rrv in the channel.
This lower bound is deterrnined, not by the product
WITI of message bandwidth and time, but by the num-
ber of essential dimension D, as indicated in Section IV'.
There is, however, no good reason for limiting the trans-
rnitter and receiver to topological mappings. In fact,
PCl\l and similar modulation systems are highly dis-
continuous and come very close to the type of mapping
given by (14) and (15). It is desirable, then, to find
limits for what can be done with no restrictions on the
type of transmitter and receiver operations. These
limits, which will be derived in the following sections,
depend on the amount and nature of the noise in the
channel, and on the transmitter power, as well as on
the bandwidth-time product.

It is evident that any system, either to compress Tn·,

(14)

(15)
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(18)

The number of bits that can be sent in this time is
log2 M, and the rate of transmission is

P+N
W log2 K2--- (bits per second).

N

(19)
P + J\T

C = W log2---
N

2TW 1 X,. 2

II exp -
,.==1 Y2,.-2TU'N 2TWN

1 -1 2TlV

= (271"2TWN)Tw exp 2TW ~ xn
2
•

2TW

E X,J2,
1

the probability of a given perturbation depends only on
the distance from the original signal and not on the direc-
tion. In other words. the region of uncertainty is spheri-

Since this depends only on

these statistical indications result in near certainty.
This possibility allows an improvement of about 8 db
in power over (18) with a reasonable definition of re-
liable resolution of signals, as will appear later. We will
now make use of the geometrical representation to de-
terrnine the exact capacity of a noisy channel.

THEOREM 2: Let P be the average transmitter power, and
suppose the noise is white thermal noise of power N in the
band W. By su.fficiently complicated encoding systems it is
possible to transmit binary digits at a rate

with as small a frequency of errors as desired. It is not pos-
sible by any encoding method to send at a higher rate and
have an arbitrarily low frequency of errors.

This shows that the rate H'log (P+N)/N measures in
a sharply defined way the capacity of the channel for
transmitt ing information. It is a rather surprising result,
since one would expect that reducing the frequency of
errors would require reducing the rate of transmission,
and that the rate must approach zero as the error fre-
quency does. Actually, we can send at the rate C but
reduce errors by using more involvedencoding and longer
delays at the transmitter and receiver. The transmitter
will take long sequences of binary digits and represent
this entire sequence by a particular signal function of
long duration. The delay is required because the trans-
mitter must wait for the full sequence before the signal
is determined. Similarly, the receiver must wait for the
full signal function before decoding into binary digits.

\Ve now prove Theorem 2. In the geometrical repre-
sentation each signal point is surrounded by a small re-
gion of uncertainty due to noise. With white thermal
noise, the perturbations of the differ-ent samples (or co-
ordinates) are all Gaussian and independent. Thus the
probability of a perturbation having co-ordinates
Xl, X" ••• , X n (these are the differences between the
original and received signal co-ordinates) is the product
of the individual probabilities for the different co-ordi-
nates:

(17)

(16)I P + f.tT

K --
N

M

The difficulty with this argument, apart from its
general approximate character, lies in the tacit assump-
tion that for two signals to be distinguishable they must
differ at some sampling point by more than the expected
noise. The argument presupposes that PClVI, or some-
thing very similar to PCl\1, is the best method of en-
coding binary digits into signals. Actually, two signals
can be reliably distinguished if they differ by only a
small amount, provided this difference is sustained over
a long period of time. Each sample of the received signal
then gives a small amount of statistical information
concerning the transmitted signal; in combination,

or to expand it and make full use of the additional vol-
unlet must be highly nonlinear in character and fairly
complex because of the peculiar nature of the mappings
involved.

where K is a small constant in the neighborhood of unity
depending on how the phrase "reasonably well" is inter-
preted. If we require very good separation, K will be
small, while toleration of occasional errors allows K to
be larger. Since in time T there are 2TU' independent
amplitudes, the total number of reasonably distinct sig-
nals is

VII. THE CAPACITY OF A CHANNEL IN THE

PRESENCE OF \VHITE 'fHERMAL NOISE

I t is not difficult to set up certain quantitative rela-
tions that must hold when we change the product TltV.
Let us assume, for the present, that the noise in the sys-
tem is a white thermal-noise band limited to the band
W, and that it is added to the transmitted signal to pro-
duce the received signal. .t\ white thermal noise has the
property that each sample is perturbed independently of
all the others, and the distribution of each amplitude is
Gaussian with standard deviation a = yiN where N is
the average noise power. How many different signals can
be distinguished at the receiving point in spite of the
perturbations due to noise? A crude estimate can be ob-
tained as follows. If the signal has a power P, then the
perturbed signal will have a power P+N. The number
of amplitudes that can be reasonably well distinguished
is
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Consequently, the channel capacity is bounded by:

Hence, an upper limit for the number M of distinguish-
able signals is

turbed signal is received. The receiver compares this
signal with each of the M possible transmitted signals
and selects the one which is nearest the perturbed signal
(in the sense of rms error) as the one actually sent. The
receiver then constructs, as its output, the correspond-
ing sequence of binary digits. There will be, therefore,
an over-all delay of 2T seconds.

To insure a frequency of errors less than E, the M sig-
nal functions must be reasonably well separated from
each other. In fact, we must choose them in such a way
that, when a perturbed signal is received, the nearest
signal point (in the geometrical representation) is, with
probability greater than 1-E, the actual original signal.

It turns out, rather surprisingly, that it is possible to
choose our M signal functions at random from the points
inside the sphere of radius y!2T~VP, and achieve the
most that is possible. Physically, this corresponds very
nearly to using M different samples of band-limited
white noise with power P as signal functions.

A particular selection of M points in the sphere corre-
sponds to a particular encoding system. The general
scheme of the proof is to consider all such selections, and
to show that the frequency of errors averaged over all
the particular selections is less than E. This will show
that there are particular selections in the set with fre-
quency of errors less than E. Of course, there will be
other particular selections with a high frequency of er-
rors.

The geometry is shown in Fig. 5. This is a plane
cross section through the high-dimensional sphere de-
fined by a typical transmitted signal B, received signal
A, and the origin O. The transmitted signal will lie very
close to the surface of the sphere of radius V2TWP,
since in a high-dimensional sphere nearly all the volume
is very close to the surface. The received signal simi-
larly will lie on the surface of the sphere of radius
Y!2TW(P+N). The high-dimensional lens-shaped re-
gion L is the region of possible signals that might have
caused A, since the distance between the transmitted
and received signal is almost certainly very close to
y2 TWN. L is of smaller volume than a sphere of radius

(20)-------rn •v=

log2 M P + N
C = ~ W log2 · (22)

T N

cal in nature. Although the limits of this region are not
sharply defined for a small number of dimensions
(2TW), the limits become more and more definite as the
dimensionality increases. This is because the square of
the distance a signal is perturbed is equal to 2TW times
the average noise power during the time T. As T in-
creases, this average noise power must approach N.
Thus, for large T, the perturbation will almost certainly
be to some point near the surface of a sphere of radius
Y!ITWN centered at the original signal point. More
precisely, by taking T sufficiently large we can insure
(with probability as near to 1 as we wish) that the per-
turbation will lie within a sphere of radius y!2TW(N+E)
where E is arbitrarily small. The noise regions can there-
fore be thought of roughly as sharply defined billiard
balls, when 2TW is very large. The received signals have
an average power P+N, and in the same sense must al-
most all lie on the surface of a sphere of radius
v'2TW(P+N). How many different transmitted signals
can be found which will be distinguishable? Certainly
not more than the volume of the sphere of radius
Y!2TW(P+N) divided by the volume of a sphere of
radius y!2TWN, since overlap of the noise spheres re-
sults in confusion as to the message at the receiving
point. The volume of an n-dimensional spheres of radius
r is

This proves the last statement in the theorem.
To prove the first part of the theorem, we must show

that there exists a system of encoding which transmits
lV log2 (P+N)/N binary digits per second with a fre-
quency of errors less than E when E is arbitrarily small.
The system to be considered operates as follows. A long
sequence of, say, m binary digits is taken in at the trans-
mitter. There are 2m such sequences, and each corre-
sponds to a particular signal function of duration T.
Thus there are M =2m different signal functions. When
the sequence of m is completed, the transmitter starts
sending the corresponding signal. At the receiver a per-

.~
h. ,2TW P+N

I D. M. Y. Sommerville, "An Introduction to the Geometry of N
Dimensions," E. P. Dutton, Inc., New York, N. Y., 1929; p. 135. Fig. 5-The geometry involved in Theorem 2..
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h. We can determine h by equating the area of the tri-
angle DAB, calculated two different ways:

!hyl2TW(P + N) = !yl21'WPyl2TWN

vi PN
h = 2TW--'

P+N

The probability of any particular signal point (other
than the actual cause of A) lying in L is, therefore, less
than the ratio of the volumes of spheres of radii
y'2TW PNjP+N and v'2Tlv~ since in our ensemble
of coding systems we chose the signal points at random
from the points in the sphere of radius V2TWP. This
ratio is

We have M signal points. Hence the probability p that
all except the actual cause of A are outside L is greater
than

When these poin ts are ou tside L, the signal is in ter-
preted correctly. Therefore, if we make P greater than
1- f, the frequency of errors will be less than f. This will
be true if

with a random selection of points [or signals, we can ob-
tain an arbitrarily small frequency of errors and trans-
mit at a rate arbitrarily close to the rate C. We can also
send at the rate C with arbitrarily small E, since the ex-
tra binary digits need not be sent at all, but can be filled
in at random at the receiver. This only adds another
arbitrarily small quantity to E. This completes the proof.

VII I. DISCUSSION

We will call a system that transmits without errors at
the rate C an ideal system. Such a system cannot be
achieved with any finite encoding process but can be
approximated as closely as desired. As we approximate
more closely to the ideal, the following effects occur: (1)
The rate of transmission of binary digits approaches
C== W log2 (1 +P/N). (2) The frequency of errors ap-
proaches zero. (3) The transmitted signal approaches a
white noise in statistical properties. This is true, roughly
speaking, because the various signal functions used
must be distributed at random in the sphere of radius
v'2TWP. (4) The threshold effect becomes very sharp.
If the noise is increased over the value for which the sys-
tem was designed, the frequency of errors increases very
rapidly. (5) The required delays at transmitter and re-
ceiver increase indefinitely. Of course, in a wide-band
system a millisecond may be substantially an infinite
delay.

In Fig. 6 the function C/W= log (1+PjN) is plotted
with PIN in db horizontal and C/Wthe number of bits
per cycle of band vertical. The circles represent PC M
systems of the binary, ternary, etc., types, using posi-
tive and negative pulses and adjusted to give one error

Now (I-x)" is always greater than I-nx when n is pos-
itive. Consequently, (25) will be true if

For any fixed E, we can satisfy this by taking T suffi-
ciently large, and also have log (M-t)jT or log M/T as
close as desired to W log P+N/N. This shows that,

log (M - 1) P + N log E
T < W log--+-. (28)
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(
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We can divide the band into a large number of small
bands, with N(f) approximately constant in each. The
total capacity for a given distribution P(f) will then be
given by

in about 10' binary digits. The dots are for a Pf'M sys-
tem with two, three, etc., discrete positions for the pulse.'
The difference between the series of points and the ideal
curve corresponds to the gain that could be obtained by
more involved coding systems. It amounts to about 8
db in power over most of the practical range. The series
of points and circles is about the best that can be done
without delay. \Vhether it is worth while to use more
complex types of modulation to obtain some of this
possible saving is, of course, a question of relative costs
and valuations.

The quantity TW log (1 +P / N) is, for large T, the
number of bits that can be transmitted in time T. It can
be regarded as an exchange relation between the differ-
ent parameters, The individual quantities T, W, P, and
N can be altered at will without changing the amount
of information we can transmit, provided TW log
(1+P/ N) is held constant. If TW is reduced, P / N must
be increased, etc.

Ordinarily, as we increase W, the noise power N in the
band will increase proportionally; N=NoW where No is
the noise power per cycle. In this case, we have

If we let IVo= P / No, i.e., W o is the band for which the
noise power is equal to the signal power, this can be
written

(34)0,

Net)

1

N(J) + P(J) + x

or N(f)+P(f) must be constant. The constant is ad-
justed to make the total signal power equal to P. For
frequencieswhere the noise power is low, the signal power
should be high, and vice versa, as we would expect.

The situation is shown graphically in Fig. 8. The

since, for each elementary band, the white-noise result
applies. The maximum rate of transmission will be found
by maximizing C1 subject to condition (31). This re-
quires that we maximize

The condition for this is, by the calculus of variations.
or merely from the convex nature of the curve log
(1+x),

(31)

(30)C W ( Wo)-= -log 1+- .
W o W o . W

In Fig. 7, C/Wo is plotted as a function of ~V/Wo. As we
increase the band, the capacity increases rapidly until
the total noise power accepted is about equal to the
signal power; after this, the increase is slow, and it ap-
proaches an asymptotic value log! e times the capacity
for W= Woo

IX. ARBITRARY GAUSSIAN NOISE

If a white thermal noise is passed through a filter
whose transfer function is Y(f), the resulting noise has
a power spectrum N(f) =KI Y(j) 12 and is known as
Gaussian noise. We can calculate the capacity of a chan-
nel perturbed by any Gaussian noise from the white-
noise result. Suppose our total transmitter power is P
and it is distributed among the various frequencies ac-
cording to P(f). Then

c = ~v log (1 +~). (29)
NoW

• The PCM points are calculated from formulas given in "The
philosophy of PCM," by B. M. Oliver,]. R. Pierce, and C. E. Shan-
non, PROC. I.R.E., vol. 36, pp. 1324-1332; November, 1948. The
PPM points are from unpublished calculations of B. McMillan, who
points out that, for very small P / N, the points approach to within
3 db of the ideal curve.

f W

Fig. 8-Best distribution of transmitter power.
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I t is convenient to measure the randomness of an arbi-
trary type of noise not directly by its entropy, but by
comparison with white Gaussian noise. We can calculate
the power in a white noise having the same entropy as
the given noise. This power, namely,

where H is the entropy of the given noise, will be called
the entropy power of the noise.

A noise of entropy power N acts very much like a
white noise of power N, insofar as perturbing the mes-
sage is concerned. I t can be shown that the region of
uncertainty about each signal point will have the same
volume as the region associated with the white noise. Of
course, it will no longer be a spherical region. In proving
Theorem 1 this volume of uncertainty was the chief
property of the noise used. Essentially the same argu-
ment may be applied for any kind of noise with minor
modifications. The result is summarized in the follow-
ing:

'THEOREM 3: Let a noise limited to the band W have
power N and entropy power N 1• The capacity C is then
bounded by

curve is the assumed noise spectrum, and the three lines
correspond to different choices of P. If P is small, we
cannot make P(f) +N(j) constant, since this would re-
quire negative power at some frequencies. It is easily
shown, however, that in this case the best P(f) is ob-
tained by making P(J) +N(j) constant whenever possi-
ble, and making P(f) zero at other frequencies. With
low values of P, some of the frequencies will not be used
at all.

If we now vary the noise spectrum N(j), keeping the
total noise power constant and always adjusting the
signal spectrum PU) to give the maximum transmission,
we can determine the worst spectrum for the noise. This
turns out to be the white-noise case. Although this only
shows it to be worst among the Gaussian noises, it will
be shown later to be the worst among all possible noises
with the given power N in the band.

X. THE CHANNEL CAPACITY WITH AN ARBI-

TRARY TYPE OF NOISE

Of course, there are many kinds of noise which are not
Gaussian; for example, impulse noise, or white noise
that has passed through a nonlinear device. If the signal
is perturbed by one of these types of noise, there will
still be a definite channel capacity C, the maximum rate
of transmission of binary digits. We will merely outline
the general theory here .10

Let Xl, X2, ••• , X n be the amplitudes of the noise at
successive sample points, and Jet

_ 1
N = - exp 2H

21re
(39)

be the probability that these amplitudes lie between Xl

and Xl +dXl, X2 and x~+dX2, etc. Then the function p
describes the statistical structure of the noise, insofar
as n successive samples are concerned. The entropy, H, of
the noise is defined as follows. Let

where P is the average signal power and W the bandwidth.
If the noise is a white Gaussian noise, N1=N, and the

two limits are equal. The result then reduces to the
theorem in Section VI I.

For any noise, N I < N. This is why white Gaussian
noise is the worst among all possible noises. If the noise
is Gaussian with spectrum N(f), then

- ~ f .. · f P(Xh' IfWN 1 = W exp - log N (f)d].
W o

(41)

10 C. E. Shannon, "A mathematical theory of communication,"
Bell Sys. Tech. Jour., vol. 27, pp. 379-424 and 623-657; July and
October, 1948.

This limit exists in all cases of practical interest, and can
be determined in many of them. II is a measure of the
randomness of the noise. In the case of white Gaussian
noise of power N, the entropy is

Then

H = lim H n •
n...... co

H = log e y'27rcN.

(37)

(38)

The upper limit in Theorem 3 is then reached when we
are above the highest noise power in Fig. 8. This is easily
verified by substitution.

In the cases of most interest, P j N is fairly large. The
two limits are then nearly the same, and we can use
U"log (P+N)j N 1 as the capacity. The upper limit is the
best choice, since it can be shown that as P / N increases,
C approaches the upper limit.

XI. DISCRETE SOURCES OF INFORMATION

Up to now we have been chiefly concerned with the
channel. The capacity C measures the maximum rate at
which a random series of binary digits can be transmit-
ted when they are encoded in the best possible way. In
general, the information to be transmitted will not be
in this form. It may, for example, be a sequence of let-
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log2 p(i, j, · · · ,s) (42)

where p(i, i, , s) is the probability of the sequence
of symbols i, i, , s, and the sum is over all sequences
of n symbols. Then the en tropy is

ters as in telegraphy, a speech wave, or a television
signal. Can we find an equivalent number of bits per
second for information sources of this type? Consider
first the discrete case; i.e., the message consists of a se-
quence of discrete symbols. In general, there may be
correlation of various sorts between the different sym-
bols. If the message is English text, the letter E is the
most frequent, T is often followed by H, etc. These cor-
relations allow a certain compression of the text by
proper encoding. 'vVe may define the entropy of a dis-
crete source in a way analogous to that for a noise;
namely, let

tween the original and the recovered messages can al-
ways be tolerated. If a certain tolerance is allowed, then
a definite finite rate in binary digits per second can be
assigned to a continuous source. It must be remembered
that this rate depends on the nature and magnitude of
the allowed error between original and final messages.
The rate may be described as the rate of generating in-
formation relative to the criterion of fidelity.

Suppose the criterion of fidelity is the rms discrep-
ancy between the original and recovered signals, and
that we can tolerate a value viNt. Then each point in
the message space is surrounded by a small sphere of
radius v211W1N1• If the system is such that the re-
covered message lies within this sphere, the transmission
will be satisfactory. Hence, the number of different mes-
sages which must be capable of distinct transmission is
of the order of the volume V1 of the region of possible
messages divided by the volume of the small spheres.
Carrying out this argument in detail along lines similar
to those used in Sections VII and IX leads to the fol-
lowing result:

THEOREM 5: If the message source has power Q, en-
tropy power Q, and bandwidth WI, the rate R of generating
information in bits per second is bounded by

(43)
PI-GO

H = lim H«.

2: p(i,j, ... ,S)
n i ci «:»> II

1

It turns out that H is the number of bits produced by
the source for each symbol of message. In fact, the fol-
lowing result is proved in the Appendix.

THEOREM 4. It is possible to encode all sequences of n
message symbols into sequences of binary digits in such a
way that the average number of binary digits per message
symbol is approximately H, the approximation approach-
ing equality as n increases.

It follows that, if we have a channel of capacity C and
a discrete source of entropy H, it is possible to encode
the messages via binary digits into signals and transmit
at the rate C/H of the original message symbols per
second.

For example, if the source produces a sequence of let-
ters A, B, or C with probabilities PA=0.6, PB=0.3,
Pc = 0.1, and successive letters are chosen independ-
ently, then H n=H1 =- [0.6 log, 0.6+0.3 log, 0.3
+0.1 log2 0.1] = 1.294 and the information produced is
equivalent to 1.294 bits for each letter of the message.
A channel with a capacity of 100 bits per second could
transmit with best encoding 100/1.294 = 77.3 message
letters per second.

(44)

where N 1 is the maximum tolerable mean square error
in reproduction. If we have a channel with capacity C
and a source whose rate of generating information R is
less than or equal to C, it is possible to encode the source
in such a way as to transmit over this channel with the
jidel;'y measured by N 1• If R> C, this is impossible.

In the case where the message source is producing
white thermal noise, Q= Q. Hence the two bounds are
equal and R = WI log Q/N 1• We can, therefore, transmit
white noise of power Q and band WI over a channel of
band W perturbed by a white noise of power N and re-
cover the original message with mean square error N1

if, and only if,

Q P+N
W 1 log N 1 ~ W log N' (45)

XII. CONTINUOUS SOURCES

If the source is producing a continuous function of
time, then without further data we must ascribe it an
infinite rate of generating information. In fact, merely
to specify exactly one quantity which has a continuous
range of possibilities requires an infinite number of
binary digits. We cannot send continuous information
exactly over a channel of finite capacity.

Fortunately, we do not need .to send continuous
messages exactly. A certain amount of discrepancy be-

ApPENDIX

Consider the possible sequences of n symbols. Let
them be arranged in order of decreasing probability,
Pl~P2~P.· .. ~P.· LetP.= 2:~-lpJ' The ith message
is encoded by expanding P j as a binary fraction and us-
ing only the first t, places where t. is determined from
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Probable sequences have short codes and improbable or
ones long codes. We have

C. E. Shannon

The codes for different sequences will all be different.
P'+l, for example, differs by p, from Pi, and therefore
its binary expansion will differ in one or more of the
first t, places, and similarly for all others. The average
length of the encoded message will be LP.t.. Using
(46),

L: Pi log Pi s L: Pili < L: pie! - log Pi)

(48)

1 1- < p. ~ __ e

2" = ,- 2'·-1
(47)

The average number of binary digits used per message
symbol is lin LPit, and

1 1
H; ~ - E Piti < - + Il; (SO)

n n

As n--+ 00, H,,---+H and l/n-+O, so the average number of
bits per message symbol approaches H.



Communication Theory - Exposition of Fundamentals-

Claude E. Shannon

In any branch of applied mathematics, the vague and ambiguous concepts of a physical
problem are given a more refined and idealized meaning. In information theory, one of the
basic notions is that of the amount of information associated with a given situation.
"Information" here, although related to the everyday meaning of the word, should not be
confused with it. In everyday usage, information usually implies something about the semantic
content of a message. For the purposes of communication theory, the "meaning" of a message
is generally irrelevant; what is significant is the difficulty in transmitting the message from one
point to another.

From this point of view, information exists only when there is a choice of possible
messages. If there were only one possible message there would be no information; no
transmission system would be required in such a case, for this message could be on a record at
the receiving point. Information is closely associated with uncertainty. The information I
obtain when you say something to me corresponds to the amount of uncertainty I had, previous
to your speaking, of what you were going to say. If I was certain of what you were going to
say, ] obtain no information by your saying it.

In general, when there are a number of possible events or messages that may occur, there
will also be a set of a priori probabilities for these messages and the amount of information,
still arguing heuristically, should depend upon these probabilities. If one particular message is
overwhelmingly probable, the amount of information or the a priori uncertainty will be small.

It turns out that the appropriate measure for the amount of information when a choice is
made from a set of possibilities with the probabilities PI' P2 ' ••• , P11 is given by the formula

n

H = - r, p; log p; .
;= I

(1)

Some of the reasons justifying this formula are (1) H = 0 if and only if all the p; are zero
except one which is unity, Le., a situation with no choice, no information, no uncertainty.

(2) With a fixed n, the maximum H occurs when all the p , are equal, Pi = .l. This is also,
n

intuitively, the most uncertain situation. H then reduces to log n. (3) H is always positive or
zero. (4) If there are two events x and y, we can consider the information He in the composite
event consisting of a choice of both x and y:

Hc(x, y) = - ~ p(x, y) log ptx, y) . (2)

It can be shown that this composite information is greatest when the two events, x and y, are
statistically independent. It is then the sum of the individual amounts of information,

Equation (1) is identical in form with certain formulas for entropy used in statistical
mechanics, in particular in the formulation due to Boltzmann. It is to be noted that both here
and in thermodynamics - L Pi log Pi is a measure of randomness: in thermodynamics, the

* IRE Transactions Information Theory, No.1, Feb. 1950.
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random position of a representative point in a dynamical phase-space; in information theory,
the randomness in the choice of the particular message to be transmitted from an ensemble of
possible messages. We shall frequently speak of quantities having the form - ~ Pi log Pi as
entropies because of this identity in form.

The formula (1) measures the amount of information when a single choice is made from a
finite set of possible events. In a communication system we frequently must consider messages
which are produced by a sequence of such choices. Thus the English text to be transmitted over
a telegraph system consists of a sequence of letters, spaces and punctuation. In such a case we
are concerned with the amount of information produced per symbol of text. The formula (1)
must be generalized to take account of influences between letters and the general statistical
structure of the language. We think of a language, then, as being produced by a stochastic (i.e.,
statistical) process which chooses the letters of a text one by one in accordance with certain
probabilities depending in general on previous choices that have been made.

Samples of statistical English based on such a representation of the English language have
been constructed. The following are some examples with varying amounts of the statistics of
English introduced.

1. Letter approximation (letter probabilities the same as in English)
OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEl

2. Trigram approximation (probabilities for triplets of letters the same as in English)
IN NO 1ST LAT WHEY eRATICT FROURE BIRS GROCID

3. Word-digram approximation (probabilities for word-pairs as in English)
THE HEAD AND IN FRONTAL ATTACK ON AN ENGLISH WRITER THAT THE
CHARACTER OF THIS POINT IS THEREFORE

4. Word-tetragram approximation
THIS WAS THE FIRST. THE SECOND TIME IT HAPPENED WITHOUT HIS
APPROVAL. NEVERTHELESS IT CANNOT BE DONE. IT COULD HARDLY
HAVE BEEN THE ONLY LIVING VETERAN OF THE FOREIGN POWER HAD
STATED THAT NEVER MORE COULD HAPPEN.

The amount of information produced by a stochastic process per letter of message is defined
by fonnuJas similar to (1). For example, one method is to calculate the amount of information
for a choice of N letters of text, divide by N to put it on a per letter basis, and then allow N to
increase indefinitely.

The fundamental reason why the entropy per letter obtained in this way forms the
appropriate measure of the amount of information is contained in what may be called the
"coding theorem." This states that if a language has an entropy H bits per letter (i.e., log 2 was
used in the calculation) then it is possible to approximate as closely as desired to a coding
system which translates the original messages into binary digits (0 to 1) in a reversible way and
uses, on the average, H binary digits in the encoded version per letter of the original language.
Furthermore there is no such system of encoding which uses less than H binary digits on the
average. In other words, speaking roughly, H measures the equivalent number of binary digits
for each letter produced in the language in question. H measures all languages by the common
yardstick of binary digits.

A closely related aspect of a language is its redundancy. This is defined as follows.
Suppose all the letters in the language were independent and equiprobable. Then the entropy
per letter would be the logarithm of the number of letters in the alphabet. The relative entropy
is the ratio of the actual entropy to this maximum possible entropy for the same alphabet. The
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redundancy is one minus the relative entropy. The redundancy determines how much a
language can be compressed when properly encoded into the same alphabet. Thus, if the
redundancy were 70 per cent, a suitable encoding of the language would reduce its length on
the average by this amount.

A number of methods have been developed for estimating the entropy and redundancy of
various stochastic processes. In the case of printed English, the most direct approach is to make
use of tables of letter, digram, trigram, etc., probabilities and to calculate from them the entropy
of the various approximations to English. Unfortunately, with the tables actually available it is
not possible to go farther than approximations including about six or eight letters. At this point,
figures of the order of 50 per cent for redundancy are obtained. They of course do not include
long range statistical influences extending over groups of words, phrases and sentences.

Another more delicate method of estimating these parameters has recently been devised. It
is based on the fact that anyone speaking a language possesses implicitly an enormous
knowledge of the statistical structure of that language. By a relatively simple experiment, it is
possible to translate this knowledge into numerical data which give upper and lower bounds for
the entropy and redundancy. The experiment is to ask a subject to guess an unknown text in the
language letter by letter. At each letter he guesses first what he considers the most probable
next letter in view of the preceding text. If he is wrong he is required to guess again, and so on
until he finally arrives at the correct next letter. In a typical experiment of this type with a text
containing 102 letters, the subject guessed right on his first guess 79 times. Eight times he was
right on the second guess, three times on the third, twice each on the fourth and fifth, and only
eight times required more than five guesses. These figures clearly indicate the great redundancy
of English. Furthermore from them one can estimate upper and lower numerical bounds for the
redundancy which take into account rather long-range structure, inasmuch as the subject made
considerable use of this structure in formulating his guesses. From the results of this work it
appears that the redundancy of printed English at 100 letters is of the order of 75 per cent, and
may well exceed this figure for still longer range structure.

So far we have been considering information only in the discrete cases. In generalizing to
the continuous case, for example a speech wave or a television signal, a number of new features
emerge. The generalization is by no means trivial. In the first place, a continuously variable
quantity is capable of assuming an infinite number of possible values, and if there were no other
considerations this would imply an infinite amount of information. Actually in practical cases
there are always features which prevent this and enable one to effectively reduce the continuous
case to a discrete case. The two facts which produce this result are the presence of perturbing
noise in the signal and the finite resolving power of any physical receiving apparatus.

One important mathematical result which expedites the analysis of continuous information
is the "sampling theorem." This states that a function of time limited in frequency
components to a band W cycles wide is determined by giving its values at a series of sample

points equally spaced in time and separated by 2~ seconds. The knowledge of such a

function is equivalent to knowledge of a sequence of numbers, the numbers occurring at the
rate of 2W per second. If a message consists of such a band-limited function of time which
persists for substantially T seconds, it is determined by giving 21W numbers. Geometrically,
such ~ function can be represented by a point in a space with 21W dimensions. Certain aspects
of communication theory can be analyzed by a consideration of the properties of mappings
(which correspond to systems of modulation) in such spaces.

The problem of measuring the amount of information in a continuous message is more
involved than a simple generalization of the entropy formula, It is necessary at this point to
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introduce a measure of the fidelity of reception of the message when it is perturbed by noise.
When a suitable measure of fidelity has been set up, it is possible to define the amount of
information (in bits per second) for a given continuous source and for a given fidelity of
transmission. As the fidelity requirements are made more stringent, the amount of information
increases. For example, in transmitting English speech, if we are satisfied with an intelligible
reproduction the amount of information per second is small; if a high fidelity reproduction is
required, preserving personal accents, etc., the information is greater.
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General Treatment of the Problem of Coding-

Claude E. Shannon

A typical communication system consists of the following five elements:

( I) An information source. This can be considered to be represented mathematically by a
suitable stochastic process which chooses one message from a set of possible messages. The
rate R of producing information is measured by the entropy per symbol of the process.

(2) An encoding or transmitting element. Mathematically this amounts to a transformation
applied to the message to produce the signal, i.e. the encoded message.

(3) A channel on which the signal is transmitted from transmitter to receiver. During
transmission the signal may be perturbed by noise.

(4) A receiving and decoding (or demodulating) device which recovers the original message
from the recei ved signal.

(5) The destination of the information, e.g. the human ear (for telephony) or the eye (for
television). The characteristics of the destination may determine the significant elements of the
information to be transmitted. For example, with sound transmission, precise recovery of the
phases of components is not required because of the insensitivity of the ear to this type of
distortion.

The central problems to be considered are how one can measure the capacity of a channel
for transmitting information; how this capacity depends on various parameters such as
bandwidth, available transmitter power and type of noise; and what is the best encoding system
for a given information source to utilize a channel most efficiently.

Since the output of any information source can be encoded into binary digits using,
statistically, R binary digits per symbol, the problem of defining a channel capacity can be
reduced to the problem of determining the maximum number of binary digits that can be
transmitted per second over the channel.

When there is no noise in the channel, it is generally possible to set up a difference equation
whose asymptotic solution gives essentially the number of different signals of duration T when
T is large. From this, it is possible to calculate the number of binary digits that can be
transmitted in time T and, consequently, the channel capacity.

In a noisy system, the problem is mathematically considerably more difficult. Nevertheless,
a definite channel capacity C exists in the following sense. It is possible by proper encoding of
binary digits into allowable signal functions to transmit as closely as desired to the rate C
binary digits per second with arbitrarily small frequency of errors. There is no method of
encoding which transmits a larger number. In general, the ideal rate C can only be approached
by using more and more complex encoding systems and longer and longer delays at both
transmitter and receiver.

* IRE Transactions Information Theory, No. I, Feb. 1950.
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The channel capacity C is given by an expression involving the difference of two entropies.
This expression must be maximized over all possible stochastic processes which might be used
to generate signal functions. The actual numerical evaluation of C is difficult and has been
carried out in only a few cases. Even when C is known, the construction of coding systems
which approach the ideal rate of transmission is often infeasible.

A simple example of a noisy channel in which the capacity and an explicit ideal code can be
found is the following. Assume the elementary signals are binary digits and that the noise
produces at most one error in a group of seven of these. The channel capacity can be calculated
as 4/7 bits per elementary signal. A code which transmits at this rate on the average is as
follows. Let a block of seven symbols be XI' X2, X3' X4, XS, X6' X7 (each Xi either 0 or 1). X3'

X s- X 6 and x 7 are used as message symbols, and x I, X 2 and x 4 are used redundantly for
checking purposes. These are chosen by the following rules:

(1) X4 is chosen so that n = (X4 + Xs + x6 + X7) == 0 mod 2

(2) X2 is chosen so that B = (X2 + X3 + x6 + X7) == 0 mod 2

(3) x J is chosen so that y = (x] + X3 + Xs + X7) == 0 mod 2 .

The binary number Cl~'Y calculated by these same expressions from the received signal gives
the location of the error. (If zero, there was no error.) This forms a completely self-correcting
code for the assumed type of noise.

If the signal functions are capable of continuous variation we have a continuous channel. If
there were no noise whatever, a continuous channel would have an infinite capacity.
Physically, there is always some noise. With white Gaussian noise the capacity is given by

c = W log (1 + !-)
N

(1)

in which

W =bandwidth in cycles per second,

P = available average transmitter power,

N =average noise power within the band W.

The equation (1) is an exchange relation among the quantities W, P, Nand C. Thus the
transmitter power can be reduced by increasing the bandwidth, retaining the same channel
capacity. Conversely a smaller bandwidth can be used at the expense of a greater signal-to-
noise ratio.

If, as is usually the case, the noise power increases proportionally with bandwidth,
N = NoW, we have

p
C = W log (1 + --) .

NoW

As W increases, C approaches the asymptotic value

p
Coo = - log e .

No

(2)

(3)

If the perturbing noise is Gaussian but does not have a flat spectrum, the most efficient use
of the band occurs when the sum of the transmitter power and the noise power at each
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frequency is constant,

P(ro) + N(ro) = K .

179

(4)

When the noise is Gaussian, it turns out that most efficient coding requires that the
transmitted signal have the same statistical structure as Gaussian noise.

If the perturbing noise is not Gaussian, the mathematical problems of calculating channel
capacity and ideal codes are formidable, The most that is known for the general case are upper
and lower bounds for the channel capacity, given by the following inequalities

P+N 1 P+N
W log ( ) s C ~ W log ( ) ,

Nt Nt

where P, Nand C are as before, and N I is the average power in a thermal noise having the same
entropy as the actual noise. N I is a measure of the amount of randomness in the noise. It is
intuitively reasonable that this should be a controlling term in the channel capacity since the
more predictable the noise the more it can be compensated for.

Among communication systems in actual use PCM (Pulse Code Modulation) and PPM
(Pulse Position Modulation) come reasonably close to the ideal limits of channel capacity with
white Gaussian noise. For high signal-to-noise ratios PCM is most appropriate. When the
number of quantized amplitude levels is suitably adjusted, this method of modulation requires
some eight to ten db greater power than the theoretical minimum. With low signal-to-noise
ratios, PPM requires about the same extra signal power except for extremely low PIN values, in
which case it is still closer to the ideal. Other more involved codes have been investigated,
although not yet put into practice, which are about two db closer than PCM to the ideal. Rice
has shown that certain types of codes approach the ideal roughly according to 1/-ft where t is
the delay involved in the encoding process.

The general principles of communication theory and coding have an application in the study
of secrecy systems. A secrecy system can be considered to be a communication system in
which the noise is the arbitrariness introduced by the encoding process. It can be shown under
certain assumptions that the redundancy of the original language is the fundamental factor
governing the amount of material that must be intercepted in order to solve a cipher. These
results check reasonably well against experimentally known results for certain simple secrecy
systems.
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The Lattice Theory of Information-

Claude E. Shannon

The word' "information' has been given many different meanings by various writers in the
general field of information theory. It is likely that at least a number of these will prove
sufficiently useful in certain applications to deserve further study and permanent recognition. It
is hardly to be expected that a single concept of information would satisfactorily account for the
numerous possible applications of this general field. The present note outlines a new approach
to information theory which is aimed specifically at the analysis of certain communication
problems in which there exist a number of information sources simultaneously in operation. A
typical example is that of a simple communication channel with a feedback path from the
receiving point to the transmitting point. The problem is to make use of the feedback
information for improving forward transmission, and to determine the forward channel capacity
when the best possible use is made of this feedback information. Another more general
problem is that of a communication system consisting of a large number of transmitting and
receiving points with some type of interconnecting network between the various points. The
problem here is to formulate the best systems design whereby, in some sense, the best overalJ
use of the available facilities is made. While the analysis sketched here has not yet proceeded
to the point of a complete solution of these problems, partial answers have been found and it is
believed that a complete solution may be possible.

1. The Nature of Information

In communication theory we consider information to be produced by a suitable stochastic
process. We consider here only the discrete case; the successive symbols of the message are
chosen from a finite "alphabet", and it is assumed for mathematical simplicity that the
stochastic process producing the message has only a finite number of possible internal states.
The message itself is then a discrete time series which is one sample from the ensemble of
possible messages that might have been produced by the information source. The entropy H(x)
of such a source is a measure of the amount of information produced by the source per Jetter of
message. However, H(x) can hardly be said to represent the actual information. Thus two
entirely different sources might produce information at the same rate (same H) but certainly
they are not producing the same information.

To define a concept of actual information, consider the following situation. Suppose a
source is producing, say, English text. This may be translated or encoded into many other
forms (e.g. Morse code) in such a way that it is possible to decode and recover the original.
For most purposes of communication, any of these forms is equally good and may be
considered to contain the same information. Given any particular encoded form, any of the
others may be obtained (although of course it may require an involved computation to do so).
Thus we are led to define the actual information of a stochastic process as that which is
common to all stochastic processes which may be obtained from the original by reversible
encoding operations. It is desirable from a practical standpoint and mathematically convenient
to limit the kind of allowed encoding operations in certain ways. In particular, it is desirable to
require that the encoding be done by a transducer with a finite number of possible internal

* IRE Transactions Information Theory, No. I, Feb. 1950.
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states. This finite memory condition prevents paradoxical situations in which information goes
into a transducer more rapidly on the average than it comes out.

Each coded version of the original process may be called a translation of the original
language. These translations may be viewed as different ways of describing the same
information, in about the same way that a vector may be described by its components in various
coordinate systems. The information itself may be regarded as the equivalence class of all
translations or ways of describing the same information.

2. The Metric, Topology and Convergent Sequences

With this definition of information, it is possible to set up a metric satisfying the usual
requirements. The metric p (x, y) measures the distance between two information elements x

and y, and is given in terms of conditional entropies. We define

p (x, y) = Hx(y) + Hy(x) = 2 H(x, y) - H(x) - H(y) .

The symmetry property p (x, y) = p(y, x) is obvious from the definition. If p (x, y) = 0,
both Hx(y) and H y(x) must be zero (since both are necessarily non-negative), and this requires
that the x sequence be calculable with probability I from the y sequence and vice versa. The
triangle law for a metric,

p(x, y) + p(y, z) ~ p(x, z) ,

is readily shown by expanding these terms into the various entropies and making use of known
inequalities for entropies. It may be noted that p (x, y) is independent of the particular
translations of x and y used in its calculation. This is due to the fact that H x (y) and H; (x) are
invariant under finite state encoding operations applied to x and y.

The existence of a natural metric enables us to define a topology for a set of information
elements and in particular the notion of sequences of such elements which approach a limit. A
set of information elements x J ' X 2 ' ... , X n , ... will be said to be Cauchy convergent if

lim p(x nl' x ll ) = 0 .
m ---+ 00

11~00

The introduction of these sequences as new elements (analogous to irrational numbers)
completes the space in a satisfactory way and enables one to simplify the statement of various
results.

3. The Information Lattice

A relation of inclusion, x ~ y, between two information elements x and y can be defined by

x ~ y == Hx(y) = 0 .

This essentially requires that)' can be obtained by a suitable finite state operation (or limit of
such operations) on x. If x ~ y we call y an abstraction of .x. If x ~ y, y ~ z, then x ~ z. If
x ~ y, then H(x) ~ H(y). Also x > y means x ~ y, x t:- y. The information element, one of
whose translations is the process which always produces the same symbol, is the 0 element, and
x ~ 0 for any x.

The sum of two information elements, z = x + y, is the process one of whose translations
consists of the ordered pairs (x n » Y11)' where x n is the nth symbol produced by the x sequence
and similarly for Yn' We have z ~ x, z ~ y and there is no fJ. < z with these properties; z is the
least upper bound of x and y. The element z represents the total information of both x and y.
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The product z = x y is defined as the largest z such that z ~ x, z ~ y; that is, there is no
Jl > Z which is an abstraction of both x and y. The product is unique. Here z is the common
information of x and y.

With these definitions a set of information elements with all their sums and products form a
metric lattice. The lattices obtained in this way are not, in general, distributive, nor even
modular. However they can be made to be relatively complemented by the addition of suitable
elements. For x ~ y it is possible to construct an element z with

z+x=y,

z x = 0 .

The element z is not in genera) unique.

The lattices obtained from a finite set of information sources are of a rather general type;
they are at least as general as the class of finite partition lattices. With any finite partition
lattice it is possible to construct an information lattice which is abstractly isomorphic to it by a
simple procedure.

Some examples of simple information lattices are shown in Figs. 1 and 2.
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In Fig. 1 there are three independent sources. The product of any two of these elements is
zero, and the conventional lattice diagram is that shown at the right. In Fig. 2 there are two
independent sources of binary digits, x and y. The sequence z is the sum mod 2 of
corresponding symbols from x and y. In this case again the product of any two of x, y and z is
zero, but the sum of any two represents the total information in the system. In this case the
Jattice is non-distributive, since z y + z x = 0 + 0 = 0, while z(x + y) = z #- O.

4. The Delay Free Group G I

The definition of equality for information based on the group G of all reversible encoding
operations allows x == y when y is for example a delayed version of x: Yn = x n +a • In some
situations, when one must act on information at a certain time, a delay is not permissible. In
such a case we may consider the more restricted group G I of instantaneously reversible
translations. One may define inclusion, sum, product, etc., in an analogous way, and this also
leads to a lattice but of much greater complexity and with many different invariants.



Discussion of Preceding Three Papers-

Mr. E. C. Cherry

There is a well-known elementary way of interpreting the "selective entropy" expression
for the information conveyed by a symbol-sequence, which serves as an introduction to the
subject, and which should perhaps be recorded. Consider one symbol, having a known
probability of occurrence Pi' in a code of n such symbols. It is reasonable to assume that the
"information" conveyed. by this one symbol is the least number of selections, H, needed to
identify it amongst the n in the code. Arrange the symbols in order of decreasing probability
PIP 2 P; .... P n (total probability = 1.0); divide into two groups (P 1 P 2 ....... ) and
( ... P,. P Il) of equal total probability Yj; again divide the group containing Pi into two, of
probabilities 1/4. Continue such bisection H times until two groups remain, each of probability
Pi' one being the wanted symbol. Then

Pi· 2H = total probability of the symbols in the code = 1.0,

or·

H = -log2 P,. . ( 1)

The average number of selections required for a complete message is then the mean of H, or

H average = - 1: Pi log 2 Pi' (2)

This argument assumes of course that the symbols may always be divided into two groups
of equal probability; it perhaps has the merit of emphasizing the reasonable nature of the
expression (2) as representing information.

Mr. S. H. Moss

During the discussion following Dr. Shannon's second talk, Professor Van Der Pol raised
the question of what is meant by the delay imposed on a transient waveform by a process which
at the same time distorts it.

If the process is linear, and has a finite zero-frequency response, the time lag between the
(temporal) centroid of the output transient and the centroid of the input transient is a constant,
which is a characteristic only of the system, and is independent of the wave-form of the input
transient. It is thus an appropriate measure of delay. Its value is the slope of the phase-shift
versus frequency curve at zero frequency.

For a wave-packet, considered as a sinusoidal wave of reference frequency, modulated in
amplitude and phase by a transient complex envelope, there is an acceptable sense in which the
centroid of the envelope is delayed by a constant time interval, independent of its waveform, if
the amplitude versus frequency characteristic of the system is finite and stationary at the
reference frequency. Here again its value is the slope of the phase-shift curve at the reference
frequency, the well-known expression for the group-delay. In the general case, when the

* IRE Transactions Information Theory, No. I, Feb. J950.
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amplitude characteristic of the process is not stationary at the reference frequency, the situation
is more complex.

Each of these results is a special case of a class of additive invariants associated with linear
systems. They are closely analogous to the cumulant statistics used to describe the properties
of a univariate statistical distribution and of its characteristic function (Le. its Fourier
transform) in sampling theory.

Dr. Uttley

Concerning the mistakes made by an automatic computer, it is the principle of redundancy
which can contribute to a solution.

Firstly one can incorporate redundant equipment, checking-circuits for example, and in the
limit by employing two computers as mentioned by Prof. A. V. Hill. At present, however, the
designers of large computers quite reasonably are loath to take this step. As a result present
machines possess the property of a nonredundant code that a single error or change produces a
quite different result; this is intolerable.

Redundancy can be incorporated in a second way. When a number is fed into a machine,
additional redundant digits can be introduced with it; their function can be to indicate the
presence and location of errors in the number. This redundancy can be obtained at the expense
of speed of operation of the computer.

Dr. Shannon pointed out that the specialized theory of coding called by him "time
reserving theory" is far more important with practical aims in mind. But would he not agree
that from this practical point of view, it should be still better to deal with an unfortunately much
more difficult case - I mean the case of a given definite time of coding operation?

Dr. I. J. Good

I would like to mention very briefly a mathematical curiosity which may be of some
significance.

Consider a source of information which produces digits of N types with independent
probabilities Po, PI, ... , PN _ I· Imagine an infinite sequence of such digits produced and
prefixed by a decimal point (or rather an N-imal point). Then the resulting point will almost
certainly belong to a set of points of Hausdorff-Besicovitch fractional dimensional number
equal to the relative entropy of the source.

Mr. W. Lawrence

In consideration of the block schematic of Fig. 1, it has commonly been assumed that the
only function of the decoder was to restore the message to the form presented to the encoder, in
order that the message might be "understood." Alternatively, the message might be restored to
some other understandable form, as when a message originally spoken is transmitted as a
telegram and presented to the receiving mind in writing. In either case the decoder operates to
increase the redundancy of the message, and it is this increase in redundancy that I wish to talk
about.

The mind can only accept as information, material that is presented to the senses with a
considerable degree of redundancy. Random acoustical noise, or random scintillations on a
television receiver mean nothing. The more highly redundant the material presented to the
senses, the more effortlessly does the mind receive it, provided of course, that the redundancy
conforms to an agreed convention that the mind has been educated to accept.
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We can just apprehend speech presented with a 1000 c.p.s. bandwidth and a 15 db signal to
noise ratio, though to do so requires considerable mental effort. Speech with a bandwidth of
3000 c.p.s. and a 40 db noise ratio can be apprehended without appreciable conscious mental
effort. With a bandwidth of 15,000 c.p.s. and a noise ratio of 60 db we feel a marked
improvement which is especially appreciated when we are listening to something difficult to
understand, such as a philosophical lecture.

We can express the channel capacity required for these presentations in bits/sec. by
considering the p.e.M. channel that will just handle them.

The inherent information rate of spoken English is, say, 100 bits/sec. The channel
capacities required for the three presentations considered above are roughly 5000 bits/sec.,
50,000 bits/sec. and 500,000 bits/sec., representing "minimum tolerable," "good commercial"
and' 'near perfect" presentations.

It is also interesting to consider telegraphy, presented to the senses and the mind as written
matter. The channel capacity required for the material presented to the eyes of the recipient can
be assessed by considering a p.e.M. television channel just adequate for the presentation
considered. The number of digits in the Pulse Code is controlled by the extent to which the
blacks and whites of the writing stand out from the random specularity of the background. The
number of elements in the picture is controlled by faithfulness of the reproduction of the latter
forms and the number of letters or words simultaneously visible. The number of frames per
second is controlled by the desired steadiness of the picture.

A "minimum tolerable" presentation might be 3 digit p.e.M., 50 elements per letter,
5 letters simultaneously visible and 10 frames per second, which requires a channel capacity of
7500 bits/sec. A '·good commercial" presentation, as good as a ticker tape, requires a channel
of about 105 bits/sec. and a "near perfect" presentation, such as first class printing with a
whole page simultaneously visible, requires about 108 bits/sec. This again is the condition we
would like to have when trying to understand something really difficult.

The higher channel capacities required for the written presentation are consistent with the
fact that we can read language faster than we can listen to it, and also with the fact that we
prefer a written presentation when the subject matter is really difficult.

I believe that the habit of only attending to redundant material is a defense mechanism that
the mind adopts to sort out information worth attending to, from the inconceivably vast volume
of information with which the senses continually bombard it.

This also clears up a paradox that used to worry me and may have worried others.
Instinctively we feel that a "random" sequence contains no information, whereas an orderly
sequence' 'means something. " Communication Theory, however, says that a random sequence
contains maximum information and that a completely ordered pattern contains no information
at all. I would explain this by saying that the more nearly a sequence is random the harder it is
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for the mind to comprehend, and in the limit it contains maximum information which is,
however, totally incomprehensible.

Even a machine requires some redundancy in the signal, such as the synchronization digit in
P.C.M., before it can "comprehend" or "decode it. It can work with very little because it
knows just what to look for, and its attention is not distracted. Our mind and senses, which
have been evolved in a highly competitive environment, demand much more.

Mr. W. P. Anderson

I. The proposal to investigate a system in which the interference takes the form of a
random binary signal added to the wanted signal is an interesting one but such a system is a
very long way from the noisy communication channel with which the engineer is concerned.
The errors in such a system are absolute, as the errors are assumed to be in the error correcting
code described in the paper, that is to say a single element of the code is received either
correctly or incorrectly.

In a physical communication system however there are no absolute errors. From the
amplitude of the received signal element the probability that the transmitted element was a
"mark" can be computed. If the signal to noise ratio is large, this probability will almost
always either be nearly unity or nearly zero, depending on whether the transmitted element was
in fact a "mark" or a "space", but if the signal to noise ratio is small it may have any value.
This probability contains all the information obtained as a result of the reception of the element,
and if the system at some stage distinguishes between only two classes of elements, those
having the greater probability of being' 'mark" and those having the lesser probability of being
"mark, " information is being discarded. Error detecting codes necessarily operate in this way,
hence it would appear that they must be less effective than integrating systems in which the
amplitudes of individual elements are preserved.

This conclusion is of some interest, apart from its application to error detecting codes, as
integration is equivalent to narrowing the band, and it suggests that no advantage is to be
gained by increasing the baud speed of a telegraph transmission and introducing a code
containing more than the minimum number of elements per character. It is believed that this
conclusion is correct for double current working where the energy required to transmit a
character is simply proportional to its length, but not for single current working, where the
energy required to transmit a character of given length varies over a wide range. In the latter
case increasing the speed increases the number of possible characters and the number actually
required can be selected from those requiring least power to transmit. In the limit of course as
the bandwidth is increased such a system reduces to Pulse Position Modulation, with one mark
element per character.

2. A somewhat similar loss of information arises in the process of "quantization" in pulse
code modulation systems and it would appear that it must always be better in principle to send
the residual amplitude or 4 'error signal" instead of the least significant digit.

3. Information theory has so far dealt with signals and noise superimposed in linear
systems. In a system of great practical importance, however, long distance radio
communication involving ionospheric propagation, the transmission path itself fluctuates in a
manner which is only definable in a statistical sense. It would appear that the existence of such
fluctuations must reduce the rate at which information can be passed over the link and that the
extent of the reduction should be determinable by the methods of Information Theory. It is
hoped that some attention will be given to this problem in the further development of the theory
of information.
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Dr. C. E. Shannon (In reply)

The point raised by Dr. Uttley regarding the use of redundancy for error detection and error
correction in computing machines is certainly an important one, and will become more so as the
machines become larger and more complex. In addition to the two methods pointed out by
Dr. Uttley, redundancy in equipment and redundancy in encoding, a third may be added,
redundancy in programming (as, for example, in redoing the calculation a second time on the
same computer). The first two methods require additional equipment and the last additional
time.

The present Bell Laboratories Relay Computer as well as some of the previous designs use
both of the first two methods, the third of course being optional in any computer. All the relays
are furnished with twin contacts. In effect, this amounts to a second at least partially
independent computer, paralleled with the first one at the most critical points, the relay
contacts. Furthermore, the numbers are represented in a two-out-of-five code; each decimal
digit is represented by a group of five relays, and the code is such that exactly two of the relays
must be operated to represent a digit. If this check fails at any stage the machine is
automatically stopped. The circuit is such that any single error will be detected.

This is an example of an error-detecting scheme, which works exceptionally well. If errors
were more frequent, it might be advisable to introduce an error-correction system in such a way
that any single error would be corrected automatically by the machine, while two simultaneous
errors would be detected and cause the machine to stop. It is possible to encode a decimal digit
into seven binary digits and obtain single error correction. With eight binary digits, a code can
be found which gives single error correction and double error detection.

Concerning the points brought up by Mr. Anderson, the error-correcting system suggested
in the paper was meant particularly for applications such as computing machines where the
information is encoded into a binary system with a definite reading of zero or one. In a pulse
communication system with additive Gaussian noise a preliminary integration process followed
by a threshold device gives a binary indication of whether the pulse was there or not, and in fact
it can be shown that by proper choice of the weighting function in the integration such a
detection system divides all possible received signals properly into two classes, those for which
the a posteriori probability is in favor of a pulse and those for which it is not. Thus such a
detection system is ideal in such a case in the sense of making the fewest possible errors for
individual pulses. However, if this error frequency is still too high, it may be desirable to
introduce redundant encoding and error correction.

Information theory has by no means been limited to linear systems, although some of the
special results apply only in these cases. Statistical variations in path length, etc., must of
course be considered as a form of perturbing noise, and the channel capacity and proper
encoding systems, can in principle be calculated from the usual expressions, although such
calculations are, because of their complexity, usually impractical.

M. Indjoudjian has raised the question of what might be called a finite delay theory of
information, Such a theory would indeed be of great practical importance, but the
mathematical difficulties are quite formidable, The class of coding operations with a delay ~ T
is not closed in the mathematical sense, for if two such operations or transducers are used in
sequence the overall delay may be as much as 2T. Thus we lose the important group
theoretical property of closure which is so useful in the "infinite delay" and "time-preserving"
theories. Nevertheless, any results in a finite delay theory would be highly interesting, even if
they were restricted to the solution of a few special cases. Some work along this line appears in
a recent paper by S. O. Rice (Bell System Technical Journal, Vol. 29, January 1950, pp. 60-93),
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where estimates are made of the probability of errors with various delays when attempting to
transmit binary digits through white thermal noise.

Mr. Lawrence has pointed out that the brain can generally accept information only in a
highly redundant form, It seems likely that the reason for this lies in the fact that our
environments present us with highly redundant information. The scenes we view are well
organized and change relatively slowly, and the significant sounds we hear tend to be localized
in pitch and to persist much longer than this localization required. Nature, then, would design
the nervous system in such a way as to be an efficient receptor for this type of information and
to make use of the redundancy to achieve higher resolving power and better discrimination
against noise. Experiments in psychological optics have, indeed, shown that the eye can
determine if two line segments lie in a straight line much more closely than the width of a rod
or cone, or of the diffraction pattern of the Jines in question, thus showing that the eye makes
use of this redundancy to improve discrimination.

The number of nerve cells in the optic nerve is only about one per cent of the number of
rods and cones in the retina. If the time constants of both elements are about the same, this
implies that the capacity of the optic nerve for transmitting information to the brain can be only
about one per cent of the information that would be received by the retina. Thus only if this
information is highly redundant could it all be encoded into a signal to be transmitted via the
optic nerve to the occipital lobe. At that point further abstraction of the basic information, i.e.,
elimination of redundancy, probably occurs in the connections with the related association
areas.

Mr. Good has pointed out an interesting relation which I had also noticed between entropy
and the Hausdorff-Besicovitch dimension number. While it is easy to see the reason for this
from the basic definition of Hausdorff-Besicovitch dimension number and certain properties of
entropy, I believe the root of the relation springs from the folJowing consideration. A
dimension number to be reasonable should have the property that it is additive for product-
spaces, that is, the set of ordered pairs (A, v) should have dimension number d 1 + d 2, where
d I is the dimension number of the set (A) and d 2 that for (v), Similarly, a measure of
information should be additive when we combine two independent information sources, i.e., a
stochastic process producing ordered pairs, one from each of two' independent sources. These
desiderata result in the logarithmic measures which appear in both fields.
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Author cites feasibility of a system for transmitting the English language at speaking rate

over a channel with 20-to-1 signal-to-noise ratio and a bandwidth of only 2.3 cycles per

second
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T HE NEWER SYSTEMS of modula-
tion, such as f-m, ppm (pulse

position modulation) t and pcm
(pulse code modulation), have the
interesting property that it is pos-
sible to exchange bandwidth for sig-
nal-to-noise ratio; that is, we can
transmit the same information with
a smaller transmitter power pro-
vided we are willing to use a larger
bandwidth. Conversely, in pcm it is
possible to use 'a smaller bandwidth
at the expense of an increased sig-
nal power. The discovery of these
sytsems has prompted a re-exami-
nation of the foundations of com-
munication theory. A number of
workers have contributed to this
field, among them Gabor, Wiener,
Tuller, Sullivan and the writer.

The basic ideas of communication
theory are not new. Important
pioneering work was done by Ny-
quist and Hartley in the 1920's and
some of the roots can even be
traced back to the nineteenth
century physicist Boltzmann, The
more recent developmen ts, however,
include factors that were ignored in
earlier treatments; in particular,
we now have a much better under-
standing of the effect of noise in
the channel and of the importance
of statistical properties of the mes-
sages to be transmitted.

In this paper the hijrhlight« of
this recent work will be described
with as little mathematics as pos-
sible. Since the subject i~ essen-
tially a mathematical one, this
necessitates a sacrifir« of r izor ; for
more precise treatments the reader
may consult the hihliozruphy.

The type of communication sys-
tem that has been most extensively
investigated is shown in Fig. 1.
It consists of an information source
which produces the raw informa-
tion or message to be transmitted,
a transmitter which encodes or
modulates this information into a
form suitable for the channel, and
the channel on which the encoded
information or signal is trans-
mitted to the receiving point. Dur-
ing transmission the signal may be
perturbed by noise as indicated
schematically by the noise source.
The received signal goes to the re-
ceiver, which decodes or demodu-
lates to recover the original mes-
sage, and then to the final destina-
tion of the information.

It will be seen that this system is
sufficiently general to include the
majority of communication prob-
lems if the various elements are
suitably interpreted. In television,
for example, the information source
is the scene being televised, the
message is the output of the pick-up
tube and the signal is the output of
the transmi tter.

A basic idea in communication
theory is that information can be
treated very much like a physical
quantity such as mass or energy.
The system in Fig. 1 is roughly
analogous to a transportation sys-
tern; for example, we can imagine
a lumber mill producing lumber at
a certain point and a conveyor sys-
tem for transporting the lumber to
a second point. In such a situation
there are two important quantities,
the rate R (in cubic feet per
second) at which lumber is pro-
duced at the mill and the capacity
C (cubic feet per second) of the
conveyor. If R is greater than C

it will certainly be impossible to
transport the fuU output of the
lumber mill. If R is less than or
equal to C, it mayor may not be
possible, depending on whether the
lumber can be packed efficiently in
the conveyor. Suppose, however,
that we allow ourselves a saw-mill
at the source. Then the lumber can
be cut up into small pieces in such
a way as to fin out the available
capacity of the conveyor with
IOO-percent efficiency. Naturally in
this case we should provide a car-
penter shop at the receiving point
to glue the pieces back together in
their original form before passing
them on to the consumer.

If this analogy is sound, we
should be able to set up a measure
R in suitable units telling how
much information is produced per
second by a given information
source, and a second measure C
which determines the capacity of a
channel for transmitting informa-
tion. Furthermore, it should be
possible, by using a suitable coding
or modulation system, to transmit
the information over the channel if
and only if the rate of production R
is not greater than the capaci ty C.
That this is actually possible is a
key result of recent research and
we win indicate briefly how this is
accomplished.

Measurement of Information

Before we can consider how in-
formation is to be measured it is
necessary to clarify the precise
meaning of information from the
point of view of the communication
engineer. In general, the me!"~aJ!e~

to be transmitted have meaninz.
This, however, is quite in'cle\"ant to

* Reprinted from the April issue of Electronics, and copyrighted 1950 by Penton Publishing, subsidiary of
Pittway Corporation.
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Encodi", I"formation

The importance of the measure
of information, H, is that it de-
termines the saving in transmission
time that is possible, by proper en-
coding. due to the statistics of the
message source. To illustrate this,
consider a language in which there
are only four letters: A, B, C and
D. Suppose these letters have the
probabilities j, t, ! and " as in Fig.
2C.

In a long text in this language,
A will occur half the time, B one-
quarter of the time, and so on.
Suppose we wish to encode this
language into binary digits. 0 or 1.
Thus we might wish to transmit on
a pulse system with two types of
pulse. The most direct code is the
following: A = 00, B = 01, C = 10,
D = 11. This code requires two
binary digits per letter of message.
By using the statistics, a better
code can be constructed as follows:
A = 0, B == 10, C = 110, D = 111.
It is readily verified that the orig-
inal message can be recovered from
its encoded form. Furthermore,
the number of binary digits used is
smaller on the average. It will be,

structure only out to word lenzths.
Long-range meaning structure may
reduce this figure considerably.

FIC. 2---8cll••alle repre••atatlon 01
equal GIld unequal probabUltle.. Th.
eholc. 111\'01,," with olle bit (binary
d191t) of Informatloll ta comparable to

to.llnq a coin heacll or tan.

the formula is a litt'e more compli-
cated. A simple case is shown in
Fig. 2C. There are four possible
choices with probabilities ~, }, •
and i. This can be broken down
into a sequence of binary choices
as indicated. The information pro-
duced is given by (1 + i + ~);

the 1 is from the first choice (at
point p) which always occurs, the
i is from the choice at point q,
which occurs only half the time
(when the lower line is chosen at
point p), and so on. In general,
by a similar decomposition. the in-
formation. when the choices have
probabilities PI, Pt,-:-'-:, P.., is given
by:

H == - (Pllol2Pl + P2lol2P2 +~ +
pJ°ItP..) (] )

This formula, then, gives the
amount of information produced by
a single choice. An information
source produces a message which
consists of a sequence of choices,
for example. the letters of printed
text or the elementary words or
sounds of speech. In these cases,
by an application of Eq. 1. the
amount of information produced
per second or per symbol can be
calculated. It is interesting that
this information rate for printed
English text is about two bits per
letter, when we consider statistical

the problem of transmitting the in-
formation. It is as difficult (more
so. in fact) to transmit a series of
nonsense syllables as straight Eng-
lish text. A little thought on the
subject will convince one that the
significant aspect of information
from the transmission standpoint is
the fact that one particular mes-
sage is chosen from a set of pos-
sible messages. The thing that
must be transmitted is a specifica-
tion of the particular message
which was chosen by the informa-
tion source. If and only if such an
unamblrruous specification is trans-
mitted, the original message can
be reconstructed at the receiving
point. '.."hus information in our
sense must be correlated with the
notion of a choice from a set of
possibilities.

The simplest type of choice is a
choice from two possibilities, each
with probability j. This is the
situation, for example, when one
tosses a coin which is equally likely
to come up heads or tails. It is con-
venient to use the amount of infor-
mation produced by such a choice
as the basic unit, called a binary
digit or, more briefly, a bit. The
choice involved with one bit of in-
formation can be indicated sche-
matically as in Fig. 2A. At point
b we may choose either the upper
or lower line with probability i for
each possibility. If there are N
possibilities, all equally likely, the
amount of information is given by
logaN. The reason for this can be
seen from Fig. 2B, where we have
eight possibilities each with probs-
bili ty i. The choice can be imag-
ined to occur in three stages, each
involving one bit. The first bit
corresponds to a choice of either
the first four or the second four of
the eight possibilities, the second
bit corresponds to the first or
second pair of the four chosen. and
the final bit determines the first or
second member of the pair. It will
be seen that the number of bits
required is log'.!N, in this case
10.'& or S.

If the probaJilities are not equal,
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in fact calculated as folJows:
t·l j + !'2) + 1(3) + 1(3) = Ii

where the first term is due to the
Jetter A, which occurs half the time
and is one hinary digit long, and
similarly for the others. It will
be noted that Ii is just the value of
H calculated for Fig. 2C.

The resu't we have verified for
this special case holds generally.
If the information rate of the
message is II bits per letter, it is
possible to encode it into binary
digits using, on the average, only
H binary digits per letter of text.
There is no method of encoding
which uses Jess than this amount.

Capacity 01 a Cltannel

Now consider the problem of de-
fining the capaci ty C of a channel
for transmitting information. Since
the rate of production for an infor-
mation source has been measured
in bits per second, we would nat-
urally like to measure C in the
same units. The question then be-
comes "What is the maximum num-
ber of binary digits per second that
can be transmitted over a given
channel?"

In some cases the answer is
simple. With a teletype channel
there are 32 possible symbols. Each
symbol therefore represents 5 bits,
provided the possible symbols are
used with equal probability. If we
can send n symbols per second, and
the noise level is not high enough
to introduce any errors during
transmission, we can send 51& bits
per second.

Suppose now that the channel is
defined as follows: 'Ve can use for
signals any functions of time f(t)
which He within a certain band of
frequencies, W cycles per second
wide. It is known that a function
ot this type can be specified by giv-
in. its values at a series of equally
spaced sampling points 1/2W sec-
onds apart as shown in Fig. 3.
Thu8 we may say that such a fUDC-

tion bas 2W degrees of freedom, or
dimensions, per second.

If there is no noise whatever on
such a channel we can distinguish
an infinite number of different
amplitude levels for each sample.
Consequently we could, in principle,
transmit an infinite number of
binary digits per second, and the
capacity C would be infinite.

Even when there is noise, if we
place no limitations on the trans-
mitter power, the capacity will be
infinite, for we may sti.l distin-
guish at each sample point an un-
limited number of different ampli-
tude levels. Only when noise is
present and the transmitter power
is limited in some way do we obtain
a finite capacity C. The capacity
depends, of course, on the statisti-
cal structure of the noise as well as
the nature of the power limitation.

The simplest type of noise is
white thermal noise or resistance
noise. The probability distribution
of amplitudes follows a Gaussian
curve and the spectrum is flat with
frequency over the band in question
and may be assumed to be zero out-
side the band. This type of noise
is completely specified by giving its
mean square amplitude N, which
is the power it would deliver into

7----------
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C. E. Shannon

a standard unit of resistance.
The simplest limitation on trans-

mitter power is to assume that the
average power delivered by the
transmi tter (or more precisely the
mean square amplitude of the sig-
nal) is not greater than P. If we
define our channel by these three
parameters W, P and H, the capac-
ity C can be calculated. It turns
out to be

P+ N (2)
C.== Wlog2 -

N-

bits per second. It is easy to see
that this formula is approximately
right when PIN is large. The re-
ceived signal will have a power
P + N and we can distinguish
something of the order of

y(P +N)/N
different amplitudes at each sample
point. The reason for this is that
the range of ampli tude cf the re-
cei ved signal is proportional to

v'P+ N, while the noise intro-
duces an uncertainty proportional

to \IN. The amount of information
that can be transmitted with one
sample will therefore be log.
[(P + N)/N]. Since there are 2W
independent samples per second,
the capacity is given by Eq. 2. This
formula has a much deeper and
more precise significance than the
above argument would indicate. In
fact it can be shown that it is pos-
sible, by properly choosing our sig-
nal functions, to transmit W log.
[(P+N)/N] bits per second with
as small a frequency of errors as
desired. It is not possible to trans-
mit at any higher rate with an arbi-
trarily small frequency of errors.
This means that the capacity is a
sharply defined quantity in spite of
the noise.

The formula for C applies for all
values of PIN. Even when PIN is
very small, the average noise power
being much greater than the aver-
age transmitter power, it is pos-
sible to transmit binary digits at
the rate W log. [(P + N) IN] with
as small a frequency of errors as
desired. In this case Jog, (1 +
PIN) is very nearly (PIN) log, e
or 1.443 PIN and we have, approxi-
mately, C = 1.443 PWIN.

It should be emphasized that it
is possible to transmit at a rate C
over a channel only by properly eo-
coding the information. In general
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th~ rate C cannot be actually at-
~J~ed but only approached as a
bmlt by using more and more com-
plex encoding and longer and longer
de!ays at both transmitter and re-
eeiver. In the white noise case the
best encoding turns out to be such
that the transmitted signals them-
B~lves have the structure of a re-
ststance noise of power P.

ItJetll and Ptactical Systelfts

In Fig. 4 the curve is the function
C/~ = log (1 + PIN) plotted
agaInst PIN measured in db. It
represents, therefore, the channel
capacity per unit of band with
white noise. The circles and points
correspond to pcm and ppm systems
u~e~ to s~nd a sequence of binary
dlglts, adjusted to give about one
error in 10· binary digits. In the
pcm case the number adjacent to a
point represents the number of
amplitude levels; 3 for example is
a ternary pcm system. In all cases
positive and negative amplitudes
are used. The ppm systems are
quantized with a discrete set of pos-
sible positions for the pulse the
spacing is 1/2W and the nU~ber
adjacent to a point is the number
of possible positions for a pulse.

The series of points follows a
curve of the same shape as the
ideal but displaced horizontally
about 8 db. This means that with
more involved encoding or modula-
tion systems a gain of 8 db in
power could be achieved over the
8ystems indicated.

Unfortunately, as one attempts
to approach the ideal, the transmit-
ter and receiver required become
more complicated and the delays in-
crease. For these reasons there
will be some point where an eco-
nomic balance is established be-
tween the various factors. It is
possible, however, that even at the
present time more complex systems
would be justified.

A curious fact illustrating the
general misanthropic behavior of
nature is that at both extremes of
PIN (when we are well outside the
practical range) the series of points
in Fig. 4 approaches more closely
the ideal curve.

The relation C = W log (1 +
PIN) can be regarded as an ex-
change relation between the para-
meters Wand PIN. Keeping the

Fla. I-Graphle lepr•••nlatloD of a
typical .,.••e. for c.o...."IIl, bad·
width at th. eo.t of lIIer.a.lIl, Irnl.

IIlllleei pow.r

channel capacity fixed we can de-
crease the bandwidth W provided
we increase PIN sufficiently. Con-
versely, an increase In band allows
a lower signal·to-noise ratio in the
channel. The required PIN in db
is shown in Fig. 5 as a function of
the band W. It is assumed here
that as we increase the band W the
noise power N increases pr~por­
tionally, N == W No where No is the
noise power per cycle of band. It
will be noticed that if PIN is large
a reduction of band is very ex-
pensive in power. Halving the band
roughly doubles the signal-to-noise
ratio in db that is required.

One method of exchanging band-
width for signal-to-noise ratio is
shown in Fig. 6. The upper curve
represents a signal function whose
bandwidth is such that it can be
specified by giving the samples
shown. Each sample has five ampli.
tude levels. The lower curve is
obtained by combining pairs of
samples from the first curve 8S

shown. There are now 25 ampli-
tude levels that must be distin-
guished but the samples occur only
half as frequently; consequently
the band is reduced by half, at the
cost of doubling the signal-to-noise
ratio in db. Operating this in re-
verse doubles the band but reduces
the required signal-to-noise ratio.

To summarize, there are three
essentially different ways in which
bandwidth can be reduced in a sys-
tem such as television or speech
transmission. The first is the
straightforward exchange of band-
width for signal-to-noise ratio just
discussed. The second method Is
utilization of the statistical correIa-

tions exratrng In the message. This
capitalizes on particular properties
of the information source, and can
be regarded as a type of matching
of the source to the channel. Fi-
nally, particular properties of the
destination can be used. Thus, in
speech transmission the ear is rela-
tively insensitive to phase distor-
tion. Consequently, phase informa-
tion is not as important as ampli-
tude information, and Heed not be
sent 80 accurately. This can be
translated into a bandwidth sav-
ing, and in fact part of the reduc-
tion attained in the vocoder is due
to this effect. In general, the ex-
ploitation of particular sensitivities
or blindnesses in the destination re-
quires a proper matching of the
channel to the destination.

Many present-day communlca-
tion systems are extremely ineffic-
ient in that they fail to make use of
the statistical properties of the in-
formation source. To illustrate this,
suppose we are interested in a sys-
tem to transmit English speech (no
music or other sounds) and the
quality requirements on reproduc-
tion are only that it be intelligible
as to meaning. Personal accents,
inflections and the like can be lost
in the process of transmission. In
such a case we could, at least in
principle, transmit by the following
scheme. A device is constructed at
the transmitter which prints the
English text corresponding to the
spoken words. This can be encoded
into binary digits using, on the
average, not more than two binary
digits per letter or nine per word.
Taking 100 words per minute as a
reasonable rate of speaking, we
obtain 15 bits per second as an esti-
mate of the rate of producing in-
formation in English speech when
intelligibility is the only fidelity re-
quirement. From Fig. 4 this in-
formation could be transmitted
over a channel with 20 db signal-to-
noise ratio and a bandwith of only
2.3 cps!
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Prediction and Entropy of Printed English
By C. E. SHANNON

(Manuscript RtcnrJta Sept. 15, 1950)

A new method of estimating the entropy and redundancy of a lan~ap is
described. This method exploits the knowledge of the language statistics pos-
sessed by those who speak the language, and depends on experimental resulta
in prediction of the next letter when the preceding text is Known. Results of
experiments in prediction are given, and some properties of an ideal predictor are
developed.

1 INTRODUCTION

I N A previous paper' the entropy and redundancy of a language have
been defined. The entropy is a statistical parameter which measures,

in a certain sense, how much information is produced on the average for
each letter of a text in the language. If the language is translated into binary
digits (0 or 1) in the most efficientway, the entropy H is the average number
of binary digits required per letter of the original language. The redundancy,
on the other hand, measures the amount of constraint imposed on a text in
the language due to its statistical structure, e.g., in English the high fre-
quency of the letter E, the strong tendency of H to follow T or of U to follow
Q. It was estimated that when statistical effects extending' over not more
than eight letters are considered the entropy is roughly 2.3 bits per letter,
the redundancy about 50 per cent.

Since then a new method has been found for estimating these quantities,
which is more sensitive and takes account of long range statistics, influences
extending over phrases, sentences, etc. This method is based on a study of
the predictability of English; how well can the next letter of a text be pre-
dicted when the preceding N letters are known. The results of some experi-
ments in prediction will be given, and a theoretical analysis of some of the
properties of ideal prediction. By combining the experimental and theoreti-
cal results it is possible to estimate upper and lower bounds for the entropy
and redundancy. From this analysis it appears that, in ordinary literary
English, the long range statistical effects (up to 100 letters) reduce the
entropy to something of the order of one bit per letter, with a corresponding
redundancy of roughly 75%. The redundancy may be still higher when
structure extending over paragraphs, chapters, etc. is included. However, as
the lengths involved are increased, the parameters in question become more

1 C. E. Shannon, "A Mathematical Theory of Communication," Bell Sys"" Tee""iul
Journal, v. 27, pp. 379-423, 623-656, July, October, 1948.
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(1)

erratic and uncertain, and they depend more critically on the type of text
involved.

2. ENTROPY CALCULATION FROM THE STATISTICS OF ENGLISH

One method of calculating the entropy H is by a series of approximations
Po, F l , F2 , • •• , which successively take more and more of the statistics
of the language into account and approach H as a limit. FN may be called
the N-gram entropy; it measures the amount of information or entropy due
to statistics extending over iV adjacent letters of text. F N is given by'

FN = -:E p(b"j) log2pbi(j)
i.;

in which: b, is a block of N-l letters [(N-l)-gram]

j is an arbitrary letter following hi

p(b. ,j) is the probability of the N-gram b, , j

Pbi(j) is the conditional probability of letter j after the block b,

and is given by p(bi , j)/p(bi ) .

The equation (1) can be interpreted as measuring the average uncertainty
(conditional entropy) of the next letter j when the preceding N-l1etters are
known. As N is increased, F N includes longer and longer range statistics
and the entropy, H, is given by the limiting value of F N as N --+ 00 :

H = Lim FN • (2)
N.....

The N-gram entropies F N for small values of N can be calculated from
standard tables of letter, digram and trigram frequencies.i If spaces and
punctuation are ignored we have a twenty-six letter alphabet and Fa may
be taken (by definition) to be log! 26, or 4.7 bits per letter. F1 involves letter
frequencies and is given by

21

F! == -:E p(i) log2 p(i) == 4.14 bits per letter. (3)
i-I

The digram approximation F2 gives the result

F2 == - :E p(i, J1 log2 p,(j)
i,;

== - :E p(i, j) log2 p(i, j) + :E p(i) log! p(i)
I,; i

== 7.70 - 4.14 == 3.56 bits per letter.

I Fletcher Pratt, "Secret and Urgent," Blue Ribbon Books, 1942.

(4)
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The trigram entropy is given by

Fa = - L p(i, i, k) log, Pi;(k)
i,j,"

= - L p(i, i. k) log! p(i, j, k) + L p(i, j) log! p(i, j) (5)
i,j.k i,i

- 11.0 - 7.7 = 3.3

In this calculation the trigram table! used did not take into account tri-
grams bridging two words, such as WOW and OWO in TWO WORDS. To
compensate partially for this omission, corrected trigram probabilities p(i,
j, k) were obtained from the probabilities p'(i,j, k) of the table by the follow-
ing rough formula:

p(i, i. k) = 4
2.55

p'(i, i. k) + 4
1_

r(i)p(j, k) + 4
1_

p(i, j)s(k)
. .'" .'"

where rei) is the probability of letter i as the terminal letter of a word and
s(k) is the probability of k as an initial letter. Thus the trigrams within
words (an average of 2.5 per word) are counted according to the table; the
bridging trigrams (one of each type per word) are counted approximately
by assuming independence of the terminal letter of one word and the initial
digram in the next or vice versa. Because of the approximations involved
here, and also because of the fact that the sampling error in identifying
probability with sample frequency is more serious, the value of F3 is less
reliable than the previous numbers.

Since tables of !V'-gramfrequencies were not available for N > 3, F4 , F, ,
etc. could not be calculated in the same way. However, word frequencies
have been tabulated! and can be used to obtain a further approximation.
Figure 1 is a plot on log-log paper of the probabilities of words against
frequency rank. The most frequent English word "the" has a probability
.071 and this is plotted against 1. The next most frequent word "of" has a
probability of .034 and is plotted against 2, etc. Using logarithmic scales
both for probability and rank, the curve is approximately a straight line
with slope -1; thus, if p" is the probability of the nth most frequent word,
we have, roughly

.1p,. =
11

(6)

Zipf"has pointed out that this type of formula, pn = kin, gives a rather good
approximation to the word probabilities in many different languages. The

3 G. Dewey, "Relative Frequency of English Speech Sounds," Harvard University
Press, 1923.

4 G. K. Zipf, "Human Behavior and the Principle of Least Effort," Addison-Wesley
Press, 1949.
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formula (6) clearly cannot hold indefinitely since the total probability 1;p"
00

must be unity, while E .lln is infinite. If we assume (in the absence of any
1

better estimate) that the formula p" = .lln holds out to the n at which the
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total probability is unity, and that p" = 0 for larger n, we find that the
critical n is the word of rank 8,727. The entropy is then:

8727

- E p,. log! Pta = 11.82 bits per word,
1

or 11.82/4.5 = 2.62 bits per letter since the average word length in English
is 4.5 letters. One might be tempted to identify this value with F•.", but
actually the ordinate of the FN curve at N = 4.5 will be above this value.
The reason is that F. or PI involves groups of four or five letters regardless
of word division. A word is a cohesive group of letters with strong internal
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statistical influences, and consequently the N-grams within words are more
restricted than those which bridge words. The effect of this is that we have
obtained, in 2.62 bits per letter, an estimate which corresponds more nearly
to, say, FI or F•.

A similar set of calculations was carried out including the space as an
additional letter, giving a 27 letter alphabet. The results of both 26- and
27-1etter calculations are summarized below:

F.
26 letter " .. 4. 70
27 letter.. 4.76

1'.
4.14-
4.03

P.
3.56
3.32

11.
3.3
3.1

1'.-
2.62
2.14

The estimate of 2.3 for F., alluded to above, was found by several methods,
one of which is the extrapolation of the 26-letter series above out to that
point. Since the space symbol is almost completely redundant when se-
quences of one or more words are involved, the values of FN in the 27-letter

case will be ::~ or .818 of FN for the 26-letter alphabet when N is reasonably

large.

3. PREDICTION 01' ENGLISH

The new method of estimating entropy exploits the fact that anyone
speaking a language possesses, implicitly, an enormous knowledge of the
statistics of the language. Familiarity with the words, idioms, cliches and
grammar enables him to fill in missing or incorrect letters in proof-reading,
or to complete an unfinished phrase in conversation. An experimental demon-
stration of the extent to which English is predictable can be given as follows:
Select a short passage unfamiliar to the person who is to do the predicting.
He is then asked to guess the first letter in the passage. If the guess is correct
he is so informed, and proceeds to guess the second letter. If not, he is told
the correct first letter and proceeds to his next guess. This is continued
through the text. As the experiment progresses, the subject writes down the
correct text up to the current point for use in predicting future letters. The
result of a typical experiment of this type is given below. Spaces were in-
cluded as an additional letter, making a 27 letter alphabet. The first line is
the original text; the second line contains a dash for each letter correctly
guessed. In the case of incorrect guesses the correct letter is copied in the
second line.

(1) TIl ROOM VAS 10'1 VIRY LIGII'l ASMALL OBLOHG
(2) --·-ROO------IOT-V-----I------SM----OBL----
(1) RIADIIG LAMP OR T81 0181 SRID GLOW 01
(2) RlA----------O------D-.--SBID-GLO--O-·
(1) POLISHED WOOD BO! LISS 01 'lBI SBABBY RID CARPIT
(2) p-L-8- - -- -O·- -SU • -L-8- -0_..- ... -88- ..- - ..RI- -C· .......-

(I)
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Of a total of 1/.':1 letters, 89 or 69% were guessed correctly. The errors, as
would be expected, occur most frequently at the beginning of words and
syllables where the line of thought has more possibility of branching out. It
might be thought that the second line in (8), which we will call the reduced
text, contains much less information than the first. Actually, both lines con-
tain the same information in the sense that it is possible, at least in prin-
ciple, to recover the first line from the second. To accomplish this we need
an identical twin of the individual who produced the sequence. The twin
(who must be mathematically, not just biologically identical) will respond in
the same way when faced with the same problem. Suppose, now, we have
only the reduced text of (8). We ask the twin to guess the passage. At each
point we will know whether his guess is correct, since he is guessing the same
as the first twin and the presence of a dash in the reduced text corresponds
to a correct guess. The letters he guesses wrong are also available, so that at
each stage he can be supplied with precisely the same information the first
twin had available.

ORIGINAL
TeXT

COMPARISON COMPARISON
REDUCED TEXT

Fig. 2-Communication system using reduced text.

ORIGINAL
TEXT

The need for an identical twin in this conceptual experiment can be
eliminated as follows. In. general, good prediction does not require knowl-
edge of more than N preceding letters of text, with N fairly small. There are
only a finite number of possible sequences of N letters, We could ask the
subject to guess the next letter for each of these possible N-grams. The com-
plete list of these predictions could then be used both for obtaining the
reduced text from the original and for the inverse reconstruction process.

To put this another way, the reduced text can be considered to be an
encoded fonn of the original, the result of passing the original text through
a reversible transducer. In fact, a communication system could be con-
structed in which only the reduced text is transmitted from one point to
the other. This could be set up as showri in Fig. 2, with two identical pre-
diction devices.

An extension of the above experiment yields further information con-
cerning the predictability of English. As before, the subject knows the text
up to the current point and is asked to guess the next letter. If he is wrong,
he is told so and asked to guess again. This is continued until he finds the
correct letter. A typical result with this experiment is shown below. The
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first line is the original text and the numbers in the second line indicate the
guess at which the correct letter was obtained.

(1) T H I RBI S NOR B V IRS ION A NOT 0 R eye L I A
(2) 1 1 1 5 11 2 11 2 11 15 1 17 1 1 1 2 1 3 2 1 2 2 7 1 1 1 1 4: 1 1 1 1 1 3 1
(1) , R I I H DO' N I N B , 0 U MDT HIS 0 U T
(2) 8 6 1 3 1 11 1 11 1 1 1 11 6 2 1 1 11 1 1 2 11 1 1 1 1

(1) RAT H I R D RAM A·T I CAL L Y THE 0 T K I R DAY
(2) 4: 1 1 1 1 11 11 5 1 1 1 1 1 1 1 1 1 11 6 1 11 1 1 1 1 11 1 1 1 1 (9)

Out of 102 symbols the subject guessed right on the first guess 79 times,
on the second guess 8 times, on the third guess 3 times, the fourth and fifth
guesses 2 each and only eight times required more than five guesses. Results
of this order are typical of prediction by a good subject with ordinary literary
English. Newspaper writing, scientific work and poetry generally lead to
somewhat poorer scores.

The reduced text in this case also contains the same information as the
original. Again utilizing the identical twin we ask him at each stage to guess
as many times as the number given in the reduced text and recover in this
way the original. To eliminate the human element here we must ask our
subject, for each possible lV-gram of text, to guess the most probable next
letter, the second most probable next letter, etc. This set of data can then
serve both for prediction and recovery.

Just as before, the reduced text can be considered an encoded version of
the original. The original language, with an alphabet of 27 symbols, A,
B, ... ,Z, space, has been translated into a new language with the alphabet
1, 2, · · · , 27. The translating has been such that the symbol! now has an
extremely high frequency. The symbols 2, 3, 4 have successively smaller
frequencies and the final symbols 20, 21, · · · , 27 occur very rarely. Thus the
translating has simplified to a considerable extent the nature of the statisti..
cal structure involved. The redundancy which originally appeared in com-
plicated constraints among groups of letters, has, by the translating process,
been made explicit to a large extent in the very unequal probabilities of the
new symbols. It is this, as will appear later, which enables one to estimate
the entropy from these experiments.

In order to determine how predictability depends on the number N of
preceding letters known to the subject, a more involved experiment was
carried out. One hundred samples of English text were selected at random
from a book, each fifteen letters in length. The subject was required to guess
the text, letter by letter, for each sample as in the preceding experiment.
Thus one hundred samples were obtained in which the subject had available
0, 1, 2, 3, · .. , 14 preceding letters. To aid in prediction the subject made
such use as he wished of various statistical tables, letter, digram and trigram
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tables, a table of the frequencies of initial letters in words, a list of the fre-
quencies of common words and a dictionary. The samples in this experiment
were from "Jefferson the Virginian" by Dumas Malone. These results, to-
gether with a similar test in which 100letters were known to the subject, are
summarized in Table I. The column corresponds to the number of preceding
letters known to the subject plus one;" the row is the number of the guess.
The entry in column N at row S is the number of times the subject guessed
the right letter at the Sth guess when (N-l) letters were known. For example,

TABLE I

•
1 2 3 " S 6 7 8 9 10 11 12 13 14 15 100

- ---- - - - - - - - - - - - - - -
1 18.2 29.2 36 47 51 58 48 66 66 67 62 58 66 72 60 80
2 10.7 14.8 20 18 13 19 17 15 13 10 9 14 9 6 18 7
3 8.6 10.0 12 14 8 5 3 5 9 4 7 7 4 9 5
4 6.7 8.6 7 3 4 1 4 4 4 4 5 6 4 3 5 3
5 6.5 7.1 1 1 3 4 3 6 1 6 5 2 3 4
6 5.8 5.5 4 5 2 3 2 1 4 2 3 4 1 2
7 5.6 4.5 3 3 2 2 8 1 1 1 4 1 4 1
8 5.2 3.6 2 2 1 1 2 1 1 1 1 2 1 3
9 5.0 3.0 4 5 1 4 2 1 1 2 1 1

10 4.3 2.6 2 1 3 3 1 2
11 3.1 2.2 2 2 2 1 1 3 1 1 2 1
12 2.8 1.9 4 2 1 1 1 2 1 1 1 1
13 2.4 1.5 1 1 1 1 1 t 1 1 t 1
14 2.3 1.2 1 1 1 1
15 2.1 1.0 1 1 1 1 1
16 2.0 .9 1 1 1
17 1.6 .7 1 2 1 1 1 2 2
18 1.6 .5 1
19 1.6 .4 1 1 1 1
20 1.3 .3 1 1 1
21 1.2 .2
22 .8 .1
23 .3 .1
24 .1 .0
2S .1
26 .1
27 .1

the entry 19 in column 6, row 2, means that with five letters known the cor
reet letter was obtained on the second guess nineteen times out of the hun
dred. The first two columns of this table were not obtained by the experi-
mental procedure outlined above but were calculated directly from the
known letter and digram frequencies. Thus with no known letters the most
probable symbol is the space (probability .182); the next guess, if this is
wrong, should be E (probability .107), etc. These probabilities are the
frequencies with which the right guess would occur at the first, second, etc.,
trials with best prediction. Similarly, a simple calculation from the digram
table gives the entries in column 1 when the subject uses the table to best
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advantage. Since the frequency tables are determined from long samples of
English, these two columns are subject to less sampling error than the others.

It will be seen that the prediction gradually improves, apart from some
statistical fluctuation, with increasing knowledge of the past as indicated
by the larger numbers of correct first guesses and the smaller numbers of
high rank guesses.

One experiment was carried out with "reverse" prediction, in which the
subject guessed the letter preceding those already known. Although the
task is subjectively much more difficult, the scores were only slightly poorer.
Thus, with two 101 letter samples from the same source, the subject ob-
tained the following results:

No. of pell 1

Forward..... .. .. .. 70
Reverse , " 66

2 3 t
10 7 2
744

5 6
2 3
6 2

7
3
1

• >1
o 4
2 9

(10)

Incidentally, the N-gram entropy FN for a reversed language is equal to
that for the forward language as may be seen from the second form in equa-
tion (1). Both terms have the same value in the forward and reversed cases.

4. IDEAL N-GRAJI. PREDICTION

The data of Table I can be used to obtain upper and lower bounds to the
N-gram entropies FN. In order to do this, it is necessary first to develop
some general results concerning the best. possible prediction of a language
when the preceding N letters are known. There will be for the language a set
ofconditionalprobabilitiesPil , ii' • •• , i6-1 (j). This is the probability when
the (N-l) gram it , it, · .. , i N- 1 occurs that the next letter will be j. The
best guess for the next letter, when this (N-l) gram is known to have oc-
curred, will be that letter having the highest conditional probability. The
second guess should be that with the second highest probability, etc. A
machine or person guessing in the best way would guess letters in the order
of decreasing conditional probability. Thus the process of reducing a text
with such an ideal predictor consists of a mapping of the letters into the
numbers from 1 to 27 in such a way that the most probable next letter
[conditional on the known preceding (N-l) gram] is mapped into 1, etc.
The frequency of 1's in the reduced text will then be given by

N '" (.. ..)ql = ~p ~1 , ~2, ••• ,~N-l,J

where the sum is taken over all (N-1) grams it , it, · · · , iN- 1 the j being the
one which maximizes p for that particular (N-l) gram. Similarly, the fre-
quency of 2's, q: ,is given by the same formula with j chosen to be that
letter having the second highest value of p, etc.

On the basis of N -grams, a different set of probabilities for the symbols
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· h ed ed N+l N+l N+l ld 11 1 S· hiIn t e r uc text, ql , q2 ,. •• ,q27 ,wou norma y resu t, mce t IS
prediction is on the basis of a greater knowledge of the past, one would ex-
pect the probabilities of low numbers to be greater, and in fact one can
prove the following inequalities:

S = 1,2, .... (11)

This means that the probability of being right in the first S guesses when
the preceding N letters are known is greater than or equal to that when
only (N-l) are known, for all S. To prove this, imagine the probabilities
p(i 1 , i«, • • • , t» ,j) arranged in a table with j running horizontally and all
the N-grams vertically. The table will therefore have 27 columns and 27N

rows. The term on the left of (11) is the sum of the S largest entries in each
row, summed over all the rows. The right-hand member of (11) is also a sum
of entries from this table in which S entries are taken from each row but not
necessarily the S largest. This follows from the fact that the right-hand
member would be calculated from a similar table with (N-I) grams rather
than N-grams listed vertically. Each row in the N-l gram table is the sum
of 27 rows of the N-gram table, since:

27

p(~, ia, ... ,iN,j) = L p(i1 , i 2, .•• , iN, j). (12)
'1-1

The sum of the S largest entries in a row of the N-l gram table will equal
the sum of the 27S selected entries from the corresponding 27 rows of the
N-gram table only if the latter fall into S columns. For the equality in (11)
to hold for a particular S, this must be true of every row of the IV-l gram
table. In this case, the first letter of the N-gram does not affect the set of the
S most probable choices for the next letter, although the ordering within
the set may be affected. However, if the equality in (11) holds for all S, it
follows that the ordering as well will be unaffected by the first letter of the
N-gram. The reduced text obtained from an ideal N-l gram predictor is then
identical with that obtained from an ideal N-gram predictor.

Since the partial sums

S = 1,2,··· (13)

are monotonic increasing functions of N, <1 for all N, they must all ap-
proach limits as N ~ 00. Their first differences must therefore approach
limits as N -+ 00, i.e., the q~ approach limits, q7 •These may be interpreted
as the relative frequency of correct first, second, · · · , guesses with knowl-
edge of the entire (infinite) past history of the text.
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The ideal N-gram predictor can be considered, as has been pointed out, to
be a transducer which operates on the language translating it into a sequence
of numbers running from 1 to 27. As such it has the following two properties:

1. The output symbol is a function of the present input (the predicted
next letter when we think of it as a predicting device) and the preced-
ing (N-I) letters.

2. It is instantaneously reversible. The original input can be recovered by
a suitable operation on the reduced text without loss of time. In fact,
the inverse operation also operates on only the (N-I) preceding sym-
bols of the reduced text together with the present output.

The above proof that the frequencies of output symbols with an N-l
gram predictor satisfy the inequalities:

8 B

~ If > " If-I£..J q. _ .£.J q,
1 1

S = 1,2, ... ,27 (14)

can be applied to any transducer having the two properties listed above-
In fact we can imagine again an array with the various (N-I) grams listed
vertically and the present input letter horizontally. Since the present output
is a function of only these quantities there will be a definite output symbol
which may be entered at the corresponding intersection of row and column.
Furthermore, the instantaneous reversibility requires that no two entries
in the same row be the same. Otherwise, there would be ambiguity between
the two or more possible present input letters when reversing the transla-
tion. The total probability of the S most probable symbols in the output,

B

say E, i , will be the sum of the probabilitiesforS entries ineach row, summed
1

over the rows, and consequently is certainly not greater than the sum of the
~~.. largest entries in each row. Thus we will have

S == 1, 2, · · · , 27 (15)

In other words ideal prediction as defined above enjoys a preferred position
among all translating operations that may be applied to a language and
which satisfy the two properties above. Roughly speaking, ideal prediction
collapses the probabilities of various symbols to a small group more than
any other translating operation involving the same number of letters which
is instantaneously reversible.

Sets of numbers satisfying the inequalities (15) have been studied by'
Muirhead in connection with the theory of algebraic inequalitles.! If (15)
holds when the qf and, i are arranged in decreasing order of magnitude, and

'Hardy, Littlewood and Polya, "Inequalities," Cambridge University Press, 1934.
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21 27

also L qf' = L' i , (this is true here since the total probability in each
1 1

case is 1), then the first set, q~ , is said to majlWil~ the second set, 'i .It is
known that the majorizing property is equivalent to either of the following
properties:

1. The r, can be obtained from the qf by a finite series of "flows." By a
flow is understood a transfer of probability from a larger q to a smaller
one, as heat flows from hotter to cooler bodies but not in the reverse
direction.

2. The r , can be obtained from the q~ by a generalized "averaging"
eeeration. There exists a set of -non-negative real numbers, au , with
L aij == L aii = 1 and such that

J i

(16)

5. ENTROPY BOUNDS FROM PREDICTION FREQUENCIES

If we know the frequencies of symbols in the reduced text with the ideal
N-gram predictor, qf , it is possible to set both upper and lower bounds to
the N-gram entropy, FN, of the original language. These bounds are as
follows:

n n
L i(q: - q~+l) log i s FN ~ - L qf log qf. (17)
i-I i-I

The upper bound follows immediately from the fact that the maximum
possible entropy in a language with letter frequencies q: is - L q: log q~ .
Thus the entropy per symbol of the reduced text is not greater than this.
The N-gram entropy of the reduced text is equal to that for the original
language, as may be seen by an inspection of the definition (1) of FN • The
sums involved will contain precisely the same terms although, perhaps, in a
different order. This upper bound is clearly valid, whether or not the pre-
diction is ideal.

The lower bound is more difficult to establish. It is necessary to show that
with any selection of N-gram probabilities p(i1, i2, .•• , iN), we will have

27

L i(q1 - q~+l) log i ~ L p(i,··· iN) log pi, · .. iN-1(iN) (18)
i-I '1'-· .,iN

The left-hand member of the inequality can be interpreted as follows:
Imagine the q: arranged as a sequence of lines of decreasing height (Fig. 3).
The actual q~ can be considered as the sum of a set of rectangular distribu-
tions as shown. The left member of (18) is the entropy of this set of distribu-
tions. Thus, the i'A rectangular distribution has a total probability of
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i(q~ - q1+1). The entropy of the distribution is log i. The total entropy is
then

(19)

The problem, then, is to show that any system of probabilities p(i1 , ••• ,

iN), with best prediction frequencies qi has an entropy FN greater than or
equal to that of this rectangular system, derived from the same set of q••

0.80

ORIGINAL DISTRIBUTION

r~
1°·05 1°.05 0.025 Q025 10.025 .0.025

I I
q, ttz tt3 Cl. Cl~ Cl. <\1 q.

0.40 (tt,-qz)

RECTANGULAR DECOMPOSITION

rl5 rOl5
(Cla-Q3)

10.025 I
10.025 I 10.02sq.

Fig. 3-Rectangular decomposition of a monotonic distribution.

The qi as we have said are obtained from the p(i1, ... , iN) by arranging
each row of the table in decreasing order of magnitude and adding vertically.
Thus the qi are the sum of a set of monotonic decreasing distributions. Re-
place each of these distributions by its rectangular decomposition. Each one
is replaced then (in general) by 27 rectangular distributions; the q, are the
sum of 27 x 27N rectangular distributions, of from 1 to 27 elements, and all
starting at the left column. The entropy for this set is less than or equal to
that of the original set of distributions since a termwise addition of two or
more distributions always increases entropy. This is actually an application
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of the general theorem that H,,(x) ~ H(x) for any chance variables x and y.
The equality holds only if the distributions being added are proportional.
Now we may add the different components of the same width without
changing the entropy (since in this case the distributions are proportional).
The result is that we have arrived at the rectangular decomposition of the
qi, by a series of processes which decrease or leave constant the entropy,
starting with the original N-gram probabilities. Consequently the entropy
of the original system FN is greater than or equal to that of the rectangular
decomposition of the qi . This proves the desired result.

It will be noted that the lower bound is definitely less than FN unless each
row of the table has a rectangular distribution. This requires that for each

~
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Fig. 4-Upper and lower experimental bounds for the entropy of 27-letter English.
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possible (N -1) gram there is a set of possible next letters each with equal
probability, while all other next letters have zero probability.

It will now be shown that the upper and lower bounds for PH given by
(17) are monotonic decreasing functions of N. This is true of the upper bound
since the q~+l majorize the q1and any equalizing flow in a set of probabilities
increases the entropy. To prove that the lower bound is also monotonic de-
creasing we will show that the quantity

U = ~ i(q, - qi+l) log i (20)

is increased by an equalizing flow among the q«. Suppose a flow occurs from
q, to qi+l, the first decreased by t1q and the latter increased by the same
amount. Then three terms in the sum change and the change in U is given by

t:,.U = [- (i - 1) log (i - 1) + 2i log i - (i + 1) log (i + 1)]~q (21)
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The term in brackets has the fonn -f(x - 1) + 2f(x) - f(x + 1) where
f(x) = x log x. Now f(x) is a function which is concave upward for positive %,

suice]" (x) = 1/x > O. The bracketed term is twice the difference between the
ordinate of the curve at x = i and the ordinate of the midpoint of the chord
joining i - 1 and i + 1, and consequently is negative. Since Ilq also is nega-
tive, the change in U brought about by the flow is positive. An even simpler
calculation shows that this is also true for a flow from q1 to q2 or from q2e to
q27 (where only two terms of the sum are affected). It follows that the lower
bound based on the N-gram prediction frequencies qf is greater than 01

equal to that calculated from the N + 1 gram frequencies q~+l •

6. EXPERIMENTAL BOUNDS FOR ENGLISH

Working from the data of Table I, the upper and lower bounds were calcu-
lated from relations (17). The data were first smoothed somewhat to over-
come the worst sampling fluctuations. The low numbers in this table are
the least reliable and these were averaged together in groups. Thus, in
column 4, the 47, 18 and 14 were not changed but the remaining group
totaling 21 was divided uniformly over the rows from 4 to 20. The upper and
lower bounds given by (17) were then calculated for each column giving the
following results:

Column 1 2 3 • S 6 7 8 9 10 11 12 13 14 15 100

Upper 4.03 3.42 3.0 2.6 2.7 2.2 2.8 1.8 1.9 2.1 2.2 2.3 2.1 1.7 2.1 1.3
Lower , .. 3. 19 2. 50 2. 1 1.7 1.7 1.3 1.8 1.0 1.0 1.0 1.3 1.3 1.2 .9 1.2 .6

It is evident that there is still considerable sampling error in these figures
due to identifying the observed sample frequencies with the prediction
probabilities. It must also be remembered that the lower bound was proved
only for the ideal predictor) while the frequencies used here are from human
prediction. Some rough calculations, however, indicate that the discrepancy
between the actual PN and the lower bound with ideal prediction (due to
the failure to have rectangular distributions of conditional probability)
more than compensates for the failure of human subjects to predict in the
ideal manner. Thus we feel reasonably confident of both bounds apart from
sampling errors. The values given above are plotted against N in Fig. 4.
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Efficient Coding of a Binary Source
with One Very Infrequent Symbol*

Claude E. Shannon

Abstract

Details are given of a coding system for a binary source of information with one highly
infrequent symbol. This code approaches the ideal compression ratio as the probability p of the
infrequent symbol approaches zero.

In the paper "A Mathematical Theory of Communication," an information source was
considered which produces a sequence of A's and B's, successive choices independent, with
probability p for A, q = 1 - p for B, and with p much less than q. A simple and reasonably
efficient coding into D's and l's was mentioned which approaches ideal encoding as p ~ O.
That is, the ratio of the expected length of the encoded text to the length of original text
asymptotically approaches the entropy of this source:

H = - p log p - q log q .

When p is small H is approximately p log ep- I .

Several people have requested details of this analysis. This note proves this result for a
coding system similar to that described in the communication paper, but simplified slightly to
facilitate calculation.

The infrequent letter A with probability p is represented in the code by I O's (000 ... 0). The
series of B's following each A is represented by giving a binary number telling the number of
B's. This binary number is filled out at the beginning with additional D's (if necessary) to give
an even multiple of / - 1 binary digits. At positions I + 1, 2/ + 1, etc., l's are inserted both
as markers and to prevent the possibility of I O's appearing in the code associated with the B's.
The following example shows how this would work when I = 5, so that A = 00000. Suppose
the original message is

A, 15 B's, A, 1024 B's, A, 45 B's, A, A, one B, ...

Then the encoded form is

00000
A

11111
no. of B's

15 in binary
form

00000
A

10100 I 10000 I 10000

f- 1024 in binary form ~

00000 10010 I 11101 00000 00000 10001

A <E-45 -3> A A

It is clear that this code can be uniquely decoded to recover the original text.

* Bell Laboratories Memorandum. Jan. 29, 1954.
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A sequence of n B's will require not more than

I
[log 2 (n + I) + I + (I - I)] I _ I

C. E. Shannon

(I)

binary digits in its encoded form, The term log 2 (n + 1) + 1 is a pessimistic estimate of the
number of digits in the binary expression for n, (I - 1) is the worst possible number of added
digits to give a multiple of I - 1 and the factor II (I - I) accounts for the number of added 1's
used as markers.

The A preceding a sequence of 11 B's adds I more binary digits, giving a total of less than

It=1 log, tn + I) + 21 + 2 .

The probability (or relative frequency) of a sequence consisting of A followed by n B's is
p q", Therefore the expected number of binary digits in the corresponding encoded form,
averaged over all n, is less than

r pqn [_I- IOg2( n + 1) + 2' + 2].
n =0 I - 1

We now prove that this sum is less than _1_ log , p-I + (21 + 2). We have
I - 1

11+1 2 3 n+1

log2 (n + 1) = J dx = J dx + J dx + .. , + J dx
x IX 2 X n X

1 I
<1+-+-+ +-

2 3 n

, 00

Hence the term --p r q n log 2 (n + 1) is less than
/ - 1 n=1

-'-p [q + q2(1 + .!.) + q3(1 + .!. + .!.) + ...] .
I - I 2 2 3

By rearranging terms in the sum (the series is absolutely convergent) we obtain

-'- p [(q + L + !L + ...) + (q2 + !L + L + ... ) + ...]
I-I 2 3 2 3

= _l_p [lOg2 (1 - q) + q log 2 (1 - q) + q 2 log 2 (I - q)
I - 1

+ q 3 10g 2 (I - q) + ...J

= 6p [I + q + q2 + ..}og2 (I - q)

I 1 1= -- P --log2 p-
I - 1 1 - q

I I - J
=~ og2 P
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The entire expression (1) is therefore less than

-/L: log p-l + (2/ + 2) .
- 1

If we let' = (~ log 2 P- I ) 1/2 this is approximated, when p is small, by

log p - I + 2 (-V 2 log p - I + 1) ,

211

(2)

ignoring terms whose ratio to those given approaches zero as p ~ O.

Expression (2) is therefore an approximation to the average encoded length of a sequence
consisting of A followed by a group of B's. In the original message A occurs «' of the time,
on the average. Therefore in the original the average length of the subgroups of this type is
p-l. The message has been reduced in length, on the average (or for a very long message), in
the ratio

log p - I + 2C~ 2 log p - I + 1)
p-l

As p approaches zero this approaches the value

p log e p-l .

Hence the code approaches the ideal compression ratio as p goes to zero.



Information Theory*

Claude E. Shannon

One of the most prominent features of 20th-century technology is the development and
exploitation of new communication mediums. Concurrent with the growth of devices for
transmitting and processing information, a unifying theory was developed and became the
subject of intensive research.

This theory, known as communication theory, or, in its broader applications, information
theory, is concerned with the discovery of mathematical laws governing systems designed to
communicate or manipulate information. It sets up quantitative measures of information and of
the capacity of various systems to transmit, store and otherwise process information,

Some of the problems treated relate to finding the best methods of utilizing various
available communication systems, the best methods of separating signals from noise and the
problem of setting upper bounds on what it is possible to do with a given channel. While the
central results are chiefly of interest to communication engineers, some of the concepts have
been adopted and found useful in such fields as psychology and linguistics.

Information is interpreted in its broadest sense to include the messages occurring in any of
the standard communication mediums such as telegraphy, radio or television, the signals
involved in electronic computing machines, servomechanisms systems and other data-
processing devices, and even the signals appearing in the nerve networks of animals and man.
The signals or messages need not be meaningful in any ordinary sense. This theory, then, is
quite different from classical communication engineering theory which deals with the devices
employed but not with that which is communicated.

Central Problems of Communication Theory. The type of communication system that has
been most extensively investigated is shown in Fig. 1. It consists of the following:

I. An information source which produces the raw information or "message" to be
transmitted.

2. A transmitter which transforms or encodes this information into a form suitable for the
channel. This transformed message is called the signal.

3. The channel on which the encoded information or signal is transmitted to the receiving
point. During transmission the signal may be changed or distorted. In radio, for example,
there often is static, and in television transmission so-called "snow." These disturbing
effects are known generally as noise, and are indicated schematically in Fig. 1 by the noise
source.

4. The receiver, which decodes or translates the received signal back into the original
message or an approximation of it.

5. The destination or intended recipient of the information,

* Reprinted with permission from Encyclopaedia Brittanica, 14th edition, © 1968 by Encyclopaedia Britannica,
Inc.
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INFORMATION
SOURCE

DESTINATION

Figure I. Diagram of general communication system

It will be seen that this system is sufficiently general to include a wide variety of
communication problems if the various elements are suitably interpreted. In radio, for example,
the information source may be a person speaking into a microphone. The message is then the
sound that he produces, and the transmitter is the microphone and associated electronic
equipment which changes this sound into an electromagnetic wave, the signal. The channel is
the space between the transmitting and receiving antennas, and any static or noise disturbing
the signal corresponds to the noise source in the schematic diagram. The home radio is the
receiver in the system and its sound output the recovered message. The destination is a person
listening to the message.

A basic idea in communication theory is that information can be treated very much like a
physical quantity such as mass or energy. A homely analogy may be drawn between the
system in Fig. I and a transportation system; for example, we can imagine an information
source to be like a lumber mill producing lumber at a certain point. The channel in Fig. I might
correspond to a conveyor system for transporting the lumber to a second point. In such a
situation there are two important quantities: the rate R (in cubic feet per second) at which
lumber is produced at the mill, and the capacity (in cubic feet per second) of the conveyor.
These two quantities determine whether or not the conveyor system will be adequate for the
lumber mill. If the rate of production R is greater than the conveyor capacity C, it will certainly
be impossible to transport the full output of the mill; there will not be sufficient space available.
If R is Jess than or equal to C, it mayor may not be possible, depending on whether the lumber
can be packed efficiently in the conveyor. Suppose, however" that we allow ourselves a
sawmill at the source. This corresponds in our analogy to the encoder or transmitter. Then the
lumber can be cut up into small pieces in such a way as to fill out the available capacity of the
conveyor with 100% efficiency. Naturally in this case we should provide a carpenter shop at
the receiving point to fasten the pieces back together in their original form before passing them
on to the consumer.

If this analogy is sound, we should be able to set up a measure R in suitable units telling the
rate at which information is produced by a given information source, and a second measure C
which determines the capacity of a channel for transmitting information. Furthermore, the
analogy would suggest that by a suitable coding or modulation system, the information can be
transmitted over the channel if and only if the rate of production R is not greater than the
capacity C. A key result of information theory is that it is indeed possible to set up measures R
and C having this property.

Measurement of Information. Before we can consider how information is to be measured it
is necessary to clarify the precise meaning of "information" from the point of view of the
communication engineer. Often the messages to be transmitted have meaning: they describe or
relate to real or conceivable events. However, this is not always the case. In transmitting
music" the meaning, if any" is much more subtle than in the case of a verbal message. In some
situations the engineer is faced with transmitting a totally meaningless sequence of numbers or
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letters. In any case, meaning is quite irrelevant to the problem of transmitting the information,
It is as difficult to transmit a series of nonsense syllables as it is to transmit straight English text
(more so, in fact). The significant aspect of information from the transmission standpoint is the
fact that one particular message is chosen from a set of possible messages. What must be
transmitted is a specification of the particular message which was chosen by the information
source. The original message can be reconstructed at the receiving point only if such an
unambiguous specification is transmitted. Thus in information theory, information is thought
of as a choice of one message from a set of possible messages. Furthermore, these choices
occur with certain probabilities; some messages are more frequent than others.

The simplest type of choice is a choice from two equally likely possibilities; that is, each
has a probability 1/2. This is the situation, for example, when a coin is tossed which is equally
likely to come up heads or tails. It is convenient to use the amount of information produced by
such a choice as the basic unit and this basic unit is called a binary digit Of, more briefly, a
"bit." The choice involved with one bit of information can be indicated schematically as in
Fig. 2(A). At point b either the upper or lower line may be chosen with probability 1/2 for
each possibility.

b b

1/8
1/8
1/8
1/8
1/8
1/8
1/8
1/8

A B
Figure 2. A choice from (A) two possibilities; (B) eight possibilities.

If there are N possibilities, all equally likely, the amount of information is given by log 2 N.
The reason for this can be seen from Fig. 2(B), where there are eight possibilities each with
probability 1/8. The choice can be imagined to occur in three stages, each involving one bit.
The first bit corresponds to a choice of either the first four or the second four of the eight
possibilities, the second bit corresponds to the first or second pair of the four chosen, and the
final bit determines the first or second member of the pair. It will be seen that the number of
bits required is log2N, in this case log28 = 3.

If the probabilities are not equal, the formula is more complicated. When the choices have
probabilities PI' P2, ... , Pn» the amount of information H is given by

H = - (P 1 log2P I + P210g2P2 + ... + Pnlog2Pn) .
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This formula for the amount of information gives values ranging from zero - when one of
the two events is certain to occur (i.e. has a probability of 1) and all others are certain not to
occur (i.e. have probability 0) - to a maximum value of log 2 N when all events are equally
probable (i.e, have probability 1/N). These situations correspond intuitively to the minimum
information produced by a particular event (when it is already certain what will occur) and the
greatest information or the greatest prior uncertainty of the event.

The parlor game "Twenty Questions" illustrates some of these ideas. In this game, one
person thinks of an object and the other players attempt to determine what it is by asking not
more than twenty questions that can be answered "yes 'J or "no." According to information
theory each question can, by its answer, yield anywhere from no information to log 2 2 or one
bit of information, depending upon whether the probabilities of "yes" and "no" answers are
very unequal or approximately equal. To obtain the greatest amount of information, the players
should ask questions that subdivide the set of possible objects, as nearly as possible, into two
equally likely groups. For example, if they have established by previous questions that the
object is a town in the United States, a good question would be, "Is it east of the Mississippi?"
This divides the possible towns into two roughly equal sets. The next question then might be,
"Is it north of the Mason-Dixon line?" If it were possible to choose questions which always
had the effect of subdividing into two equal groups, it would be possible to isolate, in
twenty questions, one object from approximately 1,000,000 possibilities. This corresponds to
twenty bits.

The formula for the amount of information is identical in form with equations representing
entropy in statistical mechanics, and suggests that there may be deep-lying connections
between thermodynamics and information theory. Some scientists believe that a proper
statement of the second law of thermodynamics requires a term relating to information. These
connections with physics, however, do not have to be considered in the engineering and other
applications of information theory.

Most information sources produce a message which consists not of a single choice but of a
sequence of choices; for example, the letters of printed text or the elementary words or sounds
of speech. The writing of English sentences can be thought of as a process of choice: choosing
a first word from possible first words with various probabilities; then a second, with
probabilities depending on the first; etc. This kind of statistical process is called a stochastic
process, and information sources are thought of, in information theory, as stochastic processes.
A more general formula for H can be given which determines the rate at which information is
produced by a stochastic process or an information source.

Printed English is a type of information source that has been studied considerably. By
playing a kind of "Twenty Questions" game, suitably modified, with subjects trying to guess
the next letter in an English sentence, it can be shown that the information rate of written
English is not more than about one bit per letter. This is a result of the very unequal
frequencies of occurrence of different letters (for example, E is very common in English while
Z, Q and X are very infrequent), of pairs of letters (TH is very common and QZ very rare), and
the existence of frequently recurring words, phrases and so on. This body of statistical data
relating to a language is called the statistical structure of the language. If all 26 letters and the
space in English had equal frequencies of occurrence (i.e. each had probability 1/27) and the
occurrence of each letter of text was independent of previous letters, the information rate would
be log , 27, or about 4.76 bits per letter. Since only one bit actually is produced, English is said
to be about 80% redundant.

The redundancy of English is also exhibited by the fact that a great many letters can be
deleted from a sentence without making it impossible for a reader to fill the gaps and determine
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the original meaning. For example, in the following sentence the vowels have been deleted:

MST PPL HV LTTL DFFCLTY N RDNG THS SNTNC.

As might easily be deduced, redundancy in a language plays an important role in the science of
cryptography.

Encoding Information. An important feature of the measure of information, H, is that it
determines the saving in transmission time that is possible, by proper encoding, due to the
statistics of the message source. To illustrate this, consider a model language in which there are
only four letters - A, B, C and D. Suppose these letters have the probabilities 1/2, 1/4, 1/8
and 1/8. In a long text in this language, A will occur one-half the time, B one-quarter of the
time and C and D each one-eighth of the time. Suppose this language is to be encoded into
binary digits, 0 or 1, as for example in a pulse system with two types of pulse. The most direct
code is the following:

A = 00; B = 01; C = 10; D = 11 .

This code requires two binary digits per letter of message. By proper use of the statistics, a
better code can be constructed as follows:

A = 0; B = 10; C = 110; D = 111 .

It is readily verified that the original message can be recovered from its encoded form,
Furthermore, the number of binary digits used is smaller on the average. It will be, in fact,

I 1 1 1 3
2(1) + "4(2) + 8(3) + 8(3) = 1"4 '

where the first term is due to the letter A, which occurs half the time and is one binary digit

long, and similarly for the others. It may be found by a simple calculation that I ~ is just the

value of H, calculated for the probabilities 1/2, 1/4, 1/8, }/8.

The result verified for this special case holds generally - if the information rate of the
message is H bits per letter, it is possible to encode it into binary digits using, on the average,
only H binary digits per letter of text. There is no method of encoding which uses less than this
amount.

This important result in information theory gives a direct meaning to the quantity H which
measures the information rate for a source or a language. It says, in fact, that H can be
interpreted as the equivalent number of binary digits when the language or source is encoded in
oand I in the most efficient way. For instance, if the estimate of one bit per letter, mentioned
above as the rate for printed English, is correct, then it is possible to encode printed English
into binary digits using, on the average, one for each letter of text; and, furthermore, no
encoding method would average less than this.

Capacity of a Channel. Now consider the problem of defining the capacity C of a channel for
transmitting information. Since the rate of production for an information source has been
measured in bits per second, we would naturally like to measure C in the same units. The
question then becomes, what is the maximum number of binary digits per second that can be
transmitted over a given channel? In some cases the answer is simple. With a teletype channel
there are 32 possible symbols. By calculating log 232 it is found that each symbol represents
5 bits, provided the possible symbols are used with equal probability. Therefore, if we can send
n symbols per second, and the noise level is not high enough to introduce any errors during
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transmission, we can send 5 n bits per second.

The problem of calculating the capacity of a channel is usually more complex than this
example because of disturbing noise. As an example, suppose there are two possible kinds of
pulse that can be transmitted in a system, a 0 pulse and a 1 pulse. Suppose further than when 0
is transmitted it is received as 0 nine-tenths of the time, but one-tenth of the time noise causes it
to be received as 1. Conversely, suppose a transmitted 1 is received as 1 nine-tenths of the time
but distorted into a 0 pulse one-tenth of the time. This type of channel is called a binary
symmetric channel. It and other noisy channels have definite capacities that can be calculated
by appropriate formulas. In this particular case, the capacity is about 0.53 bits per pulse.

The meaning of the capacity of such a noisy channel may be roughly described as follows.
It is possible to construct codes that will transmit a series of binary digits at a rate equal to the
capacity. This can be done in such a way that they can be decoded at the receiving point with a
very small probability of error. These codes are called error-correcting codes, and are so
constructed that the type of transmission errors likely to occur in the channel can be corrected at
the receiving point. Finally, it is not possible to transmit at a higher rate than the channel
capacity and retain this error-correcting property.

The functioning of error-correcting codes can be likened to the ability of a person to correct
a reasonable number of typographical errors in a manuscript because of his knowledge of the
structure and context of the language. Much of the work in information theory centers around
the theory and construction of such error-correcting codes.

Band-limited Channels. A frequently occurring restriction on communication channels is that
the signals must lie within a certain band of frequencies W cycles per second wide. A result
known as the sampling theorem states that a signal of this type can be specified by giving its
values at a series of equally spaced sampling points 1/2W seconds apart. Thus it may be said
that such a function has 2W degrees of freedom, or dimensions, per second.

If there were no noise whatever on such a channel it would be possible to distinguish an
infinite number of different amplitude levels for each sample. Consequently, in principle, an
infinite number of binary digits per second could be transmitted, and the capacity C would be
infinite. In practice, there is always some noise, but even so if no limitations are placed on the
transmitter power P, the capacity will be infinite, since at each sample point an unlimited
number of different amplitude levels may be distinguished. Only when noise is present and the
transmitter power is limited in some way does the capacity C become finite. This capacity
depends on the statistical structure of the noise as well as the nature of the power limitation.

The simplest type of noise is resistance noise, produced in an electrical resistor by thermal
effects. This type of noise is completely specified by giving its average power N.

The simplest limitation on transmitter power is the assumption that the average power
delivered by the transmitter is not greater than P. If a channel is defined by these three
parameters W, P and N, the capacity C can be shown to be

C W I P + N (bi d= og 2 N Its per secon )

The implication of this formula is that it is possible, by properly choosing the signal functions,

. W I P + N b· diai d d h h . . .to transmit og 2 mary igits per secon an to recover t em at t e receiving pomt
N

with as small a frequency of errors as desired. It is not possible to transmit binary digits at any
higher rate with an arbitrarily small frequency of errors.
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Encoding systems in current use, pulse-code modulation and pulse-position modulation, use
about four times the power predicted by the ideal formula, Unfortunately, as one attempts to
approach more closely this ideal, the transmitter and receiver required become more
complicated and the delays increase.

The relation

p
C = W log , (I + -)

N

can be regarded as an exchange relation between the bandwidth Wand the signal-to-noise ratio
PIN. Keeping the channel capacity fixed, the bandwidth can be decreased provided the signal-
to-noise ratio is sufficiently increased. Conversely, an increase in bandwidth allows a lower
signal-to-noise ratio in the channel.

One method of exchanging bandwidth for signal-to-noise ratio is shown in Fig. 3. The
upper curve represents a signal function whose bandwidth is such that it can be specified by
giving the samples shown. Each sample has five amplitude levels. The lower curve is obtained
by combining pairs of samples from the first curve as shown. If the pair of samples from the
upper curve have amplitudes x and y, a single amplitude z for the lower curve is computed from
the formula

z = 5x + Y .

5 AMPLITUDE
LEVELS

BANDWIDTH = 2

25 AMPLITUDE
LEVELS

BANDWIDTH = 1

+10
=2x5

+7
=5+2 -2

Figure 3. The exchange of bandwidth for signal-to-noise ratio (z = 5x + y).

z

+9
=2x5 .. 1

The five possible values of x combined with the five possible values of y produce 25 possible
values of z which must be distinguished. However, the samples now occur only half as
frequently; consequently the band is reduced by half, at the cost of increasing the signal-to-
noise ratio. Operating this in reverse doubles the band but reduces the required signal-to-noise
ratio.

To summarize, there are three essentially different ways in which bandwidth can be reduced
in a system such as television or speech transmission. The first is the straightforward exchange
of bandwidth for signal-to-noise ratio just discussed. The second method is utilization of the
statistical correlations existing in the message. This capitalizes on particular properties of the
information source feeding the channel. Finally, particular properties of the ultimate
destination of the messages can be used. Thus in speech transmission the ear is relatively
insensitive to phase distortion. Consequently, phase information is not as important as
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amplitude information, and need not be sent so accurately, resulting in a saving of bandwidth or
of power. In general, the exploitation of particular ~ 'sensitivities.' or ~ 'blindness' in the
destination requires a proper matching of the channel to the destination.

Filtering and Prediction Problem. Another type of problem that has been studied extensively
in the field of information theory is that of determining the best devices for eliminating noise
from a signal and predicting the future value of the signal. These are known as the filtering and
prediction problems. The two problems may also occur in combination if it is desired to predict
the future value of a noisy signal. Possible applications of the filtering problem occur in the
detection of various types of communication signals which have been corrupted by noise or in
the smoothing of data subject to observational error. The prediction problem, with or without
filtering, may arise, for example, in weather or economic forecasting or in the control of gun
directors, where it is desired to predict the future position of a moving target.

The most successful work in this general field has been carried out under the following two
assumptions. First, the best prediction or filtering is interpreted to be that which minimizes the
mean-square error between the computed value and the true value. Second, the devices
performing these operations are assumed to perform linear operations on the signals which they
filter or predict. Under these conditions, substantially complete solutions have been found
specifying the characteristics of predicting or filtering device in terms of the power spectra of
the signal and of the noise.

Cryptography, Linguistics and Other Applications. Some applications have been made in
the fields of cryptography and linguistics. It is possible to formulate a theory of cryptography
or secrecy systems in terms of the concepts occurring in information theory. When this is done,
it appears that the information rate R of a language is intimately related to the possibility of
solving cryptograms in that language. The smaller this rate, the easier such a solution becomes
and the less material is necessary to render such a solution unique. Indeed, within limits, the
theory becomes quantitative and predictive, giving means of calculating how much material
must be intercepted in a given language and with a given cipher in order to ensure the existence
of a unique solution.

A study has been made of the distribution of lengths and frequency of occurrence of the
different words in a language such as English. It has been found, for example, that the relative
frequency of the nth most frequent word may be expressed quite closely by a formula of the
type P(n + m)": with suitable constants for P, m and b. Experimental data of this type can be
explained as consequences of the assumption that a language gradually evolves under continued
use into an efficient communication code.

Psychologists have discovered interesting relationships between the amount of information
in a stimulus and reaction time to the stimulus. For example, an experiment can be set up in
which there are four lights and four associated push buttons. The lights go on in a random
order and the subject is required to press the corresponding button as quickly as possible after a
light goes on. It develops that the average time required for this reaction increases linearly with
an increase in the amount of information conveyed by the lights. This experimental result
holds true under a wide variety of changes in the experiment: the number of lights, the
probabilities of different lights, and even varying correlations between successive lights.

These results suggest that under certain conditions the human being, in manipulating
information, may adopt codes and methods akin to those used in information theory.
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The Zero Error Capacity of a Noisy Channel

Claude E. Shannon

Abstract

The zero error capacity C 0 of a noisy channel is defined to be the least upper bound of rates
at which it is possible to transmit information with zero probability of error. Various properties
of Co are studied; upper and lower bounds and methods of evaluation of C 0 are given.
Inequalities are obtained for the Co relating to the "sum" and "product" of two given
channels. The analogous problem of zero error capacity C OF for a channel with a feedback link
is considered. It is shown that while the ordinary capacity of a memoryless channel with
feedback is equal to that of the same channel without feedback, the zero error capacity may be
greater. A solution is given to the problem of evaluating COF.

Introduction

The ordinary capacity C of a noisy channel may be thought of as follows. There exists a
sequence of codes for the channel of increasing block length such that the input rate of
transmission approaches C and the probability of error in decoding at the receiving point
approaches zero. Furthermore, this is not true for any value higher than C. In some situations
it may be of interest to consider, rather than codes with probability of error approaching zero,
codes for which the probability is zero and to investigate the highest possible rate of
transmission (or the least upper bound of these rates) for such codes. This rate, Co, is the main
object of investigation of the present paper. It is interesting that while C 0 would appear to be a
simpler property of a channel than C, it is in fact more difficult to calculate and leads to a
number of as yet unsolved problems.

We shall consider only finite discrete memoryless channels. Such a channel is specified by
a finite transition matrix [p; (})], where p; (j) is the probability of input letter i being received
as output letter j (i = 1,2, ... , a; j == 1,2, ... , b) and Ep i (j) = 1. Equivalently, such a

j

channel may be represented by a line diagram such as that shown in Fig. 1.

The channel being memoryless means that successive operations are independent. If the
input letters i and j are used, the probability of output letters k and I will be Pi (k) Pj (I). A
sequence of input letters will be called an input word, a sequence of output letters an output
word. A mapping of M messages (which we may take to be the integers 1,2, ... ,M) into a

subset of input words of length 11 will be called a block code of length n. R = 1.. log M will be
n

called the input rate for this code. Unless otherwise specified, a code will mean such a block
code. We will, throughout, use natural logarithms and natural (rather than binary) units of
information, since this simplifies the analytical processes that will be employed.

A decoding system for a block code of length n is a method of associating a unique input
message (integer from 1 to M) with each possible output word of length n, that is, a function
from output words of length n to the integers I to M. The probability of error for a code is the
probability when the M input messages are each used with probability 1/M that the noise and
the decoding system will lead to an input message different from the one that actually occurred.

221
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Fig. 1

If we have two given channels, it is possible to form a single channel from them in two
natural ways which we call the sum and product of the two channels. The sum of two channels
is the channel formed by using inputs from either of the two given channels with the same
transition probabilities to the set of output letters consisting of the logical sum of the two output
alphabets. Thus the sum channel is defined by a transition matrix formed by placing the matrix
of one channel below and to the right of that for the other channel and filling the remaining two
rectangles with zeros. If [p i (j)] and [p; (j)] are the individual matrices, the sum has the
following matrix:

o

pt(r) 0

o p~(l)

o

o
p~ (r')

The product of two channels is the channel whose input alphabet consists of all ordered
pairs ti, i') where i is a Jetter from the first channel alphabet and i' from the second, whose
output alphabet is the similar set of ordered pairs of letters from the two individual output
alphabets and whose transition probability from (i, i' ) to (j,j' ) is Pi (j) p;' Ci').

The sum of channels corresponds physically to a situation where either of two channels may
be used (but not both), a new choice being made for each transmitted letter. The product
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channel corresponds to a situation where both channels are used each unit of time. It is
interesting to note that multiplication and addition of channels are both associative and
commutative, and that the product distributes over a sum. Thus one can develop a kind of
algebra for channels in which it is possible to write, for example, a polynomial I:a n K", where
the a n are non-negative integers and K is a channel. We shall not, however, investigate here
the algebraic properties of this system.

The Zero Error Capacity

In a discrete channel we will say that two input letters are adjacent if there is an output
letter which can be caused by either of them. Thus i and j are adjacent if there exists a t such
that both Pi (t) and Pi (t) do not vanish. In Fig. 1, a and c are adjacent, while a and d are not.

If all input letters are adjacent to each other, any code with more than one word has a
probability of error at the receiving point greater than zero. In fact, the probability of error in
decoding words satisfies

p > M - 1 n
e - ~Pmin'

where Pmin is the smallest (nonzero) number among the p ,(j), n is the length of the code and M
is the number of words in the code. To prove this, note that any two words have a possible
output word in common, namely the word consisting of the sequence of common output letters
when the two input words are compared letter by letter. Each of the two input words has a
probability at least P~in of producing this common output word. In using the code, the two

particular input words will each occur ...!- of the time and will cause the common output
M

~ P~in of the time. This output can be decoded in only one way. Hence at least one of these

situations leads to an error. This error probability, _1_ P~in' is assigned to this code word, and
M

from the remaining M - 1 code words another pair is chosen. A source of error to the amount

~ P~in is assigned in similar fashion to one of these, and this is a disjoint event. Continuing

in this matter, we obtain a total of at least M;; I P~in as probability of error.

If it is not true that the input letters are all adjacent to each other, it is possible to transmit at
a positive rate with zero probability of error. The least upper bound of all rates which can be
achieved with zero probability of error will be called the zero error capacity of the channel and
denoted by Co. If we let M 0 (n) be the largest number of words in a code of length n, no two of

which are adjacent, then Co is the least upper bound of the numbers 1- log M0 (n) when n
n

varies through all positive integers.

One might expect that C 0 would be equal to log M0 ( 1), that is, that if we choose the
largest possible set of non-adjacent letters and form all sequences of these of length n, then this
would be the best error-free code of length n. This is not, in general, true, although it holds in
many cases, particularly when the number of input letters is small. The first failure occurs with
five input letters with the channel in Fig. 2. In this channel, it is possible to choose at most two
nonadjacent letters, for example 0 and 2. Using sequences of these, 00, 02, 20, and 22 we
obtain four words in a code of length two. However, it is possible to construct a code of length
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two with five members no two of which are adjacent as follows: 00, 12, 24, 31, 43. It is readily
verified that no two of these are adjacent. Thus C 0 for this channel is at least 12 log 5.

No method has been found for determining C 0 for the general discrete channel, and this we
propose as an interesting unsolved problem in coding theory. We shall develop a number of
results which enable one to determine Coin many special cases, for example, in all channels
with five or fewer input letters with the single exception of the channel of Fig. 2 (or channels
equivalent in adjacency structure to it). We will also develop some general inequalities
enabling one to estimate C0 quite closely in most cases.

It may be seen, in the first place, that the value of C 0 depends only on which input letters
are adjacent to each other. Let us define the adjacency matrix [A ij J for a channel, as follows:

A .. = f I if input letter j is adjacent to j or if j = j ,
IJ 10 otherwise.

Suppose two channels have the same adjacency matrix (possibly after renumbering the input
letters of one of them). Then it is obvious that a zero error code for one will be a zero error
code for the other and, hence, that the zero error capacity C 0 for one wiJl also apply to the
other.

The adjacency structure contained in the adjacency matrix can also be represented as a
linear graph. Construct a graph with as many vertices as there are input letters, and connect two
distinct vertices with a line or branch of the graph if the corresponding input letters are
adjacent. Two examples are shown in Fig. 3, corresponding to the channels of Figs. 1 and 2.

Theorem 1: The zero error capacity Co of a discrete memoryless channel is bounded by the
inequalities

where

1: P; = 1,P; ~O, ~ Pi(j) = I,Pi(j) ~O,

j

and C is the capacity of any channel with transition probabilities Pi (j) and having the
adjacency matrix A ii:
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The upper bound is fairly obvious. The zero error capacity is certainly less than or equal to
the ordinary capacity for any channel with the same adjacency matrix since the former requires
codes with zero probability of error while the latter requires only codes approaching zero
probability of error. By minimizing the capacity through variation of the P;(j) we find the
lowest upper bound available through this argument. Since the capacity is a continuous
function ofthepi(j) in the closed region defined by Pi(j) ~ 0, "£Pi(j) = 1, we may write

j

min instead of greatest lower bound.

It is worth noting that it is only necessary to consider a particular channel in performing this
minimization, although there are an infinite number with the same adjacency matrix. This one
particular channel is obtained as follows from the adjacency matrix. If A ik = 1 for a pair i k,
define an output letter j with Pi (j) and P k (j) both differing from zero. Now if there are any
three input letters, say i k I, all adjacent to each other, define an output letter, say m, with
Pi (m ) Pk (m ) P I (m) all different from zero. In the adjacency graph this corresponds to a
complete subgraph with three vertices. Next, subsets of four letters or complete subgraphs with
four vertices, say i kim, are given an output letter, each being connected to it, and so on. It is
evident that any channel with the same adjacency matrix differs from that just described only
by variation in the number of output symbols for some of the pairs, triplets, etc., of adjacent
input letters. If a channel has more than one output symbol for an adjacent subset of input
letters, then its capacity is reduced by identifying these. If a channel contains no element, say
for a triplet i k I of adjacent input letters, this will occur as a special case of our canonical
channel which has output letter m for this triplet when Pi (m), Pie: (m) and PI (m) all vanish.

The lower bound of the theorem will now be proved. We use the procedure of random
codes based on probabilities for the letters Pi' these being chosen to minimize the quadratic
form ~ A ij PiPi: Construct an ensemble of codes each containing M words, each word n letters

I)

long. The words in a code are chosen by the following stochastic method. Each letter of each
word is chosen independently of all others and is the letter i with probability Pi' We now
compute the probability in the ensemble that any particular word is not adjacent to any other
word in its code. The probability that the first letter of one word is adjacent to the first letter of



226 C. E. Shannon

a second word is ~ A ij P ;Pj' since this sums the case of adjacency with coefficient 1 and those
IJ

of non-adjacency with coefficient O. The probability that two words are adjacent in all letters,
and therefore adjacent as words, is (~ A ijPiP j ) n • The probability of non-adjacency is

ij

therefore 1 - (~ Aij PiP j ) ", The probability that all M - 1 other words in a code are not
ij

adjacent to a given word is, since they are chosen independently,

[ j
M - l

I - (~ AijPjPj)n

which is, by a well known inequality, greater than 1 - (M - 1)(~ A ijPiP j ) ", which in tum is
ij

greater than I - M(~ A i] PiP j ) ", If we set M = (I - E) n (~ A ij PiPj ) "", we then have,
ij ij

by taking E small, a rate as close as desired to -log ~ A ij PiPi: Furthermore, once E is
;j

chosen, by taking n sufficiently large we can insure that M(~ AijP;Pj)n = (1 - e)" is as
ij

small as desired, say, less than b. The probability in the ensemble of codes of a particular word
being adjacent to any other in its own code is now less than O. This implies that there are codes
in the ensemble for which the ratio of the number of such undesired words to the total number
in the code is less than or equal to B. For, if not, the ensemble average would be worse than b.
Select such a code and delete from it the words having this property. We have reduced our rate
only by at most loge 1 - b) - J; since E and b were both arbitrarily small, we obtain error-free
codes arbitrarily close to the rate -log min 1:A ij P i Pi as stated in the theorem.

P, ij

In connection with the upper bound of Theorem 1, the following result is useful in
evaluating the minimum C. It is also interesting in its own right and will prove useful later in
connection with channels having a feedback link.

Theorem 2: In a discrete memoryless channel with transition probabilities Pi (j) and input
letter probabilities Pi the following three statements are equivalent.

1) The rate of transmission

R = ~ P,.Pi(j) log (Pi(j)/ 1: PtPk(j»
i,j k

is stationary under variation of all non-vanishing P; subject to 1:Pi = 1 and under variation of
i

Pi (j) for those Pi (j) such that PiP i (j) > 0 and subject to I: Pi (j) = 1.
i

2) The mutual information between input-output pairs Ii) = log(p;(j)/ ~ PkPk(j» is
k

constant, 1ij = I, for all ij pairs of non-vanishing probability (i.e. pairs for which

r.e..» > 0).

3)Wehavepi(}) = rj' a function ofjonly, wheneverPiPj(j) > 0; and also ~ Pi = h,
ie.S,

a constant independent of j where S j is the set of input letters that can produce output letter j
with probability greater than zero. We also have / = log h- I

.
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The Pi (j) and Pi corresponding to the maximum and minimum capacity when the Pi (j)
are varied (keeping, however, any Pi (j) that are zero fixed at zero) satisfy 1),2) and 3).

Proof: We will show first that 1) and 2) are equivalent and then that 2) and 3) are
equivalent.

R is a bounded continuous function of its arguments P,. and Pi (j) in the (bounded) region
of allowed values defined by L P,. = I, Pi 2:' 0, r Pi(j) = I, Pi (j) 2:' O. R has a finite partial

j

derivative with respect to any p,. (j) > O. In fact, we readily calculate

A necessary and sufficient condition that R be stationary for small variation of the non-
vanishing Pi (j) subject to the conditions given is that

oR
Op,.(j)

for all i, i. k such that Pi, Pi (j), Pi (k) do not vanish. This requires that

Pi JogPi(])/ L P mPm(j) = Pi log pi(k)/ L P mPm(k) .
m m

If we let Q j = L PmPm(j), the probability of output letter j, then this is equivalent to
m

p,.(k)
=

Qk

In other words, p,.(j)/Qj is independent of i. a function of i only, whenever Pi > 0 and
p;(j) > O. This function of r we call u.. Thus

unless PiPi(j) = O.

Now, taking the partial derivative of R with respect to Pi we obtain:

iJR . p,.(j)
- = L Pi (J) log -- - 1 .ap,. j o,

For R to be stationary subject to ~ Pi = 1 we must have oR/ iJPi = aRIaPI<. Thus
I

. p,.(j) . Pk(j)
~Pi(J)log-Q' = ~Pk(J) log -Q. .
J J } J

Since for P,.Pi(j) > 0 we havepi(j)/Qj = ai' this becomes

L Pi(j) log a, = LPk(j)logak
j j
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Thus a, is independent of i and may be written as o. Consequently

Pi(j)
= a,

Qj

I
Pi (j)

og-- = log a = I
Qj

C. E. Shannon

whenever P .p, (j) > O.

The converse result is an easy reversal of the above argument. If

I
Pi(j)

og -- = I,
Qj

then aRIdP i = I - I, by a simple substitution in the dRIdP i formula. Hence R is stationary
under variation of Pi constrained by 'rP i = 1. Further, dRldPi(j) = Pi J = dRldPi(k), and
hence the variation of R also vanishes subject to 'rp i (j) = I.

j

We now prove that 2) implies 3). Suppose log Pi(j) = I whenever PiPi(j) > O. Then
Qj

pj(j) = elQj, a function of j only under this same condition. Also, if qj(i) is the conditional
probability of i given), then

Qjqj(i)

P;Q j

qj(i) == e1p; ,

1 = ~ qj(i) == e1~ Pi .
;E5

j
iE5

j

To prove that 3) implies 2), we assume Pi (j) = rj when P;Pi (j) > O. Then

PiPi(})

PiQj

Now, summing the equation PiAj == qj(i) over ieSj and using the assumption from 3) that
"LP; = h, we obtain
5,

h Aj = 1 ,

so Aj is h- 1 and independent of j. Hence I ti = I = log h- I •

The last statement of the theorem concerning minimum and maximum capacity under
variation of Pi ( j) follows from the fact that R at these points must be stationary under variation
of all non-vanishing Pi and Pi(j), and hence the corresponding Pi and Pi(j) satisfy condition
I) of the theorem.

For simple channels it is usually more convenient to apply particular tricks in trying to
evaluate C 0 instead of the bounds given in Theorem 1, which involve maximizing and
minimizing processes. The simplest lower bound, as mentioned before, is obtained by merely
finding the logarithm of the maximum number of non-adjacent input letters.
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A very useful device for determining C 0 which works in many cases may be described
using the notion of an adjacency-reducing mapping. By this we mean a mapping of letters into
other letters, i ---) a(i), with the property that if i and j are not adjacent in the channel (or
graph) then a(i) and a(j) are not adjacent. If we have a zero-error code, then we may apply
such a mapping letter by letter to the code and obtain a new code which will also be of the
zero-error type, since no adjacencies can be produced by the mapping.

Theorem 3: If all the input letters i can be mapped by an adjacency-reducing mapping
i ~ a(i) into a subset of the letters no two of which are adjacent, then the zero-error capacity
C 0 of the channel is equal to the logarithm of the number of letters in this subset.

For, in the first place, by forming all sequences of these letters we obtain a zero-error code
at this rate. Secondly, any zero error code for the channel can be mapped into a code using only
these letters and containing, therefore, at most enC0 non-adjacent words.

The zero error capacities, or, more exactly, the equivalent numbers of input letters for all
adjacency graphs up to five vertices are shown in Fig. 4. These can all be found readily by the
method of Theorem 3, except for the channel of Fig. 2 mentioned previously, for which we

know only that the zero-error capacity lies in the range ~ log5 :s; Co :s; log ~ .

All graphs with six vertices have been examined and the capacities of all of these can also
be found by this theorem, with the exception of four. These four can be given in terms of the
capacity of Fig. 2, so that this case is essentially the only unsolved problem up to seven
vertices. Graphs with seven vertices have not been completely examined but at least one new
situation arises, the analog of Fig. 2 with seven input letters.

As examples of how the No values were computed by the method of adjacency-reducing
mappings, several of the graphs in Fig. 4 have been labelled to show a suitable mapping. The
scheme is as follows. All nodes labelled a are mapped into node a as well as a itself. All
nodes labelled b and also J3 are mapped into node B, All nodes labelled c and yare mapped into
node y. It is readily verified that no new adjacencies are produced by the mappings indicated
and that the <X., ~, Ynodes are non-adjacent.

C0 for Sum and Product Channels

Theorem 4: If two memoryless channels have zero-error capacmes C() = log A and
C;{ = log B, their sum has a zero error capacity greater than or equal to log(A + B) and their
product has a zero error capacity greater than or equal to C~ + C~'. If the graph of either of the
two channels can be reduced to non-adjacent points by the mapping method (Theorem 3), then
these inequalities can be replaced by equalities.

Proof: It is clear that in the case of the product, the zero error capacity is at least Co + Co',
since we may form a product code from two codes with rates close to Co and Co'. If these
codes are not of the same length, we use for the new code length the least common multiple of
the individual lengths and form all sequences of the code words of each of the codes up to this
length. To prove equality in case one of the graphs, say that for the first channel, can be
mapped into A non-adjacent points, suppose we have a code for the product channel. The
letters for the product code, of course, are ordered pairs of letters corresponding to the original
channels. Replace the first letter in each pair in all code words by the letter corresponding to
reduction by the mapping method. This reduces or preserves adjacency between words in the
code. Now sort the code words into A 11 subsets according to the sequences of first letters in the
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ordered pairs. Each of these subsets can contain at most B 11 members, since this is the largest
possible number of codes for the second channel of this length. Thus, in total, there are at most
A nB n words in the code, giving the desired result.

In the case of the sum of the two channels, we first show how, from two given codes for the
two channels, to construct a code for the sum channel with equivalent number of letters equal to
A I - 0 + B I - 0, where 0 is arbitrarily small and A and B are the equivalent number of letters for
the two codes. Let the two codes have lengths n I and n2. The new code will have length n

n I n2
where n is the smallest integer greater than both T and T. Now form codes for the first

channel and for the second channel for all lengths k from zero to n as follows. Let k equal
an I + b, where a and b are integers and b < n I. We fonn all sequences of a words from the
given code for the first channel and fill in the remaining b letters arbitrarily, say all with the first
letter in the code alphabet. We achieve at least A k - On different words of length k none of which
is adjacent to any other. In the same way we form codes for the second channel and achieve
B k

- On words in this code of length k. We now intermingle the k code for the first channel with

the n - k code for the second channel in all [~) possible ways and do this for each value of k.

This produces a code n letters long with at least

1: [Z) A k - nO s»:' -nO = (AB)-on (A + B)"
k=O

different words. It is readily seen that no two of these different words are adjacent. The rate is
at least 10g(A + B) - 0 log AB, and since 0 was arbitrarily small, we can achieve a rate
arbitrarily close to 10g(A + B).

To show that it is not possible, when one of the graphs reduces by mapping to non-adjacent
points, to exceed the rate corresponding to the number of letters A + B, consider any given
code of length n for the sum channel. The words in this consist of sequences of letters, each
letter corresponding to one or the other of the two channels. The words may be subdivided into
classes corresponding to the pattern of the choices of letters between the two channels. There

are 2" such classes with (1) classes in which exactly k of the letters are from the first channel

and n - k from the second. Consider now a particular class of words of this type. Replace the
letters from the first channel alphabet by the corresponding non-adjacent letters. This does not
harm the adjacency relations between words in the code. Now, as in the product case, partition
the code words according to the sequence of letters involved from the first channel. This
produces at most A k subsets. Each of these subsets contains at most B n - k members, since this
is the greatest possible number of nonadjacent words for the second channel of length n - k. In

total, then, summing over all values of k and taking account of the (1) classes for each k, there

are at most

words in the code for the sum channel. This proves the desired result.

Theorem 4, of course, is analogous to known results for the ordinary capacity C, where the
product channel has the sum of the ordinary capacities and the sum channel has an equivalent
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number of letters equal to the sum of the equivalent numbers of letters for the individual
channels. We conjecture but have not been able to prove that the equalities in Theorem 4 hold
in general, not just under the conditions given. We now prove a lower bound for the
probability of error when transmitting at a rate greater than Co.

Theorem 5: In any code of length n and rate R > Co, Co> 0, the probability of error P e

will satisfy Pe ~ (1 - e - n(Co
- R» P~in' where P min is the minimum non-vanishing Pi (j).

Proof: By definition of Co there are not more than e nC o non-adjacent words of length n,
With R > Co, among e'" words there must, therefore, be an adjacent pair. The adjacent pair
has a common output word which either can cause with a probability at least P~in' This output
word cannot be decoded into both inputs. At least one, therefore, must cause an error when it
leads to this output word. This gives a contribution at least e:"P':nin to the probability of error
Pe- Now omit this word from consideration and apply the same argument to the remaining
e nR

- I words of the code. This will give another adjacent pair and another contribution of
error of at least e - nRP~in' The process may be continued until the number of code points
remaining is just enC o At this time, the computed probability of error must be at least

(e llR - eJ1C(l)e-J1RP~in = (1 - en(Co-R»P~in .

Channels with a Feedback Link

We now consider the corresponding problem for channels with complete feedback. By this
we mean that there exists a return channel sending back from the receiving point to the
transmitting point, without error, the letters actually received. It is assumed that this
information is received at the transmitting point before the next letter is transmitted, and can be
used, therefore, if desired, in choosing the next transmitted letter.

It is interesting that for a memoryless channel the ordinary forward capacity is the same
with or without feedback. This will be shown in Theorem 6. On the other hand, the zero error
capacity may, in some cases, be greater with feedback than without. In the channel shown in
Fig. 5, for example, Co = log 2. However, we will see as a result of Theorem 7 that with
feedback the zero error capacity C OF = log 2.5.

We first define a block code of length n for a feedback system. This means that at the
transmitting point there is a device with two inputs, or, mathematically, a function with two

PJ o.-----ou

o

Fig. 5
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arguments. One argument is the message to be transmitted, the other, the past received letters
(which have come in over the feedback link). The value of the function is the next letter to be
transmitted. Thus the function may be thought of as Xj+l = f(k, Vj), where Xj+l is the
(j + 1) st transmitted letter in a block, k is an index ranging from I to M and represents the
specific message, and Vj is a received word of length j. Thus j ranges from 0 to n - 1 and vj

ranges over all received words of these lengths.

In operation, if message m , is to be sent, f is evaluated for [t]: -) where the - means "no
word" and this is sent as the first transmitted letter. If the feedback link sends back a, say, as
the first received letter, the next transmitted letter will be ftk , a). If this is received as ~' the
next transmitted letter will bet(k,a~), etc.

Theorem 6: In a memoryless discrete channel with feedback, the forward capacity is equal
to the ordinary capacity C (without feedback). The average change in mutual information / vm

between received sequence v and message m for a letter of text is not greater than C.

Proof: Let v be the received sequence to date of a block, m the message, x the next
transmitted letter and y the next received letter. These are all random variables and, also, x is a
function of m and v, This function, namely, is the one which defines the encoding procedure
with feedback whereby the next transmitted letter x is determined by the message m and the
feedback information v from the previous received signals. The channel being memoryless
implies that the next operation is independent of the past, and in particular that
Pr[ylx J = Pr[ylx, v].

The average change in mutual information, when a particular v has been received, due to the
x,y pair is given by (we are averaging over messages m and next received letters y, for a given
v):

t1/ = /m ivv - 1m."

~ P [ /] ) Pr[v,y,m] ~ P [ ) I Pr[v,m]= ~ r y,m v og - ~ r mlv og .
yrn Pr[v,y]Pr[m] m Pr[v]Pr[m]

Since Pr[mlv] = ~ Pr[y,mlv], the second sum may be rewritten as
v

Pr[v,m]
1: Pr[y,m/v] log . The two sums then combine to give

y'.m Pr[v] Pr[m]

Al ~ P [ /]1 Pr[v,v,m]Pr[v]
L.l = LJ ,. y,nl v og --~""----

y.m Pr[v,m]Pr[v,y]

~ P [ I] I PI"[y / v, nl ] PI"[ v]= ~ r y,m v og .
y'.m Pr[v,y]

The sum on m may be thought of as summed first on the m's which result in the same x (for the
given v), recalling that x is a function of m and v, and then summing on the different x's. In the
first summation, the term Pr[ylv,m] is constant at Pr[ylx] and the coefficient of the logarithm
sums to Pr[x,y/v]. Thus we can write

M = ~ Pr[x,ylv)log Pr[ylx] .
.r.y Prly/ v]

Now consider the rate for the channel (in the ordinary sense without feedback) if we should
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assign to the x's the probabilities q(x) = Pr[x/v]. The probabilities for pairs, r(x,y), and for
the y's alone, w(y), in this situation would then be

r(x,y) = q(x)Pr[y/x] = Pr[xlv]Pr[ylx] = Pr[x,ylv] ,

w(y) = ~ r(x,y) = ~ Pr[x,ylv] = Pr[ylv]

Hence the rate would be

x x

Pr[ylx]
R = ~ r(x,y)log-~-

x,y w(y)

= ~ Pr[x.ylv] log Pr[ylx]
x,y Pr[ylv]

= ~I .

Since R ~ C, the channel capacity (which is the maximum possible R for all q(x) assignments),
we conclude that

~l ~ C.

Since the average change in I per letter is not greater than C, the average change in n letters
is not greater than nCo Hence, in a block code of length n with input rate R, if R > C then the
equivocation at the end of a block will be at least R - C, just as in the non-feedback case. In
other words, it is not possible to approach zero equivocation (or, as easily follows, zero
probability of error) at a rate exceeding the channel capacity. It is, of course, possible to do this
at rates less than C, since certainly anything that can be done without feedback can be done
with feedback.

It is interesting that the first sentence of Theorem 6 can be generalized readily to channels
with memory provided they are of such a nature that the internal state of the channel can be
calculated at the transmitting point from the initial state and the sequence of letters that have
been transmitted. If this is not the case, the conclusion of the theorem will not always be true,
that is, there exist channels of a more complex sort for which the forward capacity with
feedback exceeds that without feedback. We shall not, however, give the details of these
generalizations here.

Returning now to the zero-error problem, we define a zero error capacity COF for a channel
with feedback in the obvious way - the least upper bound of rates for block codes with no
errors. The next theorem solves the problem of evaluating COF for memoryless channels with
feedback, and indicates how rapidly COF may be approached as the block length n increases.

Theorem 7: In a memoryless discrete channel with complete feedback of received letters to
the transmitting point, the zero error capacity COF is zero if all pairs of input letters are
adjacent. Otherwise COF = 10gPoI , where

Po = min m~x ~ Pi'
PI J ie S,

Pi being a probability assigned to input letter i ( ~ P,. = 1) and S j the set of input letters which
i
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can cause output letter j with probability greater than zero. A zero error block code of length n
2

can be found for such a feedback channel which transmits at a rate R ~ C OF (1 - - Jog 2 2 t)
n

where t is the number of input letters.

The Po occurring in this theorem has the following meaning. For any given assignment of
probabilities Pi to the input letters one may calculate, for each output letter j, the total
probability of all input letters that can (with positive probability) cause j. This is ,1: Pi. Output

lE5,

letters for which this is large may be thought of as "bad" in that when received there is a large
uncertainty as to the cause. To obtain Po one adjusts the P; so that the worst output letter in
this sense is as good as possible.

We first show that, if all letters are adjacent to each other, C OF = O. In fact, in any coding
system, any two messages, say m I and m 2, can lead to the same received sequence with
positive probability. Namely, the first transmitted letters corresponding to m I and m2 have a
possible received letter in common. Assuming this occurs, calculate the next transmitted letters
in the coding system for m I and m 2. These also have a possible received letter in common.
Continuing in this manner we establish a received word which could be produced by either m I

and m 2 and therefore they cannot be distinguished with certainty.

Now consider the case where not all pairs are adjacent. We will first prove, by induction on
the block length n, that the rate 10gPo1 cannot be exceeded with a zero error code. For n = 0
the result is certainly true. The inductive hypothesis will be that no block code of length n - 1
transmits at a rate greater than 10gPoI, or, in other words, can resolve with certainty more than

(n-I)logP~' _ p-(n-l)
e - 0

different messages. Now suppose (in contradiction to the desired result) we have a block code
of length n resolving M messages with M > Pi,", The first transmitted letter for the code
partitions these M messages among the input letters for the channel. Let F i be the fraction of
the messages assigned to letter i (that is, for which i is the first transmitted letter). Now these
F i are like probability assignments to the different letters and therefore, by definition of Po,
there is some output letter, say letter k, such that 1: F i ~ Po. Consider the set of messages for

iES(

which the first transmitted letter belongs to Sk : The number of messages in this set is at least
Po M. Any of these can cause output letter k to be the first received letter. When this happens
there are n - 1 letters yet to be transmitted and since M > Pon we have PoM > Po(n - I) .

Thus we have a zero error code of block length n - 1 transmitting at a rate greater than 10gPoI ,

contradicting the inductive assumption. Note that the coding function for this code of length
n - 1 is formally defined from the original coding function by fixing the first received letter at
k.

We must now show that the rate logPoI can actually be approached as closely as desired
with zero error codes. Let P i be the set of probabilities which, when assigned to the input
letters, give Po for min m~x ~ Pi. The general scheme of the code will be to divide the M

P, J iES
J

original messages into t different groups corresponding to the first transmitted letter. The
number of messages in these groups will be approximately proportional to PI' P 2 , ..• , P t :

The first transmitted letter, then, will correspond to the group containing the message to be
transmitted. Whatever letter is received, the number of possible messages compatible with this
received letter will be approximately Po M. This subset of possible messages is known both at
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the receiver and (after the received letter is sent back to the transmitter) at the transmitting
point.

The code system next subdivides this subset of messages into t groups, again approximately
in proportion to the probabilities Pi. The second letter transmitted is that corresponding to the
group containing the actual message. Whatever letter is received, the number of messages
compatible with the two received letters is now, roughly, P6M.

This process is continued until only a few messages (less than (2) are compatible with all
the received letters. The ambiguity among these is then resolved by using a pair of non-
adjacent letters in a simple binary code. The code thus constructed will be a zero error code for
the channel.

Our first concern is to estimate carefully the approximation involved in subdividing the
messages into the t groups. We will show that for any M and any set of Pi with I: Pi = 1, it
is possible to subdivide the M messages into groups of m I .m-; ... , m, such that m, = 0
whenever P i = 0 and

mi
--p ~- ;=1, ... .t ,
M i M'

We assume without loss of generality that PI, P 2 , •.. , Ps are the non-vanishing Pi.
ml ml

Choose m I to be the largest integer such that M ~ Pl· Let P 1 - M = 0I· Clearly

I m210 J I ~ M· Next choose m 2 to be the smallest integer such that M ~ P 2 and let

P2 - :; = 02. We have 1021 s ~. Also 10f + 021 s ~, since O( and 02 are opposite

in sign and each less than J... in absolute value. Next, m 3 is chosen so that m 3 approximates.
M M

to within ~, to P 3. If 0 I + 02 ~ 0, then :: is chosen less than or equal to P 3. If

m3 .
01 = O2 < 0, then - IS chosen greater than or equal to P 3. Thus again

M

P 3 - :: = 03 $ ~ and 101 + O2 + 031 s ~. Continuing in this manner through Ps-)

we obtain approximations for PI, P 2 ' ••• , p s _ I with the property that
1I0 I + 02 +...+ 0s - ( I $ M' or 1M(P ( + P 2 +...+ P s - ( ) - (m I + m2 +...+ ms - I >I ~ I.

s-l

If we now define m s to be M - I: m i then this inequality can be written
1

m s--pM S

Is
M

Thus we have achieved the

objective of keeping all approximations !!2 to within J... of P i and satisfying I.m i = M.
M M

Returning now to our main problem, note first that if Po = 1 then C OF = 0 and the

theorem is trivially true. We assume, then, that Po < 1. We wish to show that Po=:; (1 - J...).
t

Consider the set of input letters which have the maximum value of Pi. This maximum is
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certainly greater than or equal to the average 1-. Furthermore, we can arrange to have at least
t

one of these input letters not connected to some output letter. For suppose this is not the case.
Then either there are no other input letters beside this set and we contradict the assumption that
Po < 1, or there are other input letters with smaller values of Pi. In this case, by reducing the
P i for one input letter in the maximum set and increasing correspondingly that for some input
letter which does not connect to all output letters, we do not increase the value of Po (for any
S j) and create an input letter of the desired type. By consideration of an output letter to which

this input letter does not connect we see that P 0 ~ 1 - 1-.
t

Now suppose we start with M messages and subdivide into groups approximating
proportionality to the P; as described above. Then when a letter has been received, the set of
possible messages (compatible with this received letter) will be reduced to those in the groups
corresponding to letters which connect to the actual received letter. Each output letter connects
to not more than t - 1 input letters (otherwise we would have Po = 1). For each of the

connecting groups, the error in approximating P i has been less than or equal to ~. Hence the

total relative number in all connecting groups for any output letter is less than or equal to

Po + ~. The total number of possible messages after receiving the first letter
M

consequently drops from M to a number less than or equal to PoM + t - I.

In the coding system to be used, this remaining possible subset of messages is subdivided
again among the input letters to approximate in the same fashion the probabilities Pi. This
subdivision can be carried out both at the receiving point and the transmitting point using the
same standard procedure (say, exactly the one described above) since with the feedback both
terminals have available the required data, namely the first received letter.

The second transmitted letter obtained by this procedure will again reduce at the receiving
point the number of possible messages to a value not greater than Po (P 0 M + t - 1) + t - 1.
This same process continues with each transmitted letter. If the upper bound on the number of
possible remaining messages after k letters is M k» then Mk + I = Po Mk + t - I. The solution
of this difference equation is

t-l
M k = APt + ---

I - Po

This may be readily verified by substitution in the difference equation. To satisfy the initial

conditions M0 = M requires A = M - t - 1 . Thus the solution becomes
1 - Po

Mk=(M- (-1 )P~+ 1-1
1 - Po 1 - Po

= M P~ + t - I (I _ P~)
1 - Po

~ M P~ + t(t - I) ,

1
since we have seen above that 1 - P 0 ~ -.

t
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If the process described is carried out for n I steps, where n I is the smallest integer ~ d and
d is the solution of MPg = 1, then the number of possible messages left consistent with the
received sequence will be not greater than I + t(t - I) $ t 2 (since t > I, otherwise we should
have COF = 0). Now the pair of nonadjacent letters assumed in the theorem may be used to
resolve the ambiguity among these (2 or fewer messages. This will require not more than
1 + log 2 (2 :::: log 22(2 additional letters. Thus, in total, we have used not more than
d + 1 + log22t2 + d + log24t2 :::: n (say) as block length. We have transmitted in this
block length a choice from M = POd messages. Thus the zero error rate we have achieved is

1 dlogPi) I
R == -logM ~ ----

n d + Jog 24 t 2

= (I - !log4t2)logPOI
n

1 2= (1 - -log4t )COF .
n

Thus we can approximate to C OF as closely as desired with zero error codes.

As an example of Theorem 7 consider the channel in Fig. 5. We wish to evaluate Po. It is
easily seen that we may take P I = P 2 = P 3 in forming the min max of Theorem 7, for if they
are unequal the maximum L Pi for the corresponding three output letters would be reduced

ieS,

by equalizing. Also it is evident, then, that P4 = P J + P 2, since otherwise a shift of
probability one way or the other would reduce the maximum. We conclude, then, that
P J :::: P 2 = P3 :::: 1/5 and P4 :::: 2/5. Finally, the zero error capacity with feedback is
log Po I = log 5/2.

There is a close connection between the min max process of Theorem 7 and the process of
finding the minimum capacity for the channel under variation of the non-vanishing transition
probabilities Pi (j) as in Theorem 2. It was noted there that at the minimum capacity each
output letter can be caused by the same total probability of input letters. Indeed, it seems very
likely that the probabilities of input letters to attain the minimum capacity are exactly those
which solve the min max problem of Theorem 7, and, if this is so, the C min :::: 10gPo1•
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In this paper wo will develop certain extensions :In(1 reflnomonts of
coding theory for noisy commuuiention channels. First, n. refinement
of the argument based on "random" coding will be used to obtain nn
upper bound on the probability of error Ior nn optimnl code in the
memoryless finite discrete channel. Next, all cquntion is ohtninod Ior
the capacity of n finite state channel whcn the state can he calculated
at both trnnsmittiug and receiving terminals. An analysis is also mndc
of the more complex cnso where the state is calculable at the trans-
mitting point but not necessarily at the receiving point.

i-nonxurr.rrv OF I~H.ItOlt J10UNI) FOn. TlIll~ ])ISCnl~TE

FINrrE l\'fJ~rvIORYJ.JESS CIIANN]~;JJ

A discrete finite mcmoryless channel with finite input, and output
alphabets is defined by a set of transition probabilities Pi(}),

i = 1,2, ... ,a; .i = 1, 2, · .. , b,

with L:j Pi(j) = 1 (i = 1,2, · .. ,a) and all Pi(.i) ~ O. Hero lJiCi) is tho
probability, if input letter i is used, that output letter.i will be received.
A code word of length 11, is a sequence of 11, input letters (that is, 11, integers
each chosen from 1,2, · · · , a). A blockcode of length 11,with M words is a
mapping of the integers from 1 to Al (messages) into a set of code words
each of length n. A decoding syslcnt for such a code is a mapping of all
sequences of output words of length 11, into the integers from 1 to ilf
(that is, a procedure for deciding on an original integer or message when
any particular output word is received). We will be considering situa-
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Army (Signal Corps), the United States Air FOI"cO (Office or Scientific Research,
Air Research and Development Command). and the United Stutes Navy (Office
of Naval Research); and in part hy Dell Telephone Lnhnrnl.ories, Inc,
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240 C. E. Shannon

tions in which all integers Irom 1 to 111 arc used with the same prob-
ability l/lll. Tho probability of error P, for n code and decoding system
is the probability of an integer being transmitted and received as a word
which is mapped into a different integer (that is, decoded ns another
message).

Thus:

P. = ~.?;. J1~ Pr(v Iu)

where u ranges over all input integers 1, 2, · · · , A{; 1J ranges over the
received words of length 11,; and S" is UU~ set, of received words that nrc
not decoded as 1/'. Pr (vIu) is of course the probability of receiving v if
the message is u. Thus if u is mapped into input word (it, i 2 , • • • , i,,)
nnd v is word (j. , j2 , · .. ,in), then

While we assume all messages in a code to he used with equal prob..
abilities] / llt, it is useful, in studying a channel, to consider the assign-
mont of different probabilities to input words. Suppose, in fact, that in
a given channel we assign arbitrary probabilities to tho different input
words u of length n, probability P(ll) for word ttl Vtlc then have prob-
abilities for all input-output word pairs of length 11"

Pr(1/', v) = P(u) Pr(v I u),

where u and v arc input and output words of length 11, nnd Pri» I u) is the
probability of output word v if input word u is used. ("fhis is the product
of the transition probabilities for corresponding letters of u and v).
Given P(u) then, any numerical function of u and v becomes a random
variable. In particular, the mutual inf'ormntion (per letter), I(u, v) is n.
random variable

1 1 Pr(u, v) 1 Pr(1J Iu)
I(u, v) = n og P(u)Pr(v) = nlog L P(u)Pr(v I 11.)

u

The distribution function for this random variable will be denoted hy
o(x). Thus

p(x) = Pr[l(u, v) ~ xl

The function p(x) of course depends on the arbitrary assignment of
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probabilities P(ll). \Vc will now pl'OVC n theorem bounding the prob-
ability of error for a possible code in terms of the function p(x).

TUEOUEl\1 1: Suppose some T'(u) for input words u of lcnqth. 11, (Jives rise
to a distribution of informaiio« per letter p(l). Then given any integer It!
and any 8 > 0 there exists a block code with llt mcssaqe« and a decoding
sysleln such that if these messoqe« are used with equal probability, the
probability of error Pe is bounded by

P e s p(ll + 0) + e- nB

where /l = (l/n)log llT.
Pnoov: For n given Al nnd 0 eonsidcr tho pairs (u, IJ) of input und

output words and define the set '1' to consist of those pairs Ior which
log Priu, v)ll~(u)Pr(,}) > n(ll + 8). When the u's arc chosen with
probabilities I~(u), then the probability that the (u, 1') pair will belong
to the sct T is, by definition of p, equal to 1 - p(ll + 0).

Now consider thc ensemble of codes obtained in the following manner.
The integers 1, 2, 3, .. · , M = eRR are associated independently with
the different possible input words Ul, U2, • • • , llIJ with probabilities
P(UI), I~(u2)' .. · J~(UII). This produces an ensemble of codes each using
ill (or less) input words. If there arc /J difTcrcnt input words u, , there
will be exactly )J'" different codes in this ensemble corresponding to
the B M different ways we can associate ill integers with B input words,
These codes have different probabilities. Thus the (highly degenerate)
code in which all integers are mapped into input word u. has probability
]J(Ut)"'. A code in which lI" of the integers are mapped into Uk has prob-
ability rrl~(u,,)dk. We will be concerned with the average probability

k

of error for this ensemble of COdCR. 13y this we mean the average prob-
ability of error when these COUCH arc weighted according to tho prob-
abilities we havo just defined. We imagine that in using anyone of thcsc
codes, each integer is used with probability Ill1f. Note that, for some
particular selections, several integers Ina)' fall on the same input word,
This input word is then used with higher probability than the others.

In any particular code of the ensemble, our decoding procedure will
be defined as Iollows, Any received v is decoded as the integer with
greatest probability conditional on the received v. If several integers
have the same conditional probability we decode (convcntionally) as the
smallest such integer. Since all integers have unconditional probability
1/It", this decoding procedure chooses onc of those having the greatest.
probability of causing the received v.
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We now wish to compute the average probability of error or ccambi-
guity" j;)o in this ensemble of codes whore \\'C pessimistically include
with the errors all cases whore there are several equally probable causes
of the received v.

In any particular code of the ensemble an input word u or a pair
(u, v) will not, in general, occur with the probabilities P(u) 01" Prtu, v).
In the ensemble average, however, each word u has probability P(u,)
and each (u, v) pair probability Prtu, u), since integers are mapped into
u with just this probability. Indeed, u particular message, say the integer
1, will be mapped into 11, with probability }J(u). A particular case of
integer 1, say, mapped into u and resulting in received IJ will result in an
errol' or ambiguity if there are, in the code in question, one or 1110rC
integers mapped into the set Sv(u) of input words which have a
probability of causing v higher than arc equal to that of u. Because of
the independence in placing the other integers, it, is easy to calculate the
fraction of codes in which this occurs. In fact, let

Qv(u) = L f) (u')
u'f8.(u)

'rhus Q.,(u) is the probability associated with ull words which can cause
IJ with us high or higher a probability than u causes u, The fraction
of codes in which integer 2 is not in S.,(u) is (because of the indopondcnco
of placing of the integers) equal to 1 - Qv(u). The fraction of codes in
which S,,(u) is free of all other integers is (1 - Q.,(U))JI-l. A similar
argument applies to any other integer as well as 1. Thus, in the ensemble,
the probability of error or ambiguity due to cases where tI1C message is
mapped into input word u und received as v is given exactly by

J>r(u,I))[l - (1 - Qv(U))M-l].

The average probability of error or ambiguity, then, is given by

P; = L,u,v!Jr(u, ,')[1 - (1 - Qv(U))M-l]. (1)

,vC now wish to place a bound on this in terms of the information
distribution p, First, break the sum into t,\VO parts, a sum over the
(u, v) set '1' defined above where log Priu, lJ)/j~(u)l}r(v) > 1t(R + 8) and
over the complementary sct 1'.

P; = Lfl~r(lt, v)(l - (1 - Qv(u))M-1l

+ LTPr(tt, v)[l - (1 - Q1,(1l.))M-l).

Since [1 - (1 - Q,.(U))}M-I is n probability, we may replace it hy 1 in
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the first sum, increasing the quantity. This term becomes, then,
~TPr(uJ v) which by definition is p(R + 8). In the second sum, note
first that (1 - Qv(U»Jt-l ~ 1 - (Jf - I)Qv(u) by a well-known in-
equality. Hence, the second sum is increased by replacing

[1 - (1 - Q.,(U»M-l)

by (~{ - l)Qv(u) and even more so by 1\fQv(u).

1>" s Po ~ p(R + 0) + 1IfLrPr(u, v)Qv(u).

We now show that for 11, v in 7', Qv(ll) ~ c-n (ll +8) • In Iact, with u, v in 7'

log p;~(~~) > n(R + 8),

Pr(v Iu) > Pr(v)c"(R+B).

If u' E S,,(u),

Pr(v J u') ~ Pri» Iu) > Pr(v)c"(R+8)

Pr(u', v) > Pr(u')Pr(v)c"(R+8)

Pr(u' J v) > Pr(u')c,,(R+8)

Summing each side over u' E S.,(u) gives

1 ~ ~ ]:Jr(u' Iv) > C,,(R+8) Qv(u)
u'eS.( u)

The left inequality holds because the sum of n set of disjoint probabilities
cannot exceed 1. We obtain

Q.,(u) < e- n(R+8)

Using this in our cstimuto of P, we have

r. < p(R + 0) + cnRe-n(R+8)Lrl:Jr(u, v)

~ p(Il + 0) + «:"

(u, v) E 7'

using again the fact that the sum of a set of disjoint probabilities cannot
exceed one. Since the average P, over the ensemble of codes satisfies
1J

e ~ p(R + (J) + «", there must exist a particular code satisfying the
same inequality. This concludes the proof.

Theorem 1 is one of a number of results which show n close relation
between the prohability of error in codes for noisy channels and the
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distribution of mutual information p(.l:). Theorem 1. shows that if, by
associating probabilities t'(u) with input words, a certain p(x) call be
obtained, then codes can be constructed with a probability of error
bounded in terms of this p(x). We now develop a kind of converse rela-
tion: given a code, there will be a related p{x). It will be shown that the
probability of error for the code (with optimal decoding) is closely
related to this p(x).

'l'uEOUEl\1 2: Suppose a particular code has ftl = cn R messaqcs and lite
distribution function for the mutual information. 1 (per letter) between
meesaqes and rcccived words is p{x) (the mcssoqe« being used with equal
lJrobability). Then. tlu: optimal detection SystC1'" for this code f/ilJCS a prob-
ability of error Pe satisfying the inequalities

!p (R- ~ log 2) ~ r, ~ P (ll - ~ log 2)
It should be noted that p has a slightly different meaning here than in

Theorem 1. Here it relates to mutual information between messages and
received words-s-in Theorem 1, between input words and received words,
If, as would usually be the case, all messages of a code arc mapped into
distinct input words, these reduce to the same quantity.

Puoor: We first prove the lower bound. B)' definition of the function
p, the probability is equal to p(ll - (lin) log 2), that

1 log Pr(u, v) ~ R - !. log 2,n Pr(u)f'r(v) n

whore 1(, is a message and v n received word, Equivalently,

]>r(u' v) ~ l>r(u,)c 1l n!

or (using the fact that Pr(u) = c- n R
)

jJr(u I v) ~ !
Now fix attention 011 these pairs (u, v) for which this inequality

r-t« I v) ~ !
is true, and imagine the corresponding (u, v) lines to be marked in black
and all other (u, v) connecting lines marked in red. 'Ve divide the 1)

points into t\VO classes: C1 consists of those v's which arc decoded into
u's connected hy a red line (and also any u's which arc decoded into u's
not connected to the v's): C2 consists of v's which arc decoded into ll'S



Certain Results in Coding Theory for Noisy Channels 245

connected by a black line. 'Ve have established that with proba-
bility p(ll - (l/n) log 2) the (u, v) pair will be connected by a black
line. The v's involved will fall into the two classes C1 and C2 with prob-
ability PI , say and P2 = p(ll - (lin) log 2) - PI . Whenever thc v is
in C, an error is produced since the actual 11, was one connected by n
black line and the decoding is to a 11, connected by a red line (or to a dis-
connected u). Thus these cases give rise to a probability PI of error.
When the v in question is in class C2 , we have Pri u , v) ~ 1. This 111eanS
that with at least an equal probability these v's can be obtained through
other u's than the one in question. If we sum for these v's the prob-
abilities of all pairs Priu, v) except that corresponding to the decoding
system, then wo will have a probability at least P2/2 and all of these
cases correspond to incorrect, decoding. In total, then, \\'C have u prob-
ability of error given by

P, ~ PI + p2/2 ~ !p(ll - (l/n) log 2)

We now prove tho upper bound. Consider tho decoding system defined
as follows, If for any received " there exists u It such that, Prtu I v) > !,
then the v is decoded into that It. Obviously there eunuot he more than
one such tl, for a given v, since, if there were, the sum of these would
imply a probability greater than one. If there is 110 such It for a givcn v,
the decoding is irrelevant to our argument, \Vc may, for example, let
such 11,'8 all be decoded into the first message in the input code. The
probability of error, with this decoding, is then less than or equal to the
probability of all (u, v) pairs for which l)r(ll Iu) ~ !. '[hat is,

P; ~ L: Prtu, v) (where S is the set of pairs (u, v) with I',.(u ,,,) ~ ~) ..~
The condition l~r(lt Iv) ~ l is equivalent to jJr(u, ,,)!J>r(v) ~ ~, or,
again, to Priu, v)/I)r(ll) ['r(,,) ~ ! ]),(1/,)-1 = ! cn R

• This is equivalent
to the condition

(lin) log Priu, v)II:Jr(tt)l~r(v) ~ II - (lin) log 2.

The sum 1: Pr(u, v) where this is true is, by dcfinition, the distribution
B

function of (1/11,) log Pr(u, v)IPr(u)Pr(v) evaluated at R - (l/n) log 2,
that is,

r, ~ L Priu, v) = peR - (lin) log 2).
B
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PROJlABILITY OF J~ltROR JJOUNI> IN l'J~n.~'1S OF
MOMENT G~NERATING If'UNC1'ION

We will now develop from the bound of Theorem 1 another expression
that can be more easily evaluated in terms of the channel parameters,
Suppose first that the probabilities T'(u) assigned to words in Theorem 1
arc equal to the product of probabilities for letters making up thc words,
Thus, suppose u consists of the sequence of letters it , i 2 , • • • , in and
P(u) is then Pil·Pi2·Pi, ... Pin. If V consists of letters it, i2, ... , ira
then Pr(v) = Pr(jl). Pr(j2) ... Pr(j,,) and Priu, v) = Pr(i1, i1)·
Pr(i2,i2) · · · Pr(in , in). Also

( )
1. []Jr (i1j 2) }Jr (i2i2) ]

I u, V = n log Pr(i
l)Pr(j2)

+ log Pr(i2)1;r(j2) + '"

= ~ [I, + 12 + ... + Ita]
n

where I Ie is the mutual information between the kth letters of It and n.
The different /'s are here independent random variables all with the

same distribution. We therefore have a central Unlit theorem type of
situation; nl(u" v) is the sum of n indepcndent random variables with
identical distributions. p(x) can be bounded by any of the inequalities
which arc known for the distribution of such a sum, In particular, we may
usc an inequality due to Chernov on the It tail' of such a distribution
(Chcrnov, 1052). He has shown, by a simple argument using the gen-
eralizod ChcbychcfT inequality) that the distribution of such SUlllS can
be bounded in terms of the 1l10lUCIlt generating function for a single one
of the random variables, say 'P(s). Thus let

cp(s) = J!J[C31
]

- '" 1> i» . [I ~~J- LJ iPi J exp S og" J-. (.)
ij LJ . klJ1c J

k

'" l~ (.) [ Piti) ]'= ~ iPi J E l.Jk p k ( j )
k

It is convenient for our purposes to usc the log of the moment generating
function 1£(8) = log 'P(s), (sometimes called the semi-invariant generat-
ing function). Chernov's result translated into our notation states that

p(p'(s)) ~ e("c,)-,,,'(,)] n S ~ 0

Thus by choosing thc parameter s at any negative value "'0 obtain a
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bound on the information distribution p of oxponeutiul {orin in n: It is
easily shown, also, that if the variance of thc original distribution is
positive thcn p'(s) is a strictly monotone increasing function of sand
so also is the coefficient of 11, in the exponent, I-&(s) - SI-&'(s) (for negative
s). Indeed the derivatives of these quantities exist and are Il"(s) and
- SIl"(S), respcctively. Ill/(S) is readily shown to be positive by a Schwartz
inequality.

rrUEOREM 3: I 1~ a mcmorijless channel with finite input and output
alphabets, let Il(s) be the semi-invariant (/cnerating function lO1" mutual
information. with some ossummcn! of input letter prohalnliiics, P i [or ICUer
i, and with channel transition probobilitie« Pi(}), lhal is:

( ) I s:» (") [ Pi(}) J'p s = og ~ ,'pi.l "'" I~, .(")'.1 L.J ,1J, .1
i

Then. there exists (1, code and dccodinq 8!1slClIt of lenylh 11., role Il and prob-
ability of error J)0 salisrlJ-iny the inequalities

II ~ #l(S) - (8 - l)Il'(s)

s ~ 0

If as s~ - <x> , Jl(s) - (s - l)Il'(s)~ Il* > 0 then for Il ~ ll*

where E* = lim (Il(s) - 81-&'(S)) as 8 -4 - co ,

PUOO(4"': We have, from 1'hcorCI11, J, {,hat

r. ~ p(ll + 0) + «"
S s 0

where s is chosen so that 1l'(S) = Il + O. This will hold when 0 is such
that the resulting s is negative. 'Ve choose 0 (which iH otherwise arbi-
trary) to make the coefficients of 11, in the exponents equal. (Since the
first term is monotone increasing in 0 and the second monotone de-
creasing, it is easily seen that this choice of fJ is quite good to minimize
the bound. In fact, the bound can never be less than half its value for
this particular fJ.) This relation requires that

p(s) - sp'(s) = - 0

= R - #l'(S)

II = It(s) + (1 - s)Jl'(s)
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Since the exponcnts nrc now equal, the probability of error is bounded by
twice the first term:

These relations arc true for all negative 8 and give the first results of the
theorem.

However, in some cases, as 8 -4 - 00 the rate Il approaches a positive
limiting value. In fact, R ~ I min + log Pr[lmin] and the exponent in the
P e bound approaches log ].lr[lmin}. For rates II lower than this Iimiting
valuo the exponents cannot be made equal b)' any choice of 8. We may,
however, IlO\V choose 8 in such a way that II + 0 is just smaller than
[min, say lmin - t. Since p(Imin - t) = 0 the probability of error is

b d #1 b P -119 -11(1' -Il-,) ~1"1· I · f 01l0\V OUll eu Y fI ~ C = C . m r n • us rcmg true oran)' E > ,
we can construct codes for which it is true with e = o. That is

for II < R". Notico thut as Ii uppronchcs its limiting value in tho
first bound, Jm in + log Pr [lmin], the exponents ill both bounds approach
the same value, namely log [.lr[Iminl. The coefficient, however, improves
from 2 to 1.

These bounds can be written in another Iorm that is perhaps 1110re
revealing. Define a set of U tilted" probabilities Q,(l) for different values
of information [ by the following:

Pr(l)c lf1

Q.(I) = L: Pr(I)c·1

1

In other words the original probability of a value I is increased or de-
creased by a factor c" and the resulting values normalized to SUll1 to
unity. For large positive values of 8, this tilted set of probabilities
Q.(I) tend to emphasize the probabilities Prif) for positive I and reduce
those for negative I. At 8 = 0 Qo(I) = Pr(I). At negative 8 the negative
I values have enhanced probabilities at the expense of positive I values.
As 8 --. 00, Q.(I) ~ 0 except for [ = I mRX thc largest value of I with posi-
tive probability (since the set of u, v pairs is finite, I m ll x exists), and
Q,(Imax ) --. 1. These tilted probabilities arc convenient in evaluating
the U tails" of distribution that, arc sums of other distributions. In terms
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of Q,(l) we may write

Jl(S) = log L: ]Jr(/)c"

L:" Q,(l') log L:, l)r(l)ed

p.'(s) = L:, Pr(l)(l'l/ L:, Pr(l)e"

L:, Q.(I)1

Il(s) - sp'(s) L:, Q.(l) log (Pr(l)/Q.(l»

p. - (8 - 1)p.'(8) = L:, Q,(I)[1 + log Pr(I)/Q,(I)}

249

The coefficients of n in thc exponents of Thcorem S arc of some in-
terost, They relate to the rapidity of approach of IJ~ to zoro us 11, inereasos.
Plotted as a function of R, tho behavior is typically as shown in Fig, 1.
Here we have assumed the Pi for the letters to he the Pi which give
channel capacity. Tho coefficient E of -n for the first bound in the
theorem is a curve tangent to the axis at C (here s = 0), convex down-
ward and ending (8 = - (0) at R = I min + log IJr[lminl and E =
-log Pr{Iminl. The second bound in the theorem gives an E curve which
is a straight line of slope - 1 passing through this point and intersect-
ing the axes at I min,0 and 0, lmin . In the neighborhood of R = C the
curve behaves as

E == (C - Il)2
2p,"(O)

I-Icl'e p" (0) is the variance of I. These properties all follow directly f1'0111

the Iormulas for the curves.
We have

d/!J _ dEjdR
dR - ds ds

s
=1-s

so the slope of the ER curve is monotone decreasing as s ranges from 0
to - 00, the slope going rrom 0 to -1. Since the second bound corresponds
to lJ, straight line of slope -1 in the ER plot, the t\VO bounds not only
join in value but have the same slope as shown in Fig, 1.
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The curve would be as indicated if the 1;) i arc those which maximize
the rate at thc channel capacity, for then

Il(O) = #1(0) - (0 - l)p'(O) = 1l'(O) = Co

The bound, however, of the theorem applies for any set of Pi when the
corresponding #1(8) is used. To obtain the strongest result the bound
should be optimized for each value of II under variation of P, . The same
applies to the straight line portion where we maximizo 1m in. If this
were done u curve would be obtained which is the envelope of all possible
curves of this type with dilTerent values of P, . Since each individual
(~Ul·VC is convex downward the envelope is also convex downward. The
equations for this envelope may be found by the Lagrange method
muximizing II + Xl? + 71 }2iP i . It must be remembered, of course,
that the Pi must be non-negative. The problem is similar to that in-
volved in calculating the channel capacity. The equations for the
envelope will be

J!J = p(s) - sp'(s)

II = p(8) - (8 - l)p'(8)

all ( Oil' op'
(I + >.) aP

i
- 1 + >')8 iJP

i
+ aP

i
+ '1 = 0 for all i except u set for

which Pi = O.

and subject to:

Jm1n

E

R

r(Imln + Jog Pr (I mln) ,-Jog Pr ((min))

s:-CX)

(J& - (s -I) p'r 1£ + • 110' )

I ",in

Flo. 1
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The bound here should be maximized by choosing different subsets of
the P, for the nonvanishing set.

The upper bound obtained in Theorem 3 is by no means the strongest
that can be found. As 11 -+ eo even the coefficients of 11 in the exponent
can be, in general, improved by more refined urgumcnts. We hope in
another paper to develop these further results, and also to give cor-
responding lower bounds on the probability of error of the same exponen-
tial type. Tho upper bound in Theorem 3 is, however, both simple and
useful. It has a universality lacking in some of the stronger results
(which only assume simple form when n is large).

CAPACl'ry OF 'rIIJ~~ FINll"E Sl"Al"E CIIANN]~J.I \VrrII Sl"A'fE
CALCULABLE A'r D01"II TEltl\.fINALS

In certain channels with memory, the internal state of the channel
can be calculated Irom the initial state (assumed known) at thc beginning
of trnnsmission and the sequence of trnusmittcd letters. It ll1U,Y also be
possible to determine the state at any time at the receiving terminal
Irom the initial state and the sequence of received letters. For such
channels we shall say the state is calculable at both terminals.

1"0 satisfy the first requirement it is clearly necessary that for any
(attainable) internal state 8, the next state t 111Ust be a function of 8 and
x, t = 1(8, x), \VhCl"C X is the transmitted letter.

For the state to be calculable at thc receiving point it is necessary
that, for all attainable states s, the next stage t must be a function of 8

and the received letter y, t = g(8, y).
For each possible s, t pair wo may find the subset 11 (8, t) of x's leading

from 8 to t and the subset IJ(8, l) of y's which correspond to a state
transition Irom 8 to t. For each input letter x in the set A (8, t) the out-
put letter y will necessarily be in the set B(s, t) and there will be a tran-
sition probability, the probability (in state s), if x is transmitted, that
y will be received. For a particular 8, t pair, the sets of letters A (s, t)
and B(s, t) and the corresponding transition probabilities can be thought
of as defining a memoryless discrete channel corresponding to the s, t
pair. Namely, we consider the memoryless channel with input alphabet
the letters from A (8, t), output letters from B(s, t) and the correspond-
ing transition probabilities.

This channel would be physically realized from the given channel as
follows. The given channel is first placed in state 8, one letter is trans-
mitted from set A (8, l) (resulting in state l), the channel is then returned



252 C. E. Shannon

to state s and a second letter Irom set A (s, t) transmitted, etc. Tho ca-
pacity of such a discrete momoryless channel can be found by the stand-
ard methods. Let the capacity from state s to state t be C., (in natural
units) and let N" = CO". Thus N" is the number of equivalent noiseless
letters for the 8, t sub-channel. If the set A (s, t) is empty, we set N" = o.

The states of SUCll a channel can be grouped into equivalence classes
as follows. States sand s' are in the same class if there is a sequence of
input letters which, starting with state 8, ends in 8', and conversely a
sequence leading from 8' to s. The equivalence classes can be partially
ordered as follows. If there is a sequence leading Irom a member of one
class to a member of a second class, the first class is higher in the order-
ing than the second class.

Within an equivalence class one may consider various possible closed
sequences of states; various possible ways, starting with a state, to
choose a sequence of input letters which return to this stato. The nUD1-
ber of states around such a cycle will be called the cyclc length. The
greatest C00101011 divisor of all cycle lengths in a particular equivalence
class will be called the basic period of that class. These structural prop-
erties are analogous to those of finite state markoff processes, in which
u transition with positive probability" takes the place of a U possible
transition for SODle input letter."

We shall consider only channels in which there is just one equivalcnce
class. That is, it is possible to go from any state s to any state t by S0111e
sequence of input letters (i.e., any state is accessible from any other).
The more general case of several equivalence classes is more complex
without being significantly more difficult.

'l'IIEORJ~ltl 4: Let K be a finite slale channel wl:l'" finite alphabcls, willi,
stale calculable at bolh terminals, and anJJ state accessible [rom any other
stale. Let N., be the number of equivalent letters for the sub-channel relating
to transitions [rom state 8 to slate t. Let N be the (unique) IJositive real
eigenvalue of the matrix Nil , thal is, the posilive real root oj

IN.t - N~,t I = O.

Then N is the equivalent 1lumber of letters for the given channel K; its ca-
pacity is C = log N.

PnOOF : We will first show that there exist block codes which transmit
at any rate II < C and with probability of error arbitrarily small. Con-
sider the matrix N" . If this is raised to the nth power we obtain a rna-
trix with clements, say, N,,("). The clement N,,(n) can be thought of as
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a sum of products, each product, corresponding to some path 11, steps
long from state 8 to state I, the product being thc product of the original
matrix clements along this path, and the sum being the sum of such
products for all such possible paths. This follows immediately by mathc-
matical induction and the definition of matrix multiplication,

Furthermore, N.,(n) can be interpreted as the equivalent number of
letters for the mcmoryless channel defined as follows. Imagine starting
the original channel in state 8 and using as input "letters" sequences of
length 11, of tho original letters allowing just those sequences which will
end in state t after the sequence of 1t. Tho output ccletters" nrc sequences
of received letters of length 11, thnt could be produced under these con-
ditions. This channel can be thought of as a II sum" of channels (corre-
sponding to the different, state sequences from ,~ to t in 1t steps) each of
which is a "product" of channels (corresponding to simple transitions
from one state to another). (Tho sum of t\VO channels is a channel in
which a letter from either of the t\VO channels 1l111.)r be used; the product
is the channel in which a letter from both given channels is used, this
ordered pair being all input letter of the product. channel). The equiva-
lent number of noise free letters for the SUll1 of channels is additive, and
for thc product, multiplicative. Conscquently the channel \VC have just
described, corresponding to sequences from state 8 to state t in n steps,
has an equivalent number of letters equal to the matrix clement N/f/'l).

The original matrix N ttL is a matrix with non-negative clements. Con-
scquently it has a positive real eigenvalue which is greater than or equal
to all other eigenvalues in absolute value. Furthermore, under our us-
sumption that it be possible to pass from any state to any other state by
some sequence of letters, there is only onc positive real eigenvalue. If d
is the greatest common divisor of closed path lengths (through sequences
of states), then there will be d eigenvalues equal to the positive real root
multiplied by the different dth roots of unity. When the matrix N.« is
raised to the nth power, a term Nttt(n) is either zero (if it is impossible to
go from 8 to t in exactly n steps) or is asymptotic to a constant times
N(n>.

In particular, for 11, congruent to zero, mod d, the diagonal terms
N ,,(n) are asymptotic to a constant times N", while if this congruence is
not satisfied thc terms are zero. These statements are all well known re-
sults in the Frobouius theory of matrices with non-negative elements,
and will not be justified here (Frobenius, 1n12).

If we take n a sufficiently large multiple of d we will have, then,
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N ll( ft ) > k N" with lc positive. By taking 1~ sufficiently large, then, the
capacity of the channel whose input "Iettors" are from state 1 to state 1
in n steps can be made greater than (1/1~)log leN" = log N + (1/1~) log k,
Since the latter term can be made arbitrarily small we obtain a capacity
as close as we wish to log N. Since we may certainly usc the original
channel in this restricted \vay (going Irom state 1 to state 1 in blocks of
1~) the original channel has a capacity at least equal to log N.

To show that this capacity cannot be exceeded, consider the channel
K; defined as follows for sequonces of length n, J\t the beginning of n
block of length 11, the channel K; can he put into un arbitrary state
chosen from a set of states corresponding to tho states of K, This is
done by choice of a "state letter" at the trunsmitting point and this
II stntc letter" is transmitted noiselessly to the receiving point. For the
next n symbols the channel behaves as the given channel K with the
same constraints and probabilities. At the end of this block a new state
can be freely chosen at the transmitter for the next block. Considering It

block of length 1~ (including its initial state information) as a single letter
and the corresponding y block including the received "state letter," as a
received letter we have a mcmoryless channel K; .

For any particular initial-final state pair s, t, the corresponding ca-
pacity is equal to log Nat(n). Since we have the "sum' of these channels
available, the capacity of K; is equal to log L ..tN., (n). Each term in this
sum is bounded by a constant times N", and since there are only a finite
number of terms (because there arc only a finite number of states) we
may assume one constant for all the terms, that is N,,(n) < k.N" (all
11" 8, t). By taking n sufficiently large we clearly have the capacity of K n

per letter, bounded by log N + E for any positive E. But now any code
that can be used in the original channel can also be used in the K; chan-
nel for any n since the latter has identical constraints except at the ends
of 11 blocks at which point all constraints are eliminated. Consequently
the capacity of the original channel is less than or equal to that of J( n

for all u and therefore is less than or equal to log N. This completes the
proof of the theorem.

This result can be generalized in a number of directions. In the first
place, the finiteness of the alphabets is not essential to the argument. In
effect, the channel from state 8 to t can be a general mcmoryless channel
rather than a discrete finite alphabet channel.

A second slight generalization is that it is not. necessary that the state
he calculable at the receiver after each received letter, provided it is
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eventually possible at the receiver to determine all previous states. Thus,
in place of requiring that the next state be n function of the preceding
state and the received letter, we need only require that there should not
be two different sequences of states from any state 8 to any state t com-
patible with the same sequence of received letters.

TIlE CAPACITY OF A FINITE STATE CIIANNEL WITII STATE
CALCULAnl,J~ AT TltANSMITTER nUT N01.'

NECESSARILY AT RECEIVER

Consider now a channel with a finite input alphabet, a finite out/put
alphabet, and a finite number of internal states with the further prop-
erty that the state is known at the beginning and can be calculated at
the transmitter for each possible sequence of input letters. That is, the
next state is a function of the current state and the current input letter.
Such a channel is defined by this state transition function 8 n+1 =

1(8n , xn) , (the n + 1 state as a function of state 8n and nth input sym-
bol) , and the conditional probabilities in state s, if letter x is trans-
mitted, that the output letter will be y, Paz(Y). We do not assume that
the state is calculable at the receiving point.

As before, the states of such a channel can be grouped into a partially
ordered set of equivalence classes. We shall consider again only channels
in which there is just one equivalence class. That is, it is possible to go
from any state 8 to any state t by some sequence of input letters.

We first define a capacity for a particular state 8. Let the channel be
in state 8 and let Xl = (Xl, X2, ••• , Xn) be a sequence of 11, input letters
which cause the channel to end in the same state 8. If the channel is in
state 8 and the sequence Xl is used, we can calculate the conditional
probabilities of the various possible output sequences ]" of length n,
Thus, if the sequence XI leads through states 8, S2 , Sa, ••. , 8" , 8 the
conditional probability of Y1 = (YI, Y2, .•. , 11n) will be Pr(1"1/X1) =
Psx, (Yl)P82X2(lJ2) ••• l>8nXn(Yn). Consider the X's (leading from 8 to 8 in
11, steps) as individual input letters in a memoryless channel with the y
sequences 1" as output letters and the conditional probabilities as the
transition probabilities. Let C(n, 8) be the capacity of this channel. Let
C(s) be the least upper bound of (l/n)C(n, 8) when 11, varies over the
positive integers. We note the following properties:

1. Cikn, s) ~ kC(n, s). This followssince in choosing probabilities
to assign the X letters of length kn to achieve channel capacity one
may at least do as well as the product probabilities for a sequence
of kX'« each of length n. It follows that if we approximate to C(s)
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within Ent some particular 11, (i.e. r C(s) - - C(n, s) I < E) "'C will ap-
proximate equally well along the infinite sequence 2n, 3n, ,111., ••••

2. C(s) = C is independent of the state 8. This is proved as Iol-
lows, Select a sequence of input letters U lending front state s' to
state 8 and a second sequence V leading from 8 to 8'. Neither of
these need contain more than m letters whore 111 is the (finite) num-
her of states in the channel. Select an 111 for which C(nJ , 8) >
C(s) - E/2 and with nl large enough so that:

(C'(s) - f/2} ~I 2 ~ C(s} - f
ttl In

This is possible since by the remark J above C(s) is npproximnted
as closely as desired with arbitrarily large nl . A set of X sequences
fOI" the 8' state is constructed by using the sequences for the 8 state
and annexing the U sequence at the beginning and the V sequence
at the end. If each of these is given a probability equal to that used
for the X sequences in thc 8 state to achieve C(n, s), then this gives
a rate for the s' sequences of exactly Cin, s) but with sequences of
length at most III + 211~ rather than 1l.1 • It follows that C(s') ~

(C(s) - E/2)(nt/nl + 271l) ~ C(s) - E. Of course, interchanging s
and s' gives the reverse result C(s) ~ C(s') - E and consequently
C(s) = C(s'). (Note that, if there were several equivalence classes,
we would have a C for each class, not necessarily equal).

3. Let C(1l, s, s') be the capacity calculated for sequences starting
at s and endingat s' aftcr n steps. Let C(s,s') = Iin1n-.oo(l/ll,)C(1t, s, s').
Then C(8, s') = C(8) = C. This is true since we can change so-
queuces Irom s to s' into sequences from s to s by n sequence of
length fit 1110st 111, added at the end. By taking n. sufiicicntly large
in the lim the cfTect of an added m can be Illude arbitrarily small,
(as in the above remark 2) so that C(8, .~') ~ C(s) - E. Likewise,
the 8 to 8 sequences which npproximate C(s) and can bc made ar-
bitrarily long can he translated into s to s' sequences with at most
'In added letters. This implies C(s) ~ C(s, 8') - E. lIenee C(.~) =
C(s, s'),

We wish to show first that starting in state SI it is possible to sig-
nal with arbitrarily small probability of error at any rate II < C
where C is the quantity above in remark :3. More strongly, we will
prove the Iollowing,

TIIEOItEl\[ 5: Given any II < C there exists J~(l(') > 0 such that for any
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11, = k d (an inlcqcr multiple oJ (l, the basic cuclc lr.n(Jlh) there arc block
codes of length n haoinq ill words with (l/n) log ill ~ 1(, and with proba-
bilit!l of error P, ~ e-E(R)n. There docs not cris! a sequence of codes of in-
crcasinq block lcnqlh. with 1}l'olJabilillJ of error approachinq zero and rate
(lreaicr than C.

Pnoo... : Tho nffirmntivo part, of the result is proved as follows, I ..ct
R. = (1(, + C)/2. Let 8. be the initial stale of tho channel and consider
scquencos of letters which take the state from SJ to 81 in nl steps. Choose
nl so that C(nl , Sl) > (:3C + 1(,)/'1. URC thesc sequences as input letters
and construct codes for the rate /l • . 13y Theorem 3 the probability of
error will go UO\\'11 cxponontially in the length of the code. Tho codes
hero are of length 1t. , 2nl , :lnl, ... in terms of tho nriginnl lcttcrs, hut,
this merely changes the coefficient of 11, hy a Iactor 1/11,1 . Thus, for mul-
tiplcs of nt the affirrnativo part, of tho theorem is proved. To prove it for
all multiples of tl, first note that it is true for all sufficiently large mul-
tipies of d, since by going out to a sufficiently large multiple of 11,1 the
effect of a suffix on the code words bringing the state back to 81 after
multiples of d, can be made small (so that tho rate is not substantially
altered). nut now for smaller multiples of done may UHC UIl)' desired
code with a probability of error less than 1 (e.g., interpret any received
word as message 1, with P; = 1 - l/Jf < 1). We have then a finite set
of codes up to some multiple of d at which a uniform exponential bound
takcs over. "rhus, one may choose a coefficient J~'(ll) such that 1)~ <
c-E(!l)n for n. anlJ integer multiple of d.

The negative part of our result, that the capacity C cannot be ex-
cceded, is proved by an argument similar to that used for the case where
thc state was calbulablc at the receiver. Namely, consider the channel
K; defined as follows. Tho given channel [( may he put at the hcginning
into any state and the nnmc of this state t.ransmit.tcd noiselessly to the
receiving point. Then n letters arc transmitted with the constraints and
probubilitics of the given channel K, Tho final state is then also trans-
mitt.ed to the receiver point. This process is then repeated in blocks of n,
"Ve have here a mcmorylcss channel which for any n. "includes" the
given channel. Any code for the given channel J( could be used if desired
in K; with equally good probability of error. Hence the capacity of the
given channel K must be less than or equal to that of K; for every n, On
the other hand K; is actually the u SU111" of n set of channels correspond-
ing to sequences from state 8 to state t in n steps; channels with en-
pnci fries previously denoted by C(n, 8, t). 14'01' nil sufficien tty largo n, and
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for all s, i, '\'C have (l/n)C(n, s, I) < C + E as we have seen above.
Hence for all n > no, say, the capacity of K; is bounded by C + E +
(l/n) log 1n

2 where ni is the number of states. It follows that the capacity
of K is not greater than C.

It, is interesting to compare the results of this section whore the state
is calculable at the transmitter only with those of the preceding section
where the state is calculable at both terminals. In the latter case, a
fairly explicit formula is given for the capacity involving only the cal-
culation of eapacitios of memorylcss ehnnncls and the solution of an
algebraic equation. In the former case, the solution is far less explicit,
involving as it docs the evnluution of certain limits of n ruther complex
type.
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Some Geometrical Results in Channel Capacity-

Claude E. Shannon**

Abstract

A memoryless discrete channel is defined by a set of transition probabilities P:(j). The rate
R of information flow per symbol can be represented as a line segment inside a certain convex
body, when the source symbols occur with given probabilities. With the help of this geometric
picture one can easily obtain a number of interesting properties of channel capacity and rate of
information flow. We show for example that the rate is an upward convex function of the
source probabilities, and a strictly convex function of the probabilities of the output symbols.
Therefore a local maximum of R is necessarily equal to the absolute maximum C. If P is the
rank of the matrix lip i (j)" ' then one needs only p (suitably chosen) input symbols to achieve
capacity; one has C ~ log p. Other results of a similar nature are developed, including a
simple geometric construction of the channel capacity in the case of only two output characters.

The calculations involved in determining the rate R and channel capacity C for a discrete
memoryless channel [1] can be given an interesting geometric formulation that leads to new
results and insights into the properties of these quantities. Our results ex tend and to some
extent overlap from a different viewpoint the interesting paper of S. Muroga [2]. The method
of analysis, however, is quite different, using a geometrical approach depending on results in
the theory of convex bodies [3] rather than the algebraic approach of Muroga.

Let a channel be defined by the matrix II p; (j)" of transition probabilities from input letter i
to output letter j (i = 1,2, ... , a; j = 1,2, ... , h). We can think of each row of this matrix
as defining a vector or a point in a (b - 1)-dimensional equilateral simplex (the b - 1
dimensional analog of line segment, triangle, tetrahedron, etc.). The coordinates of the point
are the distances from the faces and they sum to one, ~ Pi (j) = 1. They are known as

j

barycentric coordinates. They correspond, for example, to the coordinates often used by
chemists in describing an alloy in terms of the fraction of various components.

We thus associate a point or vector ~ i with input i. Its components are equal to the
probabilities of various output letters if only the input i were used. If all the inputs are used,
with probability Pi for input i, the probabilities of the output letters are given by the
components of the vector sum

Q is a vector or point in the simplex corresponding to the output letter probabilities. Its jth
component is r PiP; (j). Since the P; are non-negative and sum to unity, the point Q is in

i

the convex hull (or barycentric hull) of the points ~ i- Furthermore, any point in this convex

* Nachrichtentechnische Zeit, vol. 10. 1957.

** Mr. Shannon was unfortunately prevented by university commitments from giving his report in person. In
his stead. Mr. Kretzmer delivered his report in German in a free-form interpretation, and was kind enough
to take the responsibility of answering questions afterwards.
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hull can be obtained by suitable choice of the Pi'

Now, for notational convenience, we define the entropy of a point or a vector in a simplex
to be the entropy of the barycentric coordinates of the point interpreted as probabilities. Thus
we write

~ Pi(j) logpi(j), i = 1,2, ... , a ,
j

= - (1 + log Xi)

i ~ j

i = j .

- ~ ~ Pi Pi(j) log ~ PiPi(j)
)

= entropy of received distribution.

In this notation, the rate of transmission R for a given set of input probabilities Pi is given
by

R = H(~ Pi1i) - ~ P iH(1i)
i i

The function H(Q), where Q is a point in the simplex, is a convex upward function. For if
the components of Qare Xi' wehave

H = - ~ x, log x, ,

aH
ax;

a2 H 0
Hi) = ax.ax. = I/x;

I }

Hence ~ Hi) dx; 6.x) = - ~ (6.xJ)/x; is a negative definite fonn. This is true in the space
i) ;

of all non-negative x, and, hence, certainly in the sub-space where ~ x , = I. It follows that
the rate R above is always non-negative and, indeed, since H is strictly convex (no flat regions),
that R is positive unless ~ i = ~, whenever P; > O.

Fig. 1 Construction for channel capacity with three input and three output letters

The process of calculating R can be visualized readily in the cases of two or three output
letters. With three output letters, imagine an equilateral triangle on the floor. This is the
simplex containing the points 1 i and Q. Above this triangle is a rounded dome as in Fig. I.
The height of the dome over any point 1 is H (~). If there were three input letters with
corresponding vectors 1. 1, 1 2, ~ 3 these correspond to three points in the triangle and, straight



Some Geometrical Results in Channel Capacity 261

up from these, to three points on the dome. Any received vector Q = ~ P; 1 i is a point

within the triangle on the floor defined by A I, A 2, A 3. H (Q) is the height of the dome above
the point Q and ~ (P iH1 i) is the height a~veQ of theplane defined by the three dome

points over 1 t, ~ 2, 1 3· In other words, R is the vertical distance over Q from the dome down
to the plane defined by these three points.

The capacity C is the maximum R. Consequently in this particular case it is the maximum
vertical distance from the dome to the plane interior to the triangle defined by ~ 1, ~ 2, ~ 3.

This clearly occurs at the point of tangency of a plane tangent to the dome and parallel to the
plane defined by the input letters, provided this point is interior to the triangle. If not, the
maximum R will occur on an edge of the triangle.

If there were four input letters, they would define a triangle or a quadrilateral on the floor
depending on their positions, and their vertical points in the dome would in general define a
tetrahedron. Using them with different probabilities would give any point in the tetrahedron as
the subtracted value ~ P; H (~ ;). Clearly, the maximum R would occur by choosing

probabilities which place this subtracted part somewhere on the lower surface of the
tetrahedron.

These remarks also apply if there are still more input letters. If there are ~ input letters they
define an ~-gon or less in the floor and the vertically overhead points in the dome produce a
polyhedron. Any point in the convex hull of the points obtained in the dome can be reached
with suitable choice of the Pi and corresponds to some subtracted term in R. It is clear that to
maximize R and thus obtain C one need only consider the lower surface of this convex hull.

It is also clear geometrically, from the fact that the lower surface of the polyhedron is
convex downward and the dome is strictly convex upward, that there is a unique point at which
the maximum R, that is, C, occurs. For if there were two such points, the point halfway
between would be even better since the dome would go up above the line connecting the points
at the top and the lower surface of the convex hull would be at least as low at the midpoint of
the lower connecting line. The rate R is therefore a strictly convex upward function of the
received vector ~.

It is also true that the rate R is a convex upward function of the input probability vector (this
vector has a barycentric coordinates PI, P 2, .•. , P a rather than the b coordinates of our other
vectors). This is true since the Q vectors Q I and QII correspondingto the input probabilities
Pi' and p;' are given by - - -

Q.' ~P;'1i'

The Q corresponding to a Pi' + ~p;' (where ex + ~ = I and both are positive) is
a Q'+ ~Q" and consequently the corresponding R ~ a R' + ~R", the desired result.
Equality can occur when ~' = Q", so in this case we cannot say that we have a strictly
convex function.

These last remarks also imply that the set S of P vectors which maximize the rate at the
capacity C form a convex set in its a dimensional simplex. If the maximum is obtained at two
different points it is also attained at all points on the line segment joining these points.
Furthermore, any local maximum of R is the absolute maximum C, for if not, join the points
corresponding to the local maximum and the absolute maximum. The value of R must lie on or
above this line by the convexity property, but must lie below it when sufficiently close to the
local maximum to make it a local maximum. This contradiction proves our statement.
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While we have described these results in terms of three output letters for geometrical
clarity, it is easy to generalize them to the case of b output letters using well known results from
the theory of convex bodies.

Another property we may deduce easily is that the capacity C can always be attained using
not more than p of the input letters, where p is the rank of the matrix "P i (j)" . This is because
p - 1 is the dimensionality of the set of ~ points. Any point on the surface of a p - 1
dimensional polyhedron is in some face. This face may be subdivided into p - 1 dimensional
simplexes (if it is not already a simplex). The point is then in one of these. The vertices of the
simplex are p input letters, and the desired point can be expressed in terms of these. A result of
Muroga, that the capacity is not greater than log p, now follows easily. In fact if only p letters
are used, the entropy of the input is necessarily not greater than log p, and the equivocation can
only decrease this value.

The geometric picture gives considerable information concerning which input letters should
be used to achieve channel capacity. If the vector 1 t» say, corresponding to input letter t, is in
the convex hull of the remaining letters, it need not be used. Thus, suppose 1 t = ~ a i ~ i

i'l:.f

where ~ a, = 1, a, ~ o. Then by the convexity properties H(1 t) ~ ~ ai H (1 i). If by
i i~ t

using the ~ i with probabilities P i we obtain a rate R = H(~ Pi 1 j) - ~ P; H (~ ;), then a
rate greater than or equal to R can be obtained by expressing 1 f in terms of the other 1 i» for
this leaves unaltered the first term of R and decreases or leaves constant the sum.

In the case of only two output letters the situation is extremely simple. Whatever the
number of input letters, onJy two of them need be used to achieve channel capacity. These two
will be those with the maximum and minimum transition probabilities to one of the output
letters. These values, P I and P2 say, are then located in the one-dimensional simplex, a line
segment of unit length, and projected upward to the H-curve as shown in Fig. 2. The secant
line is drawn and the capacity is the largest vertical distance from the secant to the curve. The
probabilities to achieve this capacity are in proportion to the distances from this point to the
two ends of the secant.

PI Pz
Fig. 2 Constructionfor channel capacity with two output letters

In the case of three output letters, the positions of all vectors corresponding to input letters
may be plotted in an equilateral triangle. The circumscribing polygon (convex hull) of these
points may now be taken and any points interior to this polygon (including those on edges) may
be deleted. What is desired is the lower surface of the polyhedron determined by the points in
the H-surface above these points. This lower surface, in general, will consist of triangles and
the problem is to determine which vertices are connected by edges. A method of doing this is
to consider a line joining a pair of vertices and then to calculate for other Jines whose
projections on the floor cross this line, whether they are above it or below it in space. If there is
no line below the first line, this line is an edge on the lower surface of the polyhedron. If a
second line is found below the first line this one may be tested in a similar fashion, and
eventually an edge is isolated. This edge divides the projection into two smaller polygons and
these may now be studied individually by the same means. Eventually, the original polygon
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will be divided by edges into a set of polygons corresponding to faces of the polyhedron. Each
of these polygons may then be examined to determine whether or not the point of tangency of
the parallel plane which is tangent to the H-surface lies over the polyhedron. This will happen
in exactly one of the polygons and corresponds to the ~ for maximum R.

We now prove another convexity property of discrete channels, namely that the channel
capacity for transition probabilities Pi (j) is a convex downward function of these probabilities.
That is, the capacity C for the transition probabilities r, (j) = ~ tp ,(j) + q; (j) satisfies the
inequality

where C I is the capacity with probabilities Pi (j) and C 2 that with probabilities q i(j).

To prove this let the capacity of the r i(j) channel be achieved by the input probabilities Pi'
Now consider the following channel. There are as many inputs as in the given channels but
twice as many outputs, a set j and a set i'. Each input has transitions ~ Pi (j) and ~ q; ir:
This is the channel we would obtain by halving all probabilities in the Pi(}) and the qi(j)
channels and identifying the corresponding inputs but leaving the outputs distinct. We note that
if the corresponding outputs are identified, the channel reduces to the ri (j) channel. We note
also that without this identification the channel looks like one which half the time acts like the
Pi (j) channel and half the time the q i (j) channel. An identification of certain outputs always
reduces (or leaves equal) the rate of transmission. Let this channel be used with probabilities
Pi for the input symbols. Then this inequality in rates may be written

H(x) - [Y2 H yl (x) + Y2 H y2(X») ~ H(x) - Hy(x) = C •

where H}' I (x) is the conditional entropy of x when y is in the j group and H)'2 (x) that when y is
in the j' group. Splitting H(x) into two parts to combine with the H y} (x) and H y2(x), we
obtain

where R 1 is the rate for the Pi (j) channel when the inputs have probabilities Pi and R 2 is the
similar quantity for the q i (j) channel. These rates, of course, are less, respectively, than C 1 or
C 2, since the capacities are the maximum possible rates. Hence we get the desired result that

~Cl+Y2C2~C.

The various results we have found may be summarized as follows.

Theorem: In a finite discrete memoryless channel we have the following properties.

(1) The rate of transmission R is a strictly convex upward function of the received letter
probabilities Q i :

(2) The rate R is a convex upward function of the input letter probabilities Pi'

(3) The region in the space of input letter probabilities where channel capacity is achieved is
a convex set of points.

(4) There is no local maximum of R which is not the absolute maximum C.

(5) Any input letter interior to the convex hull defined by the other input letters can be
deleted without affecting channel capacity.
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(6) Only p (suitably chosen) input letters need be used to achieve channel capacity where p
is the rank of IIp;(j)11 . Furthermore C ~ log p (Muroga).

(7) The channel capacity is a convex downward function of the transition probabilities Pi (j).
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Discussion

Mr. P. Neidhardt: I would like to make a remark concerning the properties of the geometric
representation of the quantity defined as the average information, per information element, that
is ·Iost in transmission.

It is known that the information flow rate R which reaches the receiver is the difference
between the information content of the signal H(X) and the equivocation H(XI Y), when X is
the ensemble of the information sent and Y that which is received. Thus one has

- 1: p(x)2 log p(x) - 1: 1: p(x,y)2 log p(xlY) = R ,
x y x

where x and Y denote elements of the ensembles X and Y. Shannon has shown that one can also
define the channel capacity of a transmission channel, without referring to information content
or information flow, indeed solely on the basis of the probabilities p(Ylx). [See also Amiel
Feinstein, IRE Transactions on Information Theory, September 1954, pp. 2-22].

There now arises the question, when considering the geometric representation of the
information rate R described in the report, the convexity properties of this function and the
transparent calculation of the channel capacity C, whether there are not also convexity
properties of the function

- 1: ~ p(x,y)2 log p(xly) ,
y x

which alas always absorbs a certain part of the - I: p(x)2 log p(x) in the quantity R. This
x

would reveal interesting geometric properties of the entropy relation defined by myself as the
information-theoretic efficiency. [See NTF, vol. 3, 1956].

Mr. E. R. Kretzmer: In the geometric representation just described it is not the equivocation that
enters, but another related quantity, which I have called the "dispersion loss." Convexity
properties of functions almost always occur with these quantities. Probably this is also the case
for equivocation. This would require further research.



A Note on a Partial Ordering for
Communication Channels

CLAUDE E. SHANNON·

Center for Advanced Study in the Behavioral Sciences, Stanford, Californ1~a

A partial ordering is defined for discrete memoryless channels. It is
transitive and is preserved under channel operations of addition and
multiplication. The main result proved is that if K 1 and K 2 are such
channels, and K 1 ;2 K 2 , then if a code exists for K 2 , there exists at
least as good a code for K 1 , in the sense of probability of error.

Consider the three discrete memoryless channels shown in Fig. 1. The
first may be said to include the second, since by the use at the input of
only the letters A, B, and C, the channel reduces to the second channel.
Anything that could be done in the way of signaling with the second
channel could be done with the first channel by this artificial restriction
(and of course, in general, more, by using the full alphabet). The second
channel in a sense includes the third, since if at the receiving point we
ignore the difference between received letters A' and B' the third chan-
nel results. We could imagine a device added to the output which pro-
duces letter A' if either A' or B' goes in, and lets C' go through without
change.

These are examples of a concept of channel inclusion we wish to define
and study. Another example is the pair of binary symmetric channels in
Fig. 2. Here we can reduce the first channel to the second one not by iden-
tification of letters in the input or output alphabets but by addition of a
statistical device at either input or output; namely, if we place before (or
after) the first channel a binary symmetric channel, as shown in Fig. 3, with
value P2 such that {PI = PP2 + q Q2}' then this over-all arrangement acts
like the second channel of Fig. 2. Physically this could be done by a suitable
device involving a random element. We might be inclined, therefore, to
define a channel K I with transition probability matrix I/p;(j)1/ to include

• On leave of absence from Massachusetts Institute of Technology.

INFORMATION AND CONTROL 1, 390-397 (1958)
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Flo. 1. Examples of channels illustrating inclusion relation.
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FlO. 2. A further example of inclusion.
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Flo. 3. Reduction of the left channel of Fig. 2 to the right, by a preceding
channel.

channel K 2 with matrix I/q/j)1! if there exist stochastic matrices A and B
such that

This is a possible definition, but actually we can generalize this
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somewhat and still obtain the properties we would like for channel
inclusion. Namely, we may consider fore and aft stochastic operations
which are correlated. Physically one can imagine devices placed at the
transmitting end and at the receiving end which involve random ~ut n~t
necessarily independent elements. For example, they may o~taln the!r
random choices from tapes which were prepared together with certain
correlations. Physically this would be a perfectly feasible process.
Mathematically this corresponds, in the simplest case, to the following.

DEFINITION. Let P.(j) (i = 1, · · · ,B; j = 1, .. · , b) be the transition
probabilities for a discrete memoryless channel K 1 and q.(l) (k = 1, · · · ,
c; l = 1, · · · , d) be those for K 2 • We shall say that K 1 includes K 2 ,

K1 :2 K2 , if and only if there exist two seta of transition probabilities,
r alc(i) and laj(l), with

rak(i) ~ 0, E, TaA:(i) = 1,
and

and there exists
ga ~ 0,

with

(1)

Roughly speaking, this requires a set of pre- and post-channels R a

and T cr , say, which are used in pairs, gCl being the probability for the pair
with subscript a. When this sort of operation is applied the channel
K1 looks like K2 •

Let us define a pure channel as one in which all the transitions have
probability either 0 or 1; thus each input letter is carried with
certainty into some output letter. Any particular pre- and post-chan-
nel Rex and Ta in (1) can be thought of as a weighted sum of pure pre-
and post-channels operating on K 1• Namely, consider all ways of
mapping the input letters of R a into its output letters and associate
probabilities with these to give the equilavent of R a • The mapping
where letter k is mapped into mk is given probability Ok rak(mk). A
similar reduction can be carried out for the post-channel Ta and
combinations of the pre- and post-pure channels are given the
corresponding product probabilities.

This reduction to pure components can be carried out for each a and
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the probabilities added for the same components with different Q. In
this way, the entire operation in (1) can be expressed 88 the same sort of
operation, where the R. and T. are now pure channels, In other words,
channel inclusion can be defined equivalently to the above definition
but with the added condition that the T._(i) and t.i(l) correspond to pure
channels.

The relation of channel inclusion is transitive. If K 1 ;2 K1 and
K 2 ::> K, , then K 1 :2 K• . Indeed, if g. , R. , T. are the probabilities and
pre- and post-channels for the first inclusion relation, and g~, R;, T;
those for the second, then the probabilities g,.g~ with channels R~ U R.
for premultiplier and T,. U T; for postmultiplier (the U means tandem
connection or matrix product) will produce K« from K 1 .. If K 1 :2 K 2 and
K 2 ~ K 1 , we will say these are equivalent channels and write K. == K 2 •

Note that always K 1 == Ks . Grouping channels into these equivalence
classes we have, then, 8 partial ordering of discrete memoryless channels.
There is a universal lower bound of all channels, namely, the channel
with one input letter and one output letter with probability 1 for the
transition. There is no (finite) universal upper bound of all channels.
However, if we restrict ourselves to channels with at most n input and
n output letters (or channels equivalent to these) we can give an upper
bound to this subset, namely, the pure channel with n inputs and n
outputs, the inputs mapped one-to-one into the outputs.

The ordering relation is preserved under channel operations of addi-
tion and multiplication. If K1 , K:, K«, and K~ are channels and
K 1 ~ K: and K 2 ~ K~, then

K1 + K2 :2 K~ + K~

s;«, :::2 K:K~.

The sum and product of channels as defined in an earlier paper (Shannon,
1956) correspond to a channel in which either K 1 or K2 may be used (for
the sum) or to a channel where both K 1 and K 2 are used (for the prod-
uct). To prove the product relationship suppose (ga , R. , T,.) produce
K~ from K1 and (g;, R;, T;) produce K~ from K2 • Then (g.g;, R.R;,
T ,.T)~ produces K~K~ from K1K" , where the product RaR; means the
product of the channels. The sum case works similarly. The sum
K~ + K~ can be produced from K 1 + K 2 by (gag;, R,. + R;, T a + T;)
where the plus means sum of channels and a and fj range over all pairs.

If in a memoryless discrete channel K we consider blocks of n letters,
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then we have another memoryless discrete channel, one in which the
input "letters" are input words of length n for the original channel and
the output "letters" are output words of length n for the original chan-
nel. This channel is clearly equivalent to K". Consequently, if K 1 :2 K 2

the channel Kin for words of length n from K1 includes K2" , the channel
for words of length n from K 2 •

Suppose K 1 :::> K 2 and K 1 :::> Ka and that K 1 and K a have matrices
" Pi(j) If and II qi(j) 11, respectively. Then K1 also includes the channel
whose matrix is

x " p,(j) If + (1 - A) II qi(j) " (0 ~ A s 1).

Thus, in the transition probability space the set of channels included in
K 1 form a convex body. The x II Pi(j) II + (1 - A) II q,(j) II channel can
in fact be obtained from K1 by the union of (~ga , R« , T ,,) and

«1 - ~)g~', RfJ', T~').

Our most important result and the chief reason for considering the
relation of channel inclusion connects this concept with coding theory.
We shall show, in fact, that if a code exists for K 2 and K 1 ::2 K 2 , at least
as good a code exists for K1 in the sense of low probability of error.

THEOREM. Suppose K 1 ::::> K 2 and there is a set of code words of length
n for K 2 , WI , W2 , • • • , W m, and a decoding system such that if the
Wi are used with probabilities Pi then the average probability of error
in decoding is P, . Then there exists for channel K 1 a set of m code words
of length n and a decoding system which if used with the same proba-
bilities Pi given an average probability of error P/ ~ P •. Consequently,
the capacity of K1 is greater than or equal to that of K2 •

PROOF. If K 1 :.:> K2 a set (ga, R; , T«) makes K 1 like K2 , where R tJ

and T a are pure channels. For any particular a, R; defines a mapping of
input words from the K 2n code into input words from the K 1" dictionary
(namely, the words into which the R; transforms the code). Further-
more, T" definies a mapping of K1 output words into K2 output words.
From a code and decoding system for K2 we can obtain, for any particu-
lar a, a code and decoding system for K 1 • Take as the code the set of
words obtained by the mapping R; from the code words for K 2 - For
the decoding system, decode a K 1 word as the given system decodes
the word into which a K 1 word is transformed by Ta • Such a code will
have a probability of error for K 1 of, say, Pea. Now it is clear that

(2)
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since the channel K2 acts like these different codes with probability g•.
Since this equation says that a (weighted) average of the Pea is equal to
P. , there must be at least one particular Pea that is equal to or greater
than p•. (If all the Peawere less than p. the right-hand side would neces-
sarily be less than p • .) The code and decoding system defined above for
this particular a then give the main result for the theorem. It follows,
then, that P, opt(M, n), the minimum probability of error for M equally
probable words of length n, will be at least as good for K 1 as for K, .
Similarly, the channel capacity, the greatest lower bound of rates such
that P, can be made to approach zero, will be at least as high for K I as
for K 2 •

It is interesting to examine geometrically the relation of channel in-
clusion in the simple case of channels with t\VO inputs and t\VO outputs
(the general binary channel). Such a channel is defined by two proba-
bilities PI and P2 (Fig. 4) and can be represented by a point in the unit
square. In this connection, see Silverman (1955) where channel capacity
and other parameters are plotted as contour lines in such a square. In
Fig. 5 the channel with PI = ~,P2 = ~ is plotted together with the
three other equivalent channels with probabilities P2, PI; 1 - P2,
1 - PI ; and 1 - PI, 1 - 1'2. Adding the two points (0,0) and (1,1)

1- 'P
2

Flo. 4. The general binary channel.
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P,
FIG. 5. The hexagon of binary channels included in a typical binary channel.

gives a total of six points. The hexagon defined by these-i.e., their con-
vex hull-includes all the points which correspond to channels included
in the given channel. This is clear since all pairs of pure pre- and post-
channels produce from the given channel one of these six. This is readily
verified by examination of cases. Hence any mixture with probabilities
gCl will correspond to a point within the convex hull.

In Fig. 5, binary symmetric channels lie on the square diagonal from
(1 ,0) to (0, 1). Thus the given channel includes in particular the binary

FIG. 6. The greatest lower bound X and the least upper bound Y of two com-
parable binary channels.
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symmetric channel X whose point is ~[PI + (1 - PI»), ~(Pt + (1 - PI)),
in our example (~, ~). The channel is included in the binary sym-
metric channel Y with coordinates (PI/PI + PI and P2/Pl + P2), in our
particular case (~, %). These inclusions give simple upper and lower
bounds on the capacity of a general binary channel in terms of the more
easily calculated binary symmetric channel.

If we have two channels neither of which includes the other, the situa-
tion will be that of Fig. 6, with two hexagons. In this case there is a
greatest lower bound and a least upper bound of the two channels,
namely, the channels represented by oil¥. and Y in Fig. 6. Thus, in the
binary channel case we have more than a partial ordering; we have a
lattice.

FURTHER GENERALIZATIONS AND CONJECTURES

We have not been able to determine whether or not the partial order-
ing defines a lattice in the case of channels with n letters. The set of points
included in a given channel can be found by a construction quite similar
to Fig. 5, namely, the convex hull of points obtained from the channel
by pure pre- and post-channels; but it is not clear, for example, that the
intersection of two such convex bodies corresponds to a channel.

Another question relates to a converse of the coding theorem above.
Can one show that in some sense the ordering we have defined is the most
general for which such a coding theorem will hold?

The notion of channel inclusion can be generalized in various ways to
channels with memory and indeed in another paper (Shannon, 1957) we
used this sort of notion at a very simple level to obtain some results in
coding theory. It is not clear, however, what the most natural generaliza-
tion will be in all cases.

RECEIVED: March 24, 1958.
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Channels with Side Information at the Transmitter

c. E.Shannon

Abstract: In certain communication systems where information 'is to be transmitted from one point to another,

additional side information is.avaiiable at the transmitting point. This side information relates to the state of

the transmission channel and can be used to aid in the coding and transmission of information. In this paper a

type of channel with side information is studied and its capacity determined.
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Introduction

Channels with feedback' from the receiving to the trans-
mitting point are a special case of a situation in which
there is additional information available at the transmitter
which may be used as an aid in the forward transmission
system. In Fig. I the channel has an input x and an out-
put y.

There is a second output from the channel, u, available
at the transmitting point, which may be used in the coding
process. Thus the encoder has as inputs the message to be
transmitted, 111, and the side information u. The sequence
of input letters x to the channel will be a function of the
available part (that is, the past up to the current time) of
:hese signals.

The signal II might be the received signal y, it might be
1 noisy version of this signal, or it might not relate to y
Jut be statistically correlated with the general state of the
channel. As a practical example, a transmitting station
night have available a receiver for testing the current
roise conditions at different frequencies. These results
vould be used to choose the frequency for transmission.

A simple discrete channel with side information is
.hown in Fig. 2. In this channel, x, y and u are all binary
'ariables; they can be either zero or one. The channel can
ie used once each second. Immediately after it is used the
andom device chooses a zero or one independently of
irevious choices and with probabilities 1/2, 1/2. This
'alue of u then appears at the transmitting point. The
text x that is sent is added in the channel modulo 2 to this
'alue of u to give the received y. If the side information u
vere not available at the transmitter, the channel would
Ie that of Fig. 3, a channel in which input 0 has proba-
.ilities I;' 2 of being received as 0 and 1/2 as 1 and
imilarly for input 1.

Such a channel has capacity zero. However. with the
ide information available, it is possible to send one bit per
econd through the channel. The u information is used to
ompensate for the noise inside by a preliminary reversal
f zero and one. as in Fig. 4.

273
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R-C

6(R + ~ln R )
n R-C

P, '2. -----------

Thus, the capacity C1 under this condition could be cal-
culated by the ordinary means for memoryless channels.
On the other hand, if the state information were available
both at transmitting and receiving points, it is easily shown

that the capacity is then given by C2 = ~gtCt, where C, is
t

the capacity of the memoryless channel with transmission
probabilities P, i (j). The situation we are interested in here
is intermediate-s-the state information is available at the
transmitting point but not at the receiving point.

Theorem: The capacity of a memoryless discrete channel
K with side state information, defined by gt and PliO), is
equal to the capacity of the memoryless channel K' (with-
out side information) with the same output alphabet and
an input alphabet with all input letters X = (x}, X2,••. ,XIt)
where each Xi = 1, 2, ... ,a. The transition probabilities
r.d y) for the channel K' are given by

A ny code and decoding system for K' can be translated
into an equivalent code and decoding system for K with
the SaJ11e probability of error. A ny code jor K has an
equivocation of message (conditional entropy per letter 01
the message given the received sequence) at least R - C,
where C is the capacity of K'. Any code with rate R>C
has a probability of error bounded away [rom zero (what-
ever the block length n)

arbitrarily close to rate R and with probability of error
P, arbitrarily small.

It may be noted that if the state information were not
available at the transmitting point, the channel would act
like a memoryless channel with transition probabilities
given by

It may be noted that this theorem reduces the analysis
of the given channel K with side information to that for a
mernoryless channel K' with more input letters but with-
out side information. One uses known methods to deter-
mine the capacity of this derived channel K' and this
gives the capacity of the original channel. Furthermore,
codes for the derived channel may be translated into
codes for the original channel with identical probability
of error. (Indeed, all statistical properties of the codes are
identical.)

We first show how codes for K' may be translated into
codes for K. A code word for the derived channel K'
consists of a sequence of n letters X from the X input
alphabet of K'. A particular input letter X of this channel
may be recognized as a particular function from the state
alphabet to the input alphabet x of channel K. The fun
possible alphabet of X consists of the full set of a" differ-
ent possible functions from the state alphabet with h

Without studying the problem of side information in its
fullest generality, which would involve possible historical
effects in the channel, possibly infinite input and output
alphabets, et cetera, we shall consider a moderately gen-
eral case for which a simple solution has been found.

The memoryless discrete channel with
side state information

Consider a channel which has a finite number of possible
states, SI, S2, ••• ,Sh. At each use of the channel a new
state is chosen, probability gt for state St. This choice is
statistically independent of previous states and previous
input or output letters in the channel. The state is avail-
able as side information u at the transmitting point. When
in state s. the channel acts like a particular discrete chan-
nel K,. Thus, its operation is defined by a set of transition
probabilities Pti(j), 1=1, 2, ... ,11, i=l, 2, ... .a, j=l, 2,
... , b, where a is the number of input letters and b the
number of output letters. Thus, abstractly, the channel is
described by the set of state probabilities gt and transition
probabilities Pt;(j), with s, the probability of state t and
tr« (j) the conditional probability, if in state t and i is
transmitted, that j will be received.

A block code with M messages (the integers 1, 2, ... ,
M) may be defined as follows for such a channel with
side information. This definition, incidentally, is analo-
gous to that for a channel with feedback given previ-
ously.' If n is the block length of the code, there are 11

functions h(nl;Ut), f2(l1l;uJ, U2), f3(m;ut, U2, U3), ... ,
f~I(111;1l1, uz, ... ,u lI ) . In these functions In ranges over
the set of possible messages. Thus In = 1, 2, ... , M. The
u, all range over the possible side information alphabet.
In the particular case here each u, can take values from
I to g. Each function fi takes values in the alphabet of
input letters x of the channel. The value Ii(111; Ul, U2, ••. ,

u.) is the input XI to be used in the code if the message is
111 and the side information up to the time corresponding
to i consisted of us, U~, ••• , u.. This is the mathematical
equivalent of saying that a code consists of a way of deter-
mining, for each message 111 and each history of side in-
formation from the beginning of the block up to the
present, the next transmitted letter. The important feature
here is that only the data available at the time i, namely
111; u i, U2, ••• , u., may be used in deciding the next trans-
mitted Jetter Xi, not the side information u.,«, ... , u; yet
to appear.

A decoding system for such a code consists of a map-
ping or function ht y«, Y2, ... ,Yn) of received blocks of
length n into messages In; thus h takes values from 1 to
M. It is a way of deciding on a transmitted message given
a complete received block YJ, Y2, ... , Yn.

For a given set of probabilities of the messages, and for
a given channel and coding and decoding system, there
will exist a calculable probability of error PI'; the proba-
bility of a message being encoded and received in such a
way that the function h leads to deciding on a different
message, We shall be concerned particularly with cases
where the messages are equiprobable, each having proba-
bility liM. The rate for such a code is (l/l1)logM. We
are interested in the channel capacity C, that is, the
largest rate R such that it is possible to construct codes



Channels with Side Information at the Transmitter 275

Hence:

Summing on II gives

P(ylnl, U) =P(Ylm, U, Y).

P(ylx) =P(Ylx, m, u, U) =P(Ylx, In, U, U, Y).

P(y, m, u, U, Y)

P(m, u, U, Y)

P(y, nt, U, U)

P(m, u, U)

We now wish to show that P(ylm, U) =P(yIX). Here
X is a random variable specifying the function from u to ""
imposed by the encoding operation for the next input x to
the channel. Equivalently, X corresponds to an input let-
ter in the derived channel K'. We have P(ylx, u) =
P(y Ix, u, m, V). Furthermore, the coding system used
implies a functional relation for determining the next
input letter x, given In, U and u. Thus x = f( m, U, u). If
[i m, V, u) =f(m', V'. u) for two particular pairs (m. U)

Using this in (1),

H(Inl Y) -H(nll Y, y) <e (lOg P(ylm. V) ) .
P(y)

(2)

P(y, ulm, U) =P(y, ul,n, U, Y).

H(ylm, U) =H(ylm, U, Y) sH(Ylnl, Y)

-E (lOg P(ylm. v») s: -E( log P(yl m, Y») .

Since the new state u is independent of the past P(In, u, U)
=P(u)P(m, U) and rc«. u, U, Y) = P(u)P(nl, U, Y).
Substituting and simplifying.

Now since x is a strict function of 111, u, and U (by the
coding system function) we may omit this in the condi-
tioning variables

The last reduction is true since the term E (lOg P( Y, y»)
P(Y)P(y)

is an average mutual information and therefore non-
negative. Now note that by the independence require-
ments of our original system

P(Yl/n, u, U) =P(Ylm, u, U, Y),

=E (lOg P(m, Y, y)P(Y) )
P(Y,y)P(m, Y)

=E (lOg P(YI,n, Y)P(Y) )
P(Y,Y)

=E (lOg P(ylm, Y) ) -E (lOg P(Y, y) )
P(y) P(Y)P(y)

H(nl' Y) -H(m' Y, y) ~E (log P(ylm. Y») .
P(y)

(1)

(The symbol E( G) here and later means the expectation
or average of G over the probability space.) The change
in equivocation when the next letter y is received is

H(ml Y) -H(ml Y. y) = -E (lOg p<mIY»)

+ E (lOg P(ml Y. y»)

(
P(Inl Y, y) )

=E log-----
P(ml Y)

H(In IY) = - ~ P( m, Y) log P(In IY)
rn, Y

=-E( logp(mlY») .

values to the input value with a values. Thus. each letter
X = (Xl, X2, ••.• X'I) of a code word for K' may be inter-
preted as a function from state u to input alphabet x. The
translation of codes consists merely of using the input x
given by this function of the state variable. Thus if the
state variable 1I has the value 1, then Xl is used in channel
K; if it were state k, then x,... In other words, the transla-
tion is a simple letter-by-Ietter translation without memory
effects depending on previous states.

The codes for K' are really just another way of describ-
ing certain of the codes for K -namely those where the
next input letter x is a function only of the message 111 and
the current state II. and does not depend on the previous
states.

It might be pointed out also that a simple physical
device could be constructed which, placed ahead of the
channel K, makes it look like K'. This device would have
the X alphabet for one input and the state alphabet for
another (this input connected to the II line of Fig. 1). Its
output would range over the x alphabet and be connected
to the x line of Fig. 1. Its operation would be to give an x
output corresponding to the X function of the state u, It is
clear that the statistical situations for K and K' with the
translated code are identical. The probability of an input
word for K' being received as a particular output word is
the same as that for the corresponding operation with K.
This gives the first part of the theorem.

To prove the second part of the theorem, we will show
that in the original channel K, the change in conditional
entropy (equivocation) of the message m at the receiving
point when a letter is received cannot exceed C (the ca-
pacity of the derived channel K'). In Fig. 1, we let m be
the message: x, y, u be the next input letter, output letter
and state letter. Let U be the past sequence of u states
from the beginning of the block code to the present (just
before u), and Y the past sequence of output letters up to
the current y. We are assuming here a given block code
for encoding messages. The messages are chosen from a
set with certain probabilities (not necessarily equal).
Given the statistics of the message source, the coding sys-
tem, and the statistics of the channel, these various entities
m, x, y, U, Y all belong to a probability space and the
various probabilities involved in the following calculation
are meaningful. Thus the equivocation of message when
Y has been received. H (1111 Y), is given by
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culate:

P2 = }::gt min Pti( 1).
, i

The channel K' with two input letters having transition
probabilities Pl and 1- Pl and P2, 1- P2 to the two output
letters respectively, has the channel capacity of the orig-
inal channel K.

Another example, with three output letters, two input
letters and three states, is the following. With the states
assumed to each have probability 1/3, the probability
matrices for the three states are:

State 3
001

1/2 1/2 0

State 2
010

1/2 0 1/2

State 1
100
o 1/2 1/2

H(nl/ Y) -H(nll Y, y) <s (lOg P(y!x»)
P(y)

(
p(YIX) )S max E log ----

P(X) P(y)

H(ml Y) -H(ml Y, y) sC.

and (m', V') but for a II u, the nit foil 0 w s t hat
P(ylnl, V,u)=P(YI,n', V',u) foralluandy;sincem, U
and u lead to the same x as In', V'. and u, From this we
obtain P(ylm, V) = ~P(u)P(ylnl, U, u) =

u

~P(u)P(ylm', V', u) = P(y\m', V'). In other words,

(m, V) pairs which give the same function f(m, U, u)
give the same value of P(y 1m, U) or, said another way.
P(ylm, V) =P(yIX).

Returning now to our inequality (2), we have

In this case there are 23 = 8 input letters in the derived
channel K'. The matrix of these is as follows:

This is the desired inequality on the equivocation. The
equivocation cannot be reduced by more than C, the ca-
pacity of the derived channel K', for each received letter.
In particular in a block code with M equiprobable mes-
sages, R= l/n Jog M. If R>C, then at the end of the block
the equivocation must still be at least nR - nC, since it
starts at nR and can only reduce at most C for each of
the 11 letters.

It is shown in the Appendix that if the equivocation per
letter is at least R - C then the probability of error in
decoding is bounded by

1/2
o

1/2
2/3
1/6
1/6
]/3
1/3

1/2
1/2
o

1/6
2/3
1/6
1/3
1/3

o
1/2
1/2
1/6
1/6
2/3
1/3
1/3

1/3
1/3

1/3
1/3

1/3
1/3

If there are only three output letters, one need use only
three input letters to achieve channel capacity, and in this
case it is readily shown that the first three can (and in fact
must) be used. Because of the symmetry, these three let-
ters must be used with equal probability and the resulting
channel capacity is log (3/2).

In the original channel, it is easily seen that, if the state
information were not available, the channel would act like
one with the transition matrix

then the total probability Pe for all possibilities except the
most probable satisfies

This channel clearly has zero capacity. On the other hand,
if the state information were available at the receiving
point or at both the receiving point and the transmitting
point, the two input letters can be perfectly distinguished
and the channel capacity is log 2.

P e > - - - - - - -

Appendix

Lemma: Suppose there are M possible events with proba-
bilities Pi(;= 1, 2, ... , M). Given that the entropy H
satisfies

R-C

6(R + _1_]n _R_)
n R-C

P, '2- ------------

Thus the probability of error is bounded away from zero
regardless of the block length n, if the code attempts to
send at a rate R>C. This concludes the proof of the
theorem.

As an example of this theorem, consider a channel with
two output letters, any number a of input letters and any
number h of states. Then the derived channel K' has two
output letters and ah input letters. However, in a channel
with just two output letters, only two of the input letters
need be used to achieve channel capacity, as shown in
(2 ). Namely, we should use in K ' only the two letters
with maximum and minimum transition probabilities to
one of the output letters. These two may be found as fol-
lows. The transition probabilities for a particular letter of
K' are averages of the corresponding transitions for a set
of letters for K, one for each state. To maximize the tran-
sition probability to one of the output letters, it is clear
that we should choose in each state the letter with the
maximum transition to that output letter. Similarly, to
minimize, one chooses in each state the letter with the
minimum transition probability to that letter. These two
resulting letters in K' are the only ones used, and the
corresponding channel gives the desired channel capacity.
Formally, then, if the given channel has probabilities
p« ( 1) in state t for input letter i to output letter 1, and
r« (2) = 1- Pu( 1) to the other output letter 2, we cal-
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Proof: For a given H, the minimum P, will occur if all
the probabilities except the largest one are equal. This
follows from the convexity properties of entropy; equaliz-
ing two probabilities increases the entropy. Consequently,
we may assume as the worst case a situation where there
are M - 1 possibilities, each with probability q, and one
possibility with probability 1- (M -1 )q. Our given con-
dition is then

- (M-1 )qlnq+ (M -1 )q~..l

or

e
(M-l)qln- >~.

q

Now assume in contradiction to the conclusion of the

lemma that

that

..l

(
InM)6 InM+ln~

P,.=(M-l)q <-------

Since qln ~is monotone increasing in q, this would imply
q

- (M - 1) qInq - [1- (M - 1)q) In[1- (M - 1)q] >~.

Since [i x) = - (l-x)ln( I-x) is concave downward with

slope 1 at x=O, (f'(x) = 1+ InCI-x); f"(x) = __1_<0
I-x

for o~x< 1), it follows that f(x) ~x and the second term
above is dominated by (M - I )q. The given condition
then implies

(
InM)6e(M-l) InM+ln_~-

~

~

( InM)6 InM+In -.;l-

e
(M-l)qln- < --------Iog

q

~

6

M-l
In---

~

InM
InM+ln--

~

In (InM+ln In~ )
In6e + '-1__

InM InM
InM+ln-- InM+ln--

Ll Ll

< : [1 + 3++]<~ (M>l ).

R-C

6(R + -n
1

In R )
(R-C)

P, >------------

R-C

then the lower bound on PI' would be P" ~ ~PJ(6;). Now
the function f(~) is convex downward (its second deriva-
tive is non-negative in the possible range). Consequently
"2:Pd(~I) ~ f(~Pi~i)= f(~) and we conclude that the
bound of the lemma remains valid even in this more gen-
eral case by merely substituting the averaged value of ~.

A common situation for use of this result is in signaling
with a code at a rate R greater than channel capacity C.
In many types of situation this results in an equivocation
of ~=n(R-C) after n letters have been sent. In this case
we may say that the probability of error for the block sent
is bounded by (substituting these values in the lemma)

This then is a lower bound on probability of error for
rates greater than capacity under these conditions.

f(..l) =-----

The first dominating constant is obtained by writing the cor-
responding term as (lnlnM -In~+ In(M - 1) -lnlnM) /
(InlnM-In~+ InM). Since InM ~~, this is easily seen to
be dominated by 1 for M ~ 2. (For M = 1, the lemma is
trivially true since then u = 0.) The term dominated by 3
is obvious. The last term is of the form In21 Z. By differ-
entiation we find this takes its maximum at Z=e and the
maximum is lie. Since our conclusion contradicts the
hypothesis of the lemma, we have proved the desired
result.

The chief application of this lemma is in placing a
lower bound on probability of error in coding systems. If
it is known that in a certain situation the "equivocation,"
that is, the conditional entropy of the message given a
received signal. exceeds ~, the lemma leads to a lower
bound on the probability of error. Actually, the equivo-
cation is an average over a set of received signals. Thus.

the ~ = LPt~i where Pi is the probability of receiving
signal; and ~I is the corresponding entropy of message.
If f( ~) is the lower bound in the lemma, that is,
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Probability of Error for Optimal Codes
ill a Gaussiall Channel

Dy CLAUDE E. SIIANNON

(Manuscript received October 17, 1058)

A study is made oj coding and decoding systems for a continuous channel
with an additive gaussian noise and subject to an average power li1nitalion
at the transmitter. Upper and lower bounds are found for the e1TO,. prob-
abilillJ in decoding with optimal codes and decoding SySlelltS • These bounds
are close together for signaling roles near channel capacity and also for sig-
naling roles near zero, but diverge between. Curves exhibiting these bounds
are given.

I. INTRODUCTION

Consider a communication channel of the following type: Once each
second a real number may be chosen at the transmitting point. This
number is transmitted to the receiving point but is perturbed by an
additive gaussian noise, so that the ith real number, Si, is received as
s, + Xi • The Xi arc assumed independent gaussian random variables all
with the same variance N.

A code word of length 11, for such a channel is n. sequence of 1t real
numbers (8' , S2, ••• , 8"). This may be thought of geometrically as a
point in n-dimcnsiounl Euclidean space. Tho cJTcct of noise is thcn to
1l10VC this point to a nearby point according to n spherical gaussian
distribution.

A block code of length n with Itl words is a mapping of thc integers 1,
2, ... , jl,I into a set of M code words WI , W2, ••• , WM (not necessarily

279
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all distinct). Thus, gcometricully, a block code consists of a collection
of lIf (or less) points with associated integers. It may be thought of as
Dr way of transmitting an integer from 1 to ill to the receiving point (by
sending the corresponding code word), A decoding s!Jslc'1n for such a code
is a partitioning of the n-dimcnsioual space into III subsets correspond-
ing to the integers from 1 to M, This is a way of deciding, at the receiv-
ing point, 011 the transmitted integer. If the received signal is in subset
S, , the transmitted message is taken to be integer i.

We shall assume throughout that all integers from 1 to ItI occur as
messages with equal probability l/Jlf. Thoro is, then, for :t given code
and dccoding SystCIU, n definite probability of error for transmitting a
message. This is given by

1 AI

r. = ]If ~ r.:
.it 1-.

where P e i is the probability, if code word Wi is sent, that it will be de-
coded as an integer other than i, ]J"i is, of course, tho total probability
under the gaussian distribution, centered on Wi in the region comple-
mentary to S, .

An optimal decoding system for a code is one which minimizes the
probability of error for the code. Since the gaussian density is monotone
decreasing with distance, an optimal decoding system for a given code
is one which decodes any received signal as the integer corresponding
to the geometrically nearest code word. If there are several code words
at the sa01C minimal distance, any of these may be used without affect-
ing the probability of error. A decoding system of this sort is called mini-
mum distance decoding or maximum likelihood decoding. It results in a
partitioning of the n-dinlcnsional space into n-dimcnsional polyhedra,
or polytopes, around the different signal points, each polyhedron bounded
by a finitc number (not more than llf - 1) of (1~ - 1)-uimcllsional hy-
perplancs,

Wc are interested in the problem of finding good codes, that is, plac-
ing }.{ points in such a way as to minimize the probability of error P e •

If there were no conditions on the code words, it is evident that the
probability of error could be made as small as desired for any 1If, nand
N by placing the code words at sufficiently widely separated points in
the 11, space. In normal applications, however, there will be limitations
on the choice of code words that prevent this type of solution. An inter-
esting case that has been considered in the past is that of placing some
kind of average power limiialion. 011 the code words: the distance of the
points from the origin should not be too great. We may define three
different possible limitations of this sort:
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i. All code words arc required to have exactly the same power P or the
same distance from the origin. Thus, '\TC are required to choose for code
words points lying on the surface of a sphere of radius V1tl~.

ii, All code words have power P or less. Here all code words are re-
quired to lie interior to or 011 the surface of a sphere of radius VnP.

iii. The average power of all code words is 1:J or less. Here, individual
code words may have a greater squared distance than nP but the aver-
age of the set of squared distances cannot exceed 1tP.

These three cases lead to quite similar results, as wo shall sec. The
first condition is simpler and leads to somewhat sharper conclusions -
we shall first analyze this case and usc these results for the other two
conditions. Therefore, until the contrary is slated, we assume all code words
to lie on the sphere of radius V nP.

Our first problem is to estimate, as well as possible, the probability
of error Pe(llf, ri, v'f'/N) for the best code of length n containing Al
words each of power ]:J and perturbed by noise of variance N. This mini-
mal or optimal probability of error we denote by P fl o P t (it!, 11, VI:J/N). It
is clear that, for fixed M; n, P; opt, will be a function only of the quotient
A = V];)/N by change of scale in the geometrical picture. We shall ob-
tain upper and lower bounds on P; opt of several different types. Over an
important range of values these bounds are reasonably close together,
giving good estimates of P ft opt. Some calculated values and curves are
given and the bounds are used to develop other bounds for the second
and third type conditions on the code words,

The geometrical approach \VC use is akin to that previously used by
the author' but carried here to a numerical conclusion. The problem is
also close to that studied by Ilice,2 who obtained nn estimate similar to
but not as sharp as one of our upper bounds. The 'york here is also
analogous to bounds given by Elias3 for the binary symmetric and binary
erasure channels, and related to bounds for the general discrete memory-
less channel given by the author.'

III a general way, our bounds, both upper and lower, vary exponen-
tially with n for a fixed signaling rate, R, and fixed PIN. In fact, they
all can be put [letting R = (lin) log Ill, so that R is the transmitting
rate for the code] in the form

-E(R)n+o(n)e , (1)

where E (R) is a suitable function of R (and of P / N, which we think
of as a fixed parameter). [In (I), 0 (n) is a term of order less than n; as
n -+ 00 it becomes small relative to E(R)n.]

Thus, for large n, the logarithm of the bound increases linearly with
n Of, more precisely, the ratio of this logarithm to n approaches a con-
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stant E(Il). This quantity E(R) gives a crude measure of how rapidly
the probability of error approaches zero. "Te will call this type of quan-
tity n rcliabiliu), More precisely, we may define the reliability for a
channel as follows:

E(R) = lim sup - ! logP eopt(Il,n),
n"'oo 1~

(2)

whore Pe OJlt (Il, 11,) is the optimal probability of error for codes of rate R
and length 1~. 'Ve will find that our bounds determine E(ll) c:cacllyover
an important range of rates, from a certain critical rate lie up to channel
capacity. Between zero and lle, E is not exactly determined by our
bounds, but lies within n not too wide range.

In connection with the reliability E, it may be noted that, in (1)
above, knowledge of E(R) and 11, docs not closely determine the proba-
bility of error, even when n is large; the term o(n) can cause a large
and, in fact, increasing multiplier, 011 the other hand, given a desired
probability of error and l~(R), the necessary value of the code length 1~

will be sharply determined when n is large; in fact, ii will be asymptotic
to - (1/E) log J~f1. This inverse problem is perhaps the more natural
one in applications: given a required level of probability of error, how
long must the code be?

The type of channel we urc studying here is, of course, closely related
to a band-limited channel (11' cycles per second wide) perturbed by
white gaussian noise. In a sense, such a band-limited channel can be
thought of as having 21-J' coordinates per second, each independcntly
perturbed by a gaussian variable. However, such an identification must
be treated with care, since to control these degrees of Irecdom physically
and stay strictly within the bandwidth would require an infinite delay.

It is possible to stay very closely within a bandwidth 1f' with a large
but finitc delay T, for example, by using (sin x)/x pulses with one tail
deleted T fro III the maximum point. This deletion causes a spill-over
outside the band of not more than tho energy of the deleted part, an
amount less than 1/'1' for the unit (sin x)/x case. By Ina-king T large,
we can approach the situation of staying within the allotted bandwidth
and also, for example, approach zero probability of error at signaling
rates close to channel capacity.

However, for the problems we are studying here, delay as related to
probability of error is of fundamental importance and, in applications
of our results to such band-limited channels, the additional delay in-
volved in staying closely within the allotted channel 111USt be remem-
berod. This is the reason for defining the channel as we have above.
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II. SUMMARY

In this section we summarize briefly the main results obtained ill the
paper, both for easy reference and for readers who may be interested
in the results without wishing to work through the detailed analysis. It
might be said that the algebra involved is in several places unusually
tedious.

We usc the following notations:
P = signal power (ouch code word is on tho surface of

t1 sphere of radius ¥nP);
N = noise power (variance N in each dimension};
Ii = y'l~IN = signal-to-noiso "amplitude" ratio;
1L = number of dimensions or block length of code;

1If = number of code words;
R = (lin) Jog M = signaling rate for a code (natural

units) ;
C = ! log (P + N)/N = ! log (A 2 + 1) = channel

capacity (per degree of freedom);
8 = variable for half-angle of cones appearing in the

geometrical problem which follows;
D(8) = solid angle in n space of a cone of half-angle 0, or

area of unit n sphere cut out by the cone;
80 = cot-1A = cone angle relating to channel capacity;
81 = cone angle such that the solid angle n(8J) of this

cone is (1/1\f)O(".), [the solid angle of a sphere is
O( 1r ) ]; thus, 81 is a cone angle related to the rate
R;

G = G(O) = !(it cos 8 + y'A2 C082 8 + 4), a quan-
tity which appears often in the formulas:

Be = the solution of 2 cos Be - ilG(Oe) sin2 0c = 0 (this
critical angle is important in that the nature of
the bounds change according as 81 > 8e or 81 < 8e ) ;

Q(8) = Q(8, A, n) = probability of a point X in n space,
at distance Ay'1i from the origin, being moved
outside a circular cone of half-angle 0 with vertex
at the origin 0 and axis OX (the perturbation is
assumed spherical gaussian with unit variance in
all dimensions);

EL(O) = A 2/ 2 - lliG cos 0 - log (G sin 0), an exponent
appearing in our bounds;

PI opt. (n, R, 11) = Probability of error for the best code of length n,
signal-to-noise ratio A and rate R;
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(3)

4l(X) = normal distribution with zero mean and unit vari-
ance.

The results of the paper will now be summarized. P fJ opt can be bounded
as follows:

1'10(8)
Q(Ol) ~ P • opt ~ Q(OI) - 0 0(81) dQ(O).

[Here dQ(8) is negative, so the right additional term is positive.] These
bounds can be written in terms of rather complex integrals. To obtain
more insight into their behavior, we obtain, in the first place, asymptotic
expressions for these bounds when n is large and, in the second place,
cruder bounds which, however, are expressed in terms of elementary
functions without integrals.

Tho asymptotic lower bound is (nsymptotically correct as 11, ~ 00)

Q(O ) 1 -BL('lln
1 r-..J '\.In". G '\/1 + G2sin 01 (cos 01 - AG sin 2 01) e

a(OI) -BL('I)r.

= vti e

(4)

(6)

The asymptotic upper bound is

Q(Ol) _1'1 0 (0) dQ(8) '"a(OI) e-BL('lln(l _ COS 01 - AG8i~2(1). (5)
o 0(01) vn 2 cos 81 - AG Sll12 01

This formula is valid for 00 < 01 < Oe • In this range the upper and lower
asymptotic bounds differ only by the factor in parentheses independent
of n. Thus, as]Jmplotically, the probability oj error is determined by these
relations to within a 1nulliplying factor dependinq on the rate. For rates
near channel capacity (81 near 80 ) the factor is just a little over unity;
the bounds are close together. For lower rates ncar R; (corresponding
to Oe), the factor becomes large. For 01 > Oe the upper bound asymptote
is

1 -n (8 L('e)-RJ

COS Oe sin" OeG(Oe) v'1rE"(Oe)[l + G(Oe)]2 e ·

In addition to the asymptotic bound, we also obtain firm bounds,
valid for a1l1~J but poorer than the asymptotic bounds when 11, is large.
The firm lower bound is

1 -~ 3/2P > _ V n - 1 C -BL('.)"

e = 6 n(A + 1)3C(A+02/2 e · (7)
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(8)

It may be seen that this is equal to the asymptotic bound multiplied by
a factor essentially independent of n. The firm upper bound {valid if
the maximum of an (sin 0)2'1-3 exp [- (n/2)(A 2

- AG cos 0)] in the
range 0 to 01 occurs at (1 ) is

P eopt ~ 0.V2n C
3/ 2G"(01) sin 0."-2 exp [i (-A 2 + AG cos 01 ) ]

· {
1 + nO. min [A, AG(O~) sin 81 - cot Oil}·

For rates near channel capacity, the upper and lower asymptotio
bounds are both approximatoly the same, giving, where n is large and
C - R small (but positive):

P. opt == <IJ [ vn 2P([:J + N) ]
N(P + 2N) (R - C) , (9)

where 4> is the normal distribution with unit variance.
To relate the angle 01 in the above formulas to the rate R, inequalities

arc found:

r (i + 1) (sin 8.)',-1 ( 1 2) -nR

1 - - tan 81 S e

(
n + 1) 1/2 n -nr -2- 11" cos 01

r (i+ 1) (SinOl ) "- l
~ .
- r (n + 1») 1/2 0n 2 7r cos 1

Asymptotically, it follows that:

(10)

(11)
-wn sin" 01

e t'J V21r1t sin (Jl cos (Jl •

For low rates (particularly R < Re ) , the above bounds diverge and
give less information. Two different arguments lead to other bounds
useful at low rates. The low role upper bound is:

(12)

where ~ satisfies II = [1 - (lin)] log (sin 2 sin" X/V2). Note that
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ns R ---. 0, ~ -+ 1 und the upper bound is approximately

1 -nA 2/4
--=c
,1Y1rn ·

The low rale lower bound 11l3.y be written

]:J > ~ 4> [-A ( 211.f ~)1/2J
fI opt = 2 211f - 1 2 ·

C. E. Shannon

(13)

1"01" J! large, this bound is close to ~4)( - /1Y1t/2) and, if 1~ is large,
this is asymptotic to 1/(/t y 1rn) C-

n A 2
/
4

• Thus, fOI O rates close to zero and
large n we again have a. situation where the bounds are close together
and give a sharp evaluation of P, opt.

'Vith codes of rate Il ~ C + E, where E is fixed and positive, P ~ opt.

nppronchos unity as the code length n increases.

Suppose we have a code with ]II points each at distance VnP from
the origin ill n space. Since any t\VO words nrc at equal distance from
the origin, the 11, - 1 hyperplane which bisects the connecting line passes
through the origin. Thus, all of the hyperplanes which determine the
polyhedra surrounding these points (for the optimal decoding system)
pass through the origin. These polyhedra, therefore, arc pyramids with
apexes at the origin. The probability of error for the code is

1 At

il l
L r.;

Ii i ....l

where Pei is the probability, if code word i is used, that it will be carried
by the noise outside the pyramid around the ith word. The probability
of being correct is

that is, the average probability of a code word being moved to a point
within its own pyramid,

Let the ith pyramid have a solid angle Oi (that is, Oi is the area cut
out by the pyramid on the unit n-dimensionnl spherical surface). Con-
sider, for comparison, a right circular n-diInensiollal cone with thc saU1C

solid angle {li and having a code word on its axis at distance Y1tP. We
assert that the probability of this comparison. point bci'ng mooed. to withi'n
its cone is qreoier than thal of uu being mooed to unihin its 1Jyra1nid. This
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is because of the monotone decreasing probability density with distance
from the code word, Tho pyramid can be deformed into the cone by
moving small conical clements from far distances to nearer distances,
this movement continually increasing probability. This is suggested for
a three-dimensional case in Fig, 1. Moving small conical elements from
outside the cone to inside it increases probability, since the probability
density is greater inside the cone than outside. Formally, this follows
by integrating the probability density over the region III in the cone
but not in the pyramid, and in the region Il2 in the pyramid but not in
the cone, The first is greater than the solid angle n of R I times the
density at the edge of the cone. The value for the pyramid is less than
the same quantity.

We have, then, a bound on the probability of error P; for a given
code:

(14)

where Oi is the solid angle for the ith pyramid, and Q*(O) is the proba-
bility of a point being carried outside n surrounding cone of solid angle
o. It is also true that

the solid angle of an n sphere, since the original pyramids corresponded
to a partitioning of the sphere. Now, using again the property that the
density decreases with distance, it follows that Q*(O) is a convex function
of o. Then we may further simplify this bound by replacing each Oi by

CONE
ELEMENT IN:

__....:::.'j)R,

__~-....-._...~_:....-;...~~~:~;;~~::::1' R2

Fig. 1 - Pyramid deformed into cone by moving small conical elements from
far to nearer distances.
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the average Oo/ llf . In fact,

;/ ~ Q*(O;) ~ Q* (~),

and hence

C. E. Shannon

It is more convenient to 'York in terms of the half-cone nnglo 8 rather
than solid angles U. We define Q( 0) to be the probability of being carried
outside a cone of half-angle o. Then, jf O. corresponds to tho cone of
solid angle flo/ill, tho bound above may be written

(15)

(16)

This is our [undamcnlal louxr bound for P fJ. It still needs translation
into terms of P, AT, 11/ and n, and estimation in terms of simple func-
tions.

It may be noted that this bound is exactly the probability of error
that would occur if it were possible to subdivide the space into !If con-
gruent cones, OIlC for each code word, and place the code words on the
axes of these cones. It is, of course, very plausiblo intuitively that any
actual code would have a higher probability of error than would that
with such a conical partitioning. Such a partitioning clearly is possible
only for n = 1 or 2, if It! > 2.

The lower bound Q(8.) can be evaluated in terms of a distribution
Inmiliar to statisticians as the noncentral l-distribution.5 The noncontral
t 111ay be thought of as the probability that the ratio of a random vari-
able (z + ~) to the root mean square of f other random variables

does not exceed t, where all variates Xi and z are gaussian and independ-
ent with mean zero and unit variance and 0 is a constant. Thus, denot-
ing it by P(!, [" l), we have

P(J,8,t) = pr{;1~ xl ~ t}.
In terms of our geometrical picture, this nmounts to a spherical gaussian
distribution with unit variance about u point b from the origin in f + 1
space. The probability P(!, b, t) is the probability of being outside a
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cone from the origin having the line segment to the center of the dis-
tribution as axis. The cotangent of the half-cone angle 0 is t/vj. Thus
the probability Q(8) is seen to be given by

(
~ Inl'> - )

Q(O) = P 1t - 1, 'V N' vn - 1 cot 0 · (17)

The noncentral i-distribution docs not appear to have been very exton ..
sively tabled.•Johnson and \tVelch5 givc 80111e tables, hut they nrc nimcd
at other types of application and ure inconvenient for the purpose at
hand. Further, they do Hot go to large values of n. "'c therefore will
estimate this lower bound by developing an nsymptotic Iormuln for the
cumulative distribution Q( 0) and also the density distribution dQ/dO.
First, however, we will find an upper bound on 1J

e opt in terms of the
same distribution Q(8).

IV. UPPEH nOUND BY A HANDOl\1 CODE l\1:ETlIOD

The upper bound for P e opt will be found by using an argument based
on random codes. Consider the ensemble of codes obtained by placing
},{ points ruudomly 011 the surface of a sphere of radius V1l1:J. 1\101"e
precisely, each point is placed independently of all others with probabil-
ity measure proportional to surface area or, equivalently, to solid angle.
Each of the codes in the ensemble is to be decoded by the minimum
distance process. \tVe wish to compute thc average probability of error for
this ensemble of codes.

Because of the symmetry of the code points, the probability of error
nvernged over the ensemblo will be equal to Al times the average proba-
bility of error due to any particular code point, for example, code point
1. This may be computod as follows. The probability of message number
1 being transmitted is 1/AI. The differential probability that it "rill
be displaced by thc noise into the region between a cone of half-angle 0
and one of half-angle 0 + dO (these cones having vertex at the origin
and axis out to code word 1) is -dQ(8). [Recall t.hut Q(O) was defined
as the probability that noise would carry a point outside the cone of
angle 8 with axis through thc signal point.] Now consider the cone of
half-angle 8 surrounding such n received point (not thc cone about the
message point just described). If this cone is empty of signal points,
the received word will be decoded correctly as message 1. If it is not
empty, other points will be nearer and the received signal will be incor-
rectly decoded. (The probability of two or more points at exactly the
same distance is readily seen to be zero and may be ignored.)
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The probability in the ensemble of codes of the cone of half-angle 8
being empty is easily calculated. The probability that any particular
code word, say code word 2 or code word 3, etc. is in the cone is given
by O(0) IO( 1('), the ratio of the solid angle in the cone to the total solid
angle. The probability a particular word is not in the cone is 1 - 0(0)1
O(7r). The probability that all IJf - 1 other words are not in the COlle
is (1 - O(O)/O(11'" )]JI-l since these are, in the ensemble of codes, placed
independently. The probability of error, then, contributed by situations
where the point 1 is displaced by an angle from 0 to 0 + dO is given by
-(lIM){l - [1 - O(O)/O(,,-)]M-JJdQ(8). The total average probabil-
ity of error for all code words and an noise displacements is then given
by

r { [ O(O)]M-l}
p.r = - 1'-0 1 - 1 - O(r) dQ(O) · (18)

(19)

This is an exact formula for the average probability oj error Per for our
random ensemble of codes. Since this is an average of P; for particular
codes, there must exist particular codes in the ensemble with at least
this good a probability of error, and certainly then P e opt ~ Per.

We may weaken this bound slightly but obtain a simpler formula for
calculation as follows, Note first that II - [0(0)/0(".)],\1-1) ~ 1 and
also, using the well-known inequality (1 - x) " ~ 1 - nx, 'vc have
{I - [1 - D(8)/O(1r)]M-11 ~ (J! - 1)[0(8)/0(r)] ~ Jf[0(8)/O(r»).
Now, break the integral into two parts, 0 ~ 0 ~ O. and 81 ~ 8 ~ 1f". In
the first range, usc the inequality just given and, in the second range,
bound the expression in braces by 1. Thus,

1'1 [O(O)J 1ft'
Per ~ - 0 M O(r) dQ(O) - '. dQ(O) ,

M 1'1p.r ~ - O(r) 0 O(O)dQ(8) + Q(Ol).

It is convenient to choose for 8. the same value as appeared in the lower
bound; that is, the 01 such that 0(0.)/0(,,-) = 1/lt1 - in other words,
the 01 for which one expects one point within the 01 cone. The second
term in (1D) is thcn the same as the lower bound on P e opt obtained
previously. In fact, collecting thcse results, we have

}.{ 1'1Q(Ol) ~ P. opt ~ Q(Ol) - O(r) 0 O(O)dQ(8) , (20)

where MO( 81) = n( 1('). These are our [undamenial louicr and upper bounds
on Pe opt •

We now wish to evaluate and estimate n(O) and Q(D).



Probability of Error for Optimal Codes in a Gaussian Channel

v. li"OHMULAS ron HATE R AS A FUNCTION OF TIlE CONE ANGLE (J
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(21)

(22)

Our bounds on probability of error involve the code angle 01 such that
the solid angle of the cone is l/!Jf = C-,.R times the full solid angle of a
sphere. To relate these quantities more explicitly we calculate the solid
angle of a cone in n dimensions with half-angle 8. In Fig. 2 this means
calculating the (n - 1)-dimensional area of the cap cut out by the cone
on the unit sphere. This is obtained by summing the contributions due
to ring-shaped clements of area (spherical surfaces in n - 1 dimensions

Fig. 2 - Cap cut out by the cone on the unit sphere.

of radius sin 8 and of incremental width dO). Thus, the total area of the
cap is given by

( I) (,,-1)
121'1

0(81) = n -( 1r) (sin 8)"-2d8.
n + 1 0r --

2

Here we used the formula for the surface S,.(r) of a sphere of radius r
in n dimensions, S,.(r) = nr"'2r "- l j r (n/ 2 + 1).

To obtain simple inequalities and asymptotic expressions for n( 01 ) ,

make the change of variable in the integral z = sin 0, dO = (1 - X
2 )- l/2dx .

Let Xl = sin (Jl and assume (JI < r/2, so that Xl < 1. Using the mean
value theorem we obtain

( 1 2)-1/2 (1 2)-1/2 + a ( )- x = - Xl (1 _ a2) 3/2 X - Xl ,

where 0 ~ a ~ Xl • The term a(I - ( 2
) - 3/2 must lie in the range from

o to Xl(1 - X1
2)-3/2 since this is a monotone increasing function. Hence

we have the inequalities

( 1 - 2)-1/? + (x - Xl)Xl ~ (1 _ X2) - 112 __< (1 _ X12)-1/2
Xl (1 _ Xt2)3/2 -

o ~ x ~ Xl.

(23)
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Note that, x - :t;1 is negative, so the correction term Oil the left is of
the right sign .. If we usc these in the integral for n(01 ) we obtain

( 1) <n-l>t21r.l [ () ]11. -". xn-2 (1 _ X12)-1/2 + .1; - Xl Xl dx

(

11, + 1) 0 (1 - XI 2)3/2

r 2

< < (n - 1)1r(n-l)f212:1 n-2 d.1~
= 0(81) = ( ) a; -'"' /1 .2'n + ] 0 V - x.r --"

2

(n - 1)".(n-l>12 [Xt"-1 + ;rl"+l _ ;r."H ]

(

11, + 1) /-- n - 1 n(l - XJ2) (n - 1)(1 - x.2
)

r -2- ,1 - X12

(25)

1r(n-l>l2(sin ( 1)n-l ( 1 2 )

( )

1 - - tan 01

r 11, +Ion-2- cos 1

(n-t>/2(. 0) n-l
~ n(o) ~ 1r SIll J •

- 1 - ( + 1)r T cos 01

(26)

(27)

Theroforo, as 11, ~ r:f:J, O(0.) is asymptotic to the expression on the right.
The surface of the unit 11, sphere is 11,r

n I 2/ r (n/2 + 1), hence,

r (i + 1) (sin 01 ) " - . ( 1 2) < -wn

()

1 - - tan 01 = C
, n + 1 1/2 11,

nI -2- 1r cos 01

<
r (~21, + 1) (sin (1 ) n- l

_ 0(01)

- U(1r) = (n + 1) 1/2 •nr -2- ". cos 81

Replacing the gnmma functions by their asymptotic expressions, we ob-
tain

-nR sirr' 8. [ (1)Jc = 1 + 0 -
V2".n sin 01 cos O. 11,"

(28)
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Thus e- n R
""' sin n 01/ V27r1t sin O. cos 8. and e-0 r-..J sin O• • The some-

what sharper expression for e-nR must be used when uttcmpting nsymp-
totic evaluations of P; , since P; is changed by a factor when 81 is changed
by, for example, kin. 11owever, when only the reliability I~ is of inter-
est, the simpler R ""' -log sin 01 may be used.

VI. ASYMPTOTIC It"OU1\IULAS 14"O R Q(O) ANI> Q'(O)

In Fig. 3, 0 is the origin, S is a signal point nud the plane of the figure
is a plane section in the n-ditnCllsiollttl RpUCC. The lines Olt and OIJ
represent a (circular) cone of angle 0 nbout OS (thai is, the intcrsoc-
tion of this cone with the plane of the druwing.) The lines OA' and 0/3'
correspond to n slightly larger cone of angle 0 + dO. We wish to csl.imute
the probability -dQn( 0) of the signal point .S buing carried hy noise
into the region between thcse cones. From this, \'·C will further calculate
the probability Qn(8) of S being curried outside thc 0 conc. What, is
desired in both cases is an asymptotic estimnte - a simple Iorrnula whoso

A'

d~

A

s

B

a'

Fig, 3 - Plane of cone of hulf'-ungle o.
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(20)

ratio to the true value approaches 1 as 1J" the number of dimensions,
increases.

The noise perturbs all coordinates normally and independently with
variance 1. It produces a spherical gaussian distribution in the n-di-
mensional space. The probability density of its moving the signal point
a distance d is given by

1 -d2/2

(2r)"/2 e dV ,

whore dV is the clement of volume. In Fig, 4 we wish to first calculate
the probability density for the crosshatched ring-shaped region between

A

Fig. 4 - Special value (Jo •

the two cones and between spheres about the origin of radius rand
r + dr, The distance of this ring from the signal point is given by the
cosine Inw as

(30)

(31)

(32)

The differential volume of the ring-shaped region is r dr dO times the sur-
face of a sphere of radius r sin 8 in (n - 1) -dimensional space; that is

(n - 1)r(n-l)/2( r sin 0)n-2

r dr dO r (n ~ 1) ·
Hence, the differential probability for the ring-shaped region is

1 [_(r2 + A 2n- 2rAV1i COSO)J
(~)n exp 2

{(n - l~r(~jin 0)"-2]' dr dO

The differential probability -dQ of being carried between the two cones
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is the integral of this expression from zero to infinity on dr:

295

(33)

-dQ

1 (11, - 1) dO

-dQ = 2"/2 -r; r (n ~ 1)

100 [- (r
2 + A

2
n - 2rAvn COS8)J< · 0),,-2 d

• 0 exp 2 1· SIn r r,

In the exponent we call think of A 2n as A 2n(sin2
0 + cos' 0). The cos"

part then combines with the other terms to give n perfect square

(r - Av;i cos 0)2

and the sin2 term can be taken outside the integral. "rhus

[
A 21t sin 2 OJ

(11, - 1) exp - --2-- (sin 0)"-2 dO

2,,/2 V; r (n ~ 1)

100 [- (r - A vn cos 0)2J "-1 d
• 0 exp 2 r r.

'Ve can now direct our attention to estimating the integral, which we
call K, The integral can be expressed exactly as a finite, but complicated,
sum involving normal distribution functions by a process of continued
integration by parts. 'Ve are, however, interested in a simple formula
giving the asymptotic behavior of the integral as 1" becomes infinite.
This problem was essentially solved by David and Kruskal, S who prove
the Iollowing asymptotic formula as 11 lcmmn.:

{O «exp (-!i + z v;+l w) dz r-..J y'2; ey cxp (li2)T , (35)

as ,,~ 00, w is fixed, T = [1 +-1 (vW2+"4 - W)2]-1/2 and

i = !v;+i" W + ";1(" + 1)w2 + v.

This is proved by showing that the main contribution to the integral
is essentially in the neighborhood of the point i where the integral is a
maximum, Ncar this point, when II is large, the function behaves about
as u normal distribution.

Tho integral IC in (34) that we wish to evaluate is, except for a multi-
plying factor, of the form appearing in the lemma, with

z = r, w = A cos 0, " = 1" - 1.
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The integral then becomes

K = exp (-A
2

n ~OS2 8) fO zn-l exp -(~ + zA vn cos 8) dz

(
A2 2fJ) (_)n-l (_2)

r-;» exp -~~os VZ; ~ T exp ~ .

We have

z = l vn A cos () + vlnA 2 cos2 (J + n - 1

= vn [!A cos (] + ,y~ cos2 8 + 1 - ~J

= vn [!A cos 8 + ,y~2 cos- 8 + 1

1 (1)]A2 + 0"2 ·
2n ,y4 cos' 8 + 1 n

Letting

G = ![A cos () + VA 2 cos" () + 4],

we have

z = vn G [1 - nG VA2 ~OS2 8 + 4+ 0 (~2)JI

soo (vn G)n-l [ 1 (1 )In-le = -e- 1 - nG V A 2 cos2 f) + 4 + 0 n2

(vnG)n-l ( 1 )
"'--I -e- exp - G VA 2 cos" 8 + 4 .

Also,

_2 [ 1 (1 )J2
exp i = exp !nG

2
1 - nG VA 2 cos2 8 + 4 + 0 n2

(
2 2G )

1"0.1 exp inG - 2 V A 2 cos" (J + 4

= exp [!n(l + AG cos 8) - V A2 C~2 8 + 4J '

(36)

(37)

(38)

(39)
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since, on squaring G, we find G2 = J + AG cos o. Collocl.ing terms:

J( r-J Ty'2; (V;G) ,,-1 C"/2 exp ( - GV A2L
S

2 0 + 4

G A
2
n 2 1t )

- ~ I - - - cos 0 + - /1G cos 0
v A 2 cos2 0 + 4 2 2

T - /0""2 (n-1l/2an-1 -n/2 (n A 2 2 0+ nIG 0)= V ~/tr 1t c exp - 2 cos "2 I cos

since a little algebra shows that the terms

1 G
1 - Gvif2 cos2 0+ 4 - VA2 cos2e +4-

297

in the exponential cancel to zero. The coefficient of the integral (3,:1),
using the asymptotic expression for rr (n + l ) /21, is nsymptotic to

(n - 1)e-(8in2 6)(A'n)/2 sin On-2c( n + I) / 2

2"'2 V; (n ~ I )"/2 y'2;

Combining with the above and collecting terms (we find that T

G/Vl + G2):

dQ
- dO roo.J

(42)
n - 1 1 [ ( A

2 )Inv;n VI + G2 sin" 0 G sinO exp - 2- + !AG cosO ·

This is our desired asyrnplotic expression for tlic density dQ/dO.
As we have arranged it, the coefficient increases essentially as Vn

and there is another term of the Iorm c- E
L(fl) n, where

A 2

EL«(J) = "2 - lAG cos 8 - log (G sin 0).

It can be shown that if we use for 8 the special value 00 = cot -1,1 (see
Fig. 4) then jtL((0) = 0 and also E' L(00) = o. In fact, for this value
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Hence the two terms in the logarithm cancel. Also

A 2 A 2 A
- - !AGcos80 = - -!A v'112 + 1 = O.
2 2 V,12 + 1

So E L (80 ) = O. 'Ve also have

E'L(O) = fAG sin 0 - !AG'cosO - g' - coto. (43)

When evaluated, the term -a'/G simplifies, after considerable algebra,
to

A sin 8

VA-2 cos" 0 + 4;.

Substituting this and the other terms we obtain

, A 2 • A_ 3 cos2 (J sin 8
E L(O) = 2" sin 0 cos 0 + 4v'A2 cos" 0 + 4

A (A 2 C082 8 + 4) . 1'1 sin (J

+ 4" v'.A 2 cos' 0 + 4 sin 0 + v'A2 cos" 0 +4 - cot 0 ·

Adding and collecting terms, this shnplifies to

E'L(O) = ~ (A cos 0 + v'A2 cos20 + 4) sin 0 - cot 0

= AG sin 0 - cot 0 (i15)

[
A

2
• 2 + A · 2 JJ fA 4 1]= cot 0 2 SIn 0 2" SIll 0 11 2 + C082 8 - ·

Notice that the bracketed expression is a monotone increasing func-
tion of 0 (0 ~ (J ~ 1r/2) ranging from -1 at 0 = 0 to 00 at 0 = #/2.
Also, as mentioned above, at 80 , G = esc 00 and A = cot 00 , so E' L((Jo)

= o. It follows that E'L(O) < 0 forO ~ 8 < 8oundE'L(8) > 0 for 80 ~

8 < 1r/2.
From this, it Iollows that, in the range from some 01 to 11"/2 ,vit11 01 > 00 ,

the minimum E L(0) will occur at the smallest value of 0 in the range,
that is, at 0•. The exponential appearing in our estimate of Q(O),
namely, C-EL(I)", will have its maximum at 01 , for such a range. Indeed,
for sufficiently large n, the maximum of the entire expression (45) must
occur at 01 , since the effect of the n in the exponent will eventually
dominate anything due to the coefficient. For, if the coefficient is called
a(8) with yeO) = a(O) C-nEL(B), then

y'(O) = e-nEL(B)[ -a(O)nE'L(O) + a'(O)], (46)
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( l19)

(48)

(50)

and, since a(O) > 0, when 11, is sufficiently large y'(O) will be negative
and the only maximum will occur at 01 • In the neighborhood of 61 the
function goes down exponentially.

We may now find an asymptotic formula for the integral

1
,,/ 2

Q(D) = a(0)c-nB L
(8)d 8 + Q(~/2)

81

by breaking the integral into two parts,

1
61+ n - 213 1r/2

Q(O) = + + Q(7r/2).
81 '.+n-2/3

In the range of the first integral, (1 - E)a(81) ~ a(0) ~ a(81) (1 + E),

and E can be made as small as desired by taking n sufficiently large. This
is because a(0) is continuous and nonvanishing in the range. Also, using
a Taylor's series expansion with remainder,

e-nB £(. ) = cxp [ -nE£(Ol) - nCO - Ol)E' £(01)

where 0" is the interval 01 to 8. As n increases the maximum value of the
remainder term is bounded by n(n/2)-"/3 E" max, and consequently ap-
proaches zero. Hence, our first integral is asymptotic to

81+,,-2/3

a(81 ) 1 exp [-nEL(Ot) - n(8 - fJ1)E ' L(01)] dO
61

[ ( )E' ( )]J81+n- 213

= _ (8) [_ E (8)] exp -n 0 - 81 ~ L 01
a 1 exp n L 1 E' (8 )n ~ L 1 8.

a(OI)e-n B L (' . )
~

nE'£(81)

since, at large n, the upper limit term becomes small by comparison.
The second integral from 81 + n-2/3 to r /2 can be dominated by the
value of the integrand at 61 + n-2

/
3 multiplied by the range

.,,/2 - (01 + n-
2/3),

(since the integrand is monotone decreasing for large n). The value at
81 + n-2/3 is asymptotic, by the argument just given, to

a(81) exp [-nEL( 81) - n(11,-213) E' L((1) ] .

This becomes small compared to the first integral [as docs Q(r/2) =
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(52)

fIl( - A) in (47)1and, consequently, OIl substituting for a( 81 ) its value
and writing 8 for 01 , we obtain as an asynllJlotic expression. for Q(8):

1 1 [ G sin 0 exp ( - ,;2 + !AG coso)T
Q(O) '"" vnr v'IT"G2 sill-O (AG sin' 0 - cos 0) (51)

(~ ~ 0 > 00 = cot-1 A).

This expression gives an asyu1.ptotic lower bound for [Je opt, obtained by
evaluating Q( 0) for the 81 such that 1I/n( 81 ) = nen-).

Incidentally, the asymptotic expression (51) can be translated into
an usymptotic expression for the nonccntrnl t cumulative distribution
by substitution of variublcs 8 = cot-1(ljVJ) and 11, - 1 = f. This may
be useful in other applications of the noncentrul i-distribution.

VII. ASYMPTOTIC EXPUESSIONS Fon TilE UANJ>Ol\1 CODE BOUND

'Vo now wish to find similar asymptotic expressions for thc upper
bound olll:J~oPt of (20) found by the random code method. Substituting
the asymptotic expressions for dQ(8)d8 and for n(O)jn(r) gives for an
asymptotic upper bound the following:

1
'1I'(~21, + 1) (sin 8)n-l 1-

Q(Ol) + enR ?!
o r (11, + 1) 1/2 0 1rn -2- 11" cos

[ . (P 1 ~ / I~ )InG SIll 0 oxp - 2ft.' + :2 11 N G cos 0
. dO.

VI + (j2 sin" B

Thus we need to estimate thc integral

1'1 1.
If' = 3 ... ,---

o cos 8 sin 0 v 1 + G2
(53)

·cxp{n(-~ + ~~ G cos 0 + log G + 2 log sin 0) }dO.

The situation is very similar to that in estimating Q(O). Let the coeffi-
cient of n in the exponent be D. Note that D = -EL(B) + log sin 8.
Hence its derivative reduces to

{~~ - -AG sin 0 + 2 cot O. (54)
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dD/dO = 0 has a unique root Oe , 0 ~ e, ~ r/2 for any fixed A > O.
This follows from the same argument used in connection with (45), the
only difference being a factor of 2 in the right member. "rhus, Ior
o < 8e , dD/d8 is positive and D is an increasing function of o. Beyond
this maximum, D is a dccrensing function.

We may now divide the problem of ostimating thc integral II' into
cases according to the relative size of 8e and O••

Case 1: 81 < 8e •

In this case the maximum of the exponent within the range of integra-
tion occurs at 81 " Consequently, when 1~ is sufficiently large, the mnxi-
JUUnl of the entire integrand occurs at O. " The asymptotic value can be
estimated exactly ns we estimatod Q( 0) in a similar situation. The into-
gral is divided into two parts, a part from 8. - 1~-2/3 to 01 and a second
part from 0 to 81 - 11,-2/3. In the first part the integrand behaves asymp-
totically like:

cos 8. sin38. ~l + G2(ih) cxp (n {-2~ + ~~ G(8.) cosO.

+ log G(8.) + 2 log sin 81 (55)

- (0 - O.)(AG(O.) sin 8. - 2 cot O.]}) .

This integrates nsymptoticully to

cxp{n[-£;+~/~G(8.)COSO.+IOgG(0.) + 2 log sin 8.]} (50)

cos 81 sin 3 81 vi + G2(OI) [-AG(OI) sin O. + 2 cot O.]n

The second integral becomes small in comparison to this, being domi-
nated by an cxponontial with a larger negative exponent multiplied by
the range 61 - 1~-2/3" With the coefficient

[
r (~+ 1)]1 2 nR

1rvn r (n ~ 1) c ,

and using the fact that
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our dominant term approaches

[ G sin 81 exp ( - ~2 + lAG cos 81) J

c. E. Shannon

(57)

(58)

Combining this with the previously obtained asymptotic expression
(51) for Q(Ol) we obtain the following aSY1nptotic expression for the upper
bound on TJ.opt!or 01 < 8e :

(
1 _ cos 81 - AG sin' 81 )

2 cos 01 - AG sin' 01

[ G sin 81 exp ( - ~ + lAG cos 81) J
·vn1r VI + G'sin 81(A G sin2 01 - cos 81) •

Since our lower bound was asymptotic to the same expression without
the parenthesis in front, the two asymptotes differ only by the factor

(
1 _ cos 81 - AG sin' 81 )

2 cos 81 - AG sin" 01

independent of n. This factor increases as 01 increases from the value 80 ,

corresponding to channel capacity, to the critical value Be , for which the
denominator vanishes. Over this range the factor increases from 1 to 00.

In other words, for large n, P, opt is determined to within a factor. Fur-
thermore, the percentage uncertainty due to this factor is smaller at
rates closer to channel capacity, approaching zero as the rate approaches
capacity. It is quite interesting that these seemingly weak bounds can
work out to give such sharp information for certain ranges of the varia-
bles.

Case 2: fh > e.,
For 81 in this range the previous argument does not hold, since the

maximum of the exponent is not at the end of the range of integration
but rather interior to it. This unique maximum occurs at Oe , the root of
2 cos 8e - AG sin2 0c = o. We divide the range of integration into three
parts: 0 to Oe - n-2

/
5

, Oe - n-2
/
5 to Oe + n-2

/
5 and e, + 1t-

2
/& to 8. Pro-

ceeding by very similar means, in the neighborhood of Oe the exponential
behaves as
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(61)

The coefficient of the exponential approaches constancy in the SOlan in-
terval surrounding Oe • Thus the integral (53) for this part is asymptotic
to

1
COS e, sin" Be VI + G2

·Jexp { - n [EL(O.) + (0 --; 0.)' E"1.(0.) ]}dO (59)

'" 3 1 V-- exp [- nEL(O )] y'2;
cos Oc sin Be 1 + G2 c vnb'" L(Oc) •

The other two integrals become small by comparison when 11, is large, by
essentially the same arguments as before. They may be dominated by
the value of the integrand at the end of the range ncar Oe multiplied by
the range of integration. Altogether, then, the integral (52) is asymp-
totic to

1 -II(EL<'.l-R! (60)
.y;n cos Oe sin 3 e, VI + G2 VE" L(OC) e ·

The other term in (52), namely, Q(8.), is asymptotically small C001-

pared to this, under the present case 8 > Oe, since the coefficient of n
in the exponent for Q(fJ) in (51) will be smaller. 1."hU8, all told, the ran-
dom code bound is asymptotic to

1 -nIB L(6c)-R)

cos Be sin3 8cv n7rE"L(Oc)[l + G(Oc)2] e

for 0 > e, or for roles R < R, the rate corresponds to Oe •
Incidentally, the rate Ii; is very closely one-half bit less than channel

capacity when A ~ 4, and approaches this exactly as A -4 to. For lower
values of A the difference C - Re becomes smaller but the ratio C/ R; ---+4
as A ~ o.

VIII. THE FIUM UPPER BOUND ON P, opt

In this section we will find an upper bound, valid for all n, on the proba-
bility of error by manipulation of the upper bound (20). We first find
an upper bound on Q'(8). In Ref. 6 the integral (35) is transformed into
z" cxp (_!Z2 + iV., + 1 w) times the following integral (in their no-
tation) :

u = L: 1p;(Y) oxp {-! y2 + ,,[In (1 +~) - ~J} dy.
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It is pointed out that the integrand here can be dominated by C-
1I2

/
2

•

This occurs in the paragraph in Ref. (3 containing Equation 2.6. There-
fore, this integral can be rlominnted by V21r, and our integral ill (:l4)
involved in dQ/dO is domiuated as follows:

l ao [(r - 11 vii cos 0)2J n-l d
o cxp - 2 r r

(
_)n-l (_)2

= ~ exp ~
- A 211, 2

exp -2- cos OU

(
i ) n- l (Z)2 -/12

11, 2 ._
~ e exp 2 exp -2- cos (J V211".

"Ve have

s = 4vn (A cos 0 + V/l2 cos2 0 + ,1 - 4/1i) ~ vii G.

Replacing z by this larger quantity gives

(V;G)"-l exp C~;2 - A;n cos20) V21r.

We have, then,

(
- A2n )( n - 1) exp -- sin2 0 (sin 0) n-2 _

_dQ < 2 (V1tG)"-t
dO = 2n / 2 V; I' n + 1 c

2

(
nG2

i12n 2)
-exp 2 - 2 cos (J vf2;.

Replacing the gammn function by its Stirling expression

(62)

(63)

c~ ~ 1)"'2 exp (n ~ 1) V21r

(which is always too small ), and replacing [1 + (1/11,)]"'2 by V2 (which
is also too small) again increases the right member, After simplification,
we get

dQ (n - l)(G sin O)n exp [(~) (_A
2 + 1 + AG cos 0)J

-- < ------_._~---.;-----------

dO = .... r: 2 ... /- (n - 3)v n G sin 8 v 211'" exp -2-

(n - 1 )C3/ 2C- E L(I)n

~-----~-
V2rn G 8in2

0



Probability of Error for Optimal Codes in a Gaussian Channel 305

Notice that this differs from the asymptotic expression (42) only by a
factor

3/2 ~ /---
C v 1 + G2 < 3/2

V2G = e

(since G ~ 1). A firm upper bound can now be placed on Q(O):

l
Jr

/

2
dQ (11")

Q(Ol) = 81 do dO + Q 2 ·

'Ye use the upper bound above for dQ/dfJ in the integral. The coefficient
of -1t in the exponent of o

l~L(O) = !(A 2
- itG cos 8) - log G sin 8

is positive and monotone iucrensing with 0 for 0 > 00 , as we have seen
previously. Its derivative is

E',,, (0 ) = ./1 G si11 0 - cot 8.

As a function of 0 this curve is as shown in Fig, 5, either rising 1110110-

tonically from - 00 at 0 = 0 to A at 0 = r/2, or with a single maxi-
mum, In any case, the curve is concave downward. To show this analyti-
cally, take the second derivative of E'L. This consists of a sum of negative
terms.

Fig. 5 - E L'(8) as n. function or 8.
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Returning to our upper bound on Q, thc coefficient in (63) does not
exceed

vii 3/2--e
~

sin 2 81 '

replacing sin 0 and G by sin 01 and 1, their minimum values in thc
range. We now wish to replace e- fl B

£ ( ' ) by

exp-n[EL (81 ) + (8 - 81)1&].

If 11, is chosen equal to thc minimum IE' L{0), this replacement will in-
crease the integral und therefore give un upper bound. From the be-
havior of E' £(8) this minimum occurs at either 81 or 1('/2. Thus, we may
take h = min [A, AG(81) sin 01 - cot 8J]. With this replacement the
integral becomes a simple exponential and can be immediately inte-
grated.

The term Q(r/2) is, of course,

d".. ( -A .... /::.);5; _1_ e- A 2n / 2

'¥ v n - V2rn A ·

If we continue the integral out to infinity instead of stopping at 11"/2, the
extra part added will more than cover Q( 1r/2). In fact, Jt L(."./2) = A2/2,
so the extra contribution is at least

_ /- 3/2
vn e -A2 n /2

2 _ /0 e
An sin 81 v 21('

if we integrate
_ /- 3/2
V n e -Aln/2-n('-'t)A

sin 2 o, V21r e

to 00 instead of stopping at 1r/2. Since e3
/
2/sin2 01 ~ 1, we may omit

the Q{11"/2) term in place of the extra part of the integral.
Consequently, we can boundQ(81) as folloue:

()
e3/2 exp {{n/2) (AG(81) cos O. - A2 + 2 log G sin Ot}1 (64)

Q O. ~ _ / · 2 • (A AG( ) · 8 ) ·- v 21rn SIll 01 111111 , 01 SIll 01 - cot 1

In order to overbound P f! opt by (3) it is', now necessary to overbound
the term
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This can be done by a process very similar to that just carried out for
fdQ(O). First, we overbound 0(0)/0(91) using (21). 'Ve have

nCo) = l' (sin X)"-2 d:r.

0(81) 1'1 (si )n-2 dSIn z x
o ,_ L(sin X)"-2 dx

-1' 1'1o (sin X)"-2 dx + , (sin X)"-2 dx

l' (sin X)"-2 cos x dx
~ 0- , 1'11(sin X),,-2 cos x dx + cos 0 , (sin X)"-2 dx

l' (sin X)"-2 cos x dx
~ 0

-1' 1'1 'o (sin X)"-2 cos x dx + , (sin X),,-2 cos x dx

and, finally,

0(8) ~ (sin 8)n-l
n(01) - (sin (/t),,-1· (65)

Here the third line follows since the first integral in the denominator is
reduced by the same factor as the numerator and the second integral is
reduced more, since cos 0 is decreasing. In the next line, the denominator
is reduced still more by taking the cosine inside.

Using this inequality and also the upper bound (63) on dQ/dfJ, we
havc

1.. nCo) dQ(O) ::::;
o n(fJ1 ) -

1'1(s~n 0) ,,-1 (n - l)e3/2( G. s~n 0) "e("/2)(-A
2

+A eo.'O) dO (66)
o (SIll 81),,-1 0mG sin 8

(n - 1)e3
/
2 1'1= . n-l Gn (sin8)2n-3e(n/2)(-A2+A coe8G) d8.

V2rn (sin 91 ) 0

Ncar the point 81 the integrand here behaves like an exponential when
11, is large (provided 81 < 8c ) , and it should be possible to find a firm
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upper bound of the (orin
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where k: would not depend on n, This, however, leads to considerable
complexity and we have settled for a cruder formulation as follows:

The integrand may be bounded by its maximum values. If 8. < Oc,
the maximum of the integrand will occur at 01 , at least when 11, is large
enough. In this case, the integral will certainly be bounded b)'

8 GII (O) (si 0 )2n-3 (1I/2)(-A'+A cos 81 0(91»)
J 1 SIll J e .

'rho entire expression for P, opt ITIny then be bounded by [adding in the
bound (64) on Q(O.)]

- r: 3/2 0 -RL(OI){ J }
]:J < V nc IC 1 + .. (67)

e opt = V2~ sin2 01 11,01 min [A, .I1G(0.) sin O. - cot 0.] ,

It must be remembered that (G7) is valid only for 01 < Oc and if 11, is
large enough to make the maximum of the integrand above occur at o.
For 01 > Oc, bounds could also be constructed based on the maximum
value of the integrand.

IX. A FIRM l,O\VER DOUND ON P, opt

In this section we wish to find a lower bound on P; opt that is valid for
all n. To do this we first find a lower bound on Q' (0) and from this find
a lower bound on Q(O). The procedure is quite similar to that involved
in finding the firm upper bound.

In Ref. 6, the integral (35) above was reduced to the evaluation of
the following integral (Equation 2.5 of Ref. G):

L: (1 + ~ycxp ( - ! y2 - Y ~) dy

~ EO exp {- ! y2 + P [Ill (1 + ~) - ~J} dy

~ Loo

cxp [ - ! y2 + P ( ;;)] dy

= Loo

cxp [ _;2 (1 + ~)] dy = ~ 1V2,; P
1+=2z

> vi-; = y;
= 2Y2 2
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n ~ 2,for

Here we used the iuoquality

In (1 +~) - ~ ~ - g~ for ~ > 0,

and also the fact that ,,/1,2 ~ 1. This latter follows from Equation 2.3 of
Ref'. 6 on dividing through by 1,2.

Using this lower bound, we obtain from (34)

dQ (n - 1) Sill,,-2 0 cxp ( _:2n
) (1,)"-1 . (1,2) y;

- ~ - exp - -. (68)
do - n/2y'; (n + 1) C 2 22 rr--

2

Now Z ~ Y1t - 1 G and

r (~) < (~)"/2 -(n+1)/2 ..... /02 .. [ 1 ]
2 2 e v ~7r exp 6(11, + 1)

and, using the fact that

(
n - 1)n/2 ~ ~
11,+1 -3

,ve obtain

dQ 1 ~ C3/ 2 e-nEL(I)

> --- ----------....--do = Uy2r [G2 1 ] . 2

G cxp 2 + 6(n + 1) SIll 0

for n ~ 2.
(69)

This is our lower bound on dQ/dO.
To obtain :1 lower bound on Q( 8) we may usc the snrne device us

before-here, however, replacing the coefficient by its minimum value in
the range and the exponent by -nEL ( 8. ) - 11,(8 - 81)E'L mAX:

E' L = AG sin 8 - cot 8

s AG

~A(A+l).

Similarly, in the coefficient, G can be dominated by 11 + 1 and sin 20 by
1. Thus,

Q(Ot) ~

l
1f / 2 ~e3/2e-nEL(ll)e-n(I-'1)A(A+l) (r)

II - [(A + 1)2 1 ] dO + Q 2" · (70)
6 y21r(A + 1) exp 2 + 6(n + 1)
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(71)

Integrating and observing that the term due to the r/2 limit can be
absorbed into the Q(r/2) - erf A, we arrive at the lower bound:

~ r:----;1 3/2 -raBL(91)

Q( D) > v n - 1 e e
J= - 3 [(A+l)2 1 J'

6V21rn (A + 1) cxp 2 + 6(n + 1)

X. DElIAVIOR NEAH. CI-IANNEL CAPACITY

As we have seen, ncar channel capacity the upper and lower nsymp-
totic bounds arc substantially the same, If in the asymptotic lower
bound (42) we form a Taylor expansion for 0 ncar 00 , retaining terms
up to (0 - 00)2, we will obtain an expression applying to the neighbor-
hood of channel capacity. Another approach is to return to the original
noncentral i-distribution and usc its normal approximation which will
be good ncar the mean (sec Ref. 5). Either approach gives, in this neigh-
borhood, the approximntions [since E(Oo) = E'(Oo) = OJ:

dQ.:..Vn(l+A
2

) [ (A
2

+ 1)2 (O 0)2J
- do - V"-rr V2 + A2 exp - n A2 + 2 - 0

[
A2+ 1 _J

Q(O) ~ <fl (00 - 8) VA2 + 2 V2n ,

(72)

(74)

or, since ncar channel capacity, using «" == sin 0,

8 - 80 == A-l(C - R)

( ~ /P) [_ /0:: -1 A2 + 1 ( )J
P e op t «,«, 'V N ~ cJ> v 2n A VA2 + 2 R - C (73)

[
P+N ~/- J= <fl VP(P + 2N) v2n (R - C) ·

The reliability curve is approximated ncar C by

, .:.. (P + N)2 _ 2

E(R) - P(P + 2N) (C R).

It is interesting that Ricc2 makes estimates of the behavior of what
amounts to a lower bound on the exponent E ncar channel capacity,
lIis exponent, translated into our notation, is

E*(R) == P ; N (C - R)2,

a poorer value than (74); that is, it will take a larger block length to
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achieve the same probability of error. This difference is evidently due to
the slight difference in the manner of construction of the random codes.
Rice's codes are obtained by placing points according to nn n-dimen-
sional gaussian distribution, each coordinate having variance P. In our
codes the points are placed at random on a sphere of precisely fixed ra-
dius V nP. Those arc very close to the same thing when n. is large,
since in Rice's situation the points will, with probability approaching 1,
lie between the spheres of radii VnP (1 - E) and vnP (1 + E), (any
E > 0). However, wo are dealing with very small probability events in
any case whon we arc estimating probability of error, and the points
within the sphere nrc sufficiently important to affect the exponent E. In
other words, the Rice type of code is sufficient to give codes that will
have a probability of error approaching zero at rates arbitrarily ncar
channel capacity. However, they will not do so at as rapid :1 rate (even
in the exponent) as can be achieved. To achieve the best possible It it
is evidently necessary to avoid having too many of the code points in-
terior to the V nP sphere.

At rates R greater than channel capacity ,ve have 81 < 00. Since thc
Q distribution approaches normality with lucan at 00 and variance
2n(A 2 + 1)2j(A2 + 2), we will have Q(Ol) approaching 1 with in-
creasing n for any fixed rate greater than C. Indeed, even if the rate R
varies but remains always greater than C (perhaps approaching it from
above with increasing n), we will still have P~OJlt > ! - E for any E > 0
and sufficiently large n,

XI. UPPER BOUND ON p. opt. BY l\IE'fIIOD OF J~XIIAUSTION

For low rates of transmission, where the upper and lower bounds di-
verge widely, we may obtain better estimates by other methods, For
very low rates of transmission, the main contribution to the probability
of error can be shown to be due to the code points that are nearest to-
gether and thus often confused with each other, rather than to the gen-
eral average structure of the code. The important thing, at low rates, is
to maximize the minimum distance between neighbors. 130th the upper
and lower bounds which we will derive for low rates are bused on these
considerations.

We will first shovV that, for D ~ V2 nP, it is possible to find at least

(
D )1-"M D = sin 2 sin'" 2 vn:P

points on the surface of an n sphere of radius VnP such that no pair
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(75)

of thorn is separated by a distanco less than D. (If It!D is not all integer,
take the next Iurger integer.) Tho method used will be similar to 011C

uscd by E. N. Gilbert for the binary symmetric channel.
Select any point on the sphere's surface for the first point. Delete from

the surface all points within D of the selected point. In Fig, 6, x is the
selected point and the area to be deleted is that cut out by the cone.
This area is certainly less (if D ~ V2nP) than the urea of the hemi-
sphere of radius If 8ho\\T11 and, even n101'e so, less than the area of the
sphere of radius II. If this deletion does not exhaust the original sphere,
select any point from those remaining and delete the points within D
of this new point. This agaiu will not take awny JlIOrC area than that of
u sphere of radius II. Continue in this manner until no points remain.
Note that each point chosen is at least D from each preceding point.
Hence all interpoint distances arc at least J). Furthermore, this can be
continued at least as many times as the ratio of the surface of a sphere
of radius VnT' to that of a sphere of radius II, since each deletion takes
away not more than this much surface area. This ratio is clearly

(v'nP/II)n-l.

By simple geometry in Fig. G, ,YC sec that 1/ and D arc related as fol-
lo\vs:

11
sin 0 = vUf>'

. 0 D
SIll 2 = 2,ln p ·

Hence

II ... /-p · 2 "-I D. = v n SIll SIll 2 v"nP .

Substituting, we can place at least

!IfD = (sin 2 sin-1 2 ~nP)-<n-ll
points at distances oi leasi D [rom each other, for any D ~ V2nP.

If wc have Al D points with minimum distance at least D, then the proba-
bility of error tvith optimal decoding will be less than 01" equal to

u: ,{> C1N).
1'0 show this we may add up pessimistically the probabilities of each
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point being received as each other point. Thus the probability of point
1 being moved closer to point 2 than to the original point 1 is not greater
than 4>[ -D/(2y'N)], that is, the probability of the point being moved
in a certain direction at Icast D/2 (half the minimum separation).
The contribution to errors due to this cause cannot, therefore, exceed
(1/illD)<I>[ - D/ (2.yN)], (the 1/le!Dfactor being the probability of mes-
sage 1 being transmitted). 1\. similar argument occurs for each (ordered)
pair of points, a total of ilfIJ(ill D - 1) contributions of this kind. Con-
sequently, the probability of error cannot exceed (itl/) - 1)(1'[ - D/
(2yN)] or, more simply, J1I,lI'[ -D/(2YN)].

If we set

(
D )-Cn-U

nil ilf · 2 · -1e = 11' V = sin sin -_~/~...-2 vnI)

then the rate R (in natural units) is

( 1) ( [) )-1R = 1 - n log sin 2 sin-
1

2Ynl)

with

P ~ nB..,) ( - D ) < nil y2N -(D2/8N) (76)
e - e '1 2 YN = e D y; C ,

using tho well-known upper bound cf>( -x) ~ (1/xv!2;)e- z2
/
2

• These arc

(}

HEMISPHERE OF
RADIUS H

I,

"

Fig. 6 - Geometry of sphere of radius Vn!'.
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parametric equations in terms of D. It is 1110re convenient to let

D = AViiiP.
We then have

(77)
P < 1 n(R-(A2p)I(4N»• = e .

~M
The asyrnptotic reliability, that is, the cocfficicnt of -1~ in the expo-
nent of P; , is given by ().2p/4N) - R, This approaches

n~ co.as(sin! sin -'eR)2~ - R

Thus our asymptotic lower bound for reliability is (eliminating ~) :

(78)E ~ (sin! sin"" eR)2;;., - R.

As R~ 0 the right-hand expression approaches P/{4N).
This lower bound on the exponent is plotted in the curves in Section

XIV and it may be seen to give more information at low rates than the
random code bound. It is possible, however, to improve the random
coding procedure by what we have called an "expurgating" process. It
then becomes the equal of the bound just derived and, in fact, is some-
what stronger over part of the range. We shall not go into this process
in detail but only mention that the expurgating process consists of
eliminating from the random code ensemble points which have too close
neighbors, and working with the codes that then remain.

XII. LO'VEIl. nOUND ON P, IN GAUSSIAN CIIANNNL UY l\IINIl\IUl\1 DISTANCE

AUGUMENT

In a codo of length n with IIf code words, Jet m.,(i = 1, 2, ... , Ill;
8 = 1, 2, · · · , 11,) be thc sth coordinate of code word i. We arc here as-
suming an average power limitation P, so that

1" 2<I~-ill £.4 111". = ·
1l i .•

(70)

We also assume an independent gaussian noise of power N added to each
coordinate.
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(80)

'Ve now calculate the average squared distance between all the
!If(Ill - 1) /2 pairs of points in 11,-SpaCe corresponding to the It! code
words, The squared distance froIn word i to word i is

L (mi. - mj.)2•
•

The average D2 between all pairs will then be

- 1 ~ 2
D2 = M(M _ 1) .~ (mi. - ?nj.) ·

Note that each distance is counted twice in the sum and also that the
extraneous terms included in the sum, where i = i, contribute zero to it.
Squaring the terms in the sum,

D2 = M(M
1_

1) (~ 1ni.
2

- 2 L ~ 1ni.1nj. + ?: mj.2). "J.' • ..J •.J.•

= M(lI/ _ 1) [2M t; mi,2 - 2 ~ (~mi.Yl

1
~ M(M - 1) 2MPnM

D2 < 2nMP
= ill - l'

where we obtain the third line by using the inequality on the average
power (79) and by noting that the second term is necessarily non-
positive.

If the average squared distance between pairs of points it

~(2nMP)/(lIf - 1),

there must exist a pair of points for whose distance this inequality holds.
Each point in this pair is used Illll of the time. The best detection for
separating this pair (if no other points wore present) would be by a
hyperplane normal to and bisecting the joining line segment. Either
point would then give rise to a probability of error equal to that of the
noise carrying a point half this distance or more in a specified direction.
We obtain, then, a contribution to the probability of error at least

1 p { .. · directi 1 • / 2nllfP }M · r noise m a certam irection ~ 2 11 M _ 1

1 [ • / nil!? ]
=M~ -V(M-1)2N'
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This \\'C may assign to the first of the two points in question, and the
errors we have counted arc those when this message is sent and is re-
ceived closer to the second message (and shouJd therefore be detected
as the second or some other message).

Now delete this first message from the set of code points and consider
the remaining Itl - 1 points. By the same argumont there must exist
among these a pair whose distance is less than or equal to

£ /2nl>(ltl - 11
11 (It! - 2)

This pair leads to a contribution to probability of error, due (,0 the first
of these being displaced until nearer the second, of un amount

1~[ /(11[ - J)ll/:J]
ill) - 1 (ilf - 2) 2N .

This same argument is continued, deleting points and adding contribu-
tions to the error, until only two points arc left. Thus we obtain a lower
bound on P; opt. as follows:

) > 1. [ ( £ s» 11/) ( .. In/) ]\( - 1)
I e opt = ill <I> - 11 2N ilf - 1 + cJ> - 11 2N it/ - 2

(81)

(82)

To simplify this bound somewhat one may take only thc first ill/2 terms
[01" (11.£ + 1) /2 if Itl is odd]. Since they ure decreasing, each term would
be reduced by replacing it with the last term taken. Thus we may reduce
the bound by these operations and obtain

1 ( £ I ill 1"1,l~)
P e Ollt ~ 2 4J - 11 itl - 2 2N .

For any rate R > 0, as n increases the term IIf/ (11/ - 2) approaches 1
and the bound, then, behaves about as

1 ( £ /np)
24> - 11 2l\' ·

1 -(nP)f(4N)
--.=;:;: e
2¥~~J ·

It follows that the reliability E ~ P/(4N) = A2/4. This is the same
value as the lower bound for E when R --4 O.
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XIII. J~UnOH nOUNDS AND OTHEH CONDITIONS ON TII)~ SIGNAL POINTS

IIp to 1l0\V we have (except in the last section) assumed that all sig-
nal points wore required to lie 011 the surface of the sphere, i.c., have a
mean square value~. Consider now the problem of estimating
I.J'eopt,(Af, n, Vl>/N), where the signal points are only required to lie
on or within the spherical surface. Clearly, since this relaxes the condi-
tions on thc code, it can only improve, i.e., decrease the probability of
error for the best code. Thus I}I e opt ~ P, opt.

On the other hand, we will show that

P'.OI)t (M) n, 1/~) ~ P'01,t (M, n + 1, ¥~). (8:3)

In Inct suppose we have a code of length n, all points on or within the
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n sphere. 1"0each code word add a further coordinate of such value that
in the n + 1 space the point thus formed lies exactly on the n + 1 sphere
surface. If the first 11, coordinates of a point have values Xl, X2, •• • ,x,.
with

n

Exl ~ nP,
i-1

the added coordinate will have the value

X"+l = · /(n + I}P - i:-:11 isal

This gives n derived code of the first type (all points on the n + 1
sphere surface) with Jl words of length 11, + 1 at signal-to-noise ratio
PIN. The probability of error for the given code is at least as great as
that of the derived code, since the added coordinate can only improve
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the decoding process. One might, for exam pic, decode ignoring tho last
ooordinato and then have the same probability of error. Using it in the
best way would, in general, improve the situation.

Tho probability of error for the derived code of length n + 1 Blust be
greater than or equal to that of the optimal code of the length 1t + 1
with all points on the surface. Consequently we have (83). Sincc
T'eopt(J.!, n, VP/N) varies essentially exponentially with n when n is
large, the effect of replacing n by 11, + 1 is essentially that of a constant
multiplier. Thus, our upper bounds on Pe opt are not changed and our
lower bounds are multiplied by 3, quantity which does not depend much
on n when n is large. The asymptotio reliability curves consequently
will be the same. Thus the E curves we have plotted may be applied in
either case.

Now consider the third type of condition on the points, namely, that
the average squared distance from the origin of the set of points be less
than or equal to nP. This again is a weakening of the previous conditions
and hence the optimal probability of error, ]:J II

e opt , is less than or equal
to that of the previous cases:
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Our upper bounds on probability of error (and, consequently, lower
bounds on reliability) can be used as they stand.

Lower bounds on 1:)"e opt. may be obtained as follows. If we have ill
points whose mean square distance from the origin does not exceed nl",
then for any a(O < a ~ 1) at least alvl of the points arc within a sphere
of squared radius nP/(l - a). [For, if more than (1 - a)1I1 of them
were outside the sphere, these alone would contribute more than

(1 - a) IIInP/ (1 - ex)

to the total squared distance, and the mean would then necessarily be
greater than nP.] Given an optimal code under the third condition, we
can construct from it, by taking all! points within the sphere of radius
V nP/1 - a, a code satisfying the second condition with this smaller
number of points and larger radius. The probability of error for the new
code cannot exceed l/a times that of the original code. (Each new code
word is used 1/a times as much; when used, its probability of error is at
least as good as previously.) Thus:
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pneopt(M, n, 111) ~ ~pfeoPt(aM,n,/(1 !a)N)
~ ~PeoPt(aM.n + 1,1(1 !a)N)'

XIV. CURVES FOR ASYl\fPTOTIC BOUNDS

Curves have been calculated to facilitate evaluation of the exponents
in these nsymptotic bounds. The basic curves range over values of
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Fig. 12 - Channel capacity, C, and critical rate, R, , as functions of o.

A = 1, 1, l, 1, 2, 3,4,8, 16. Figs. 7 through 11 give the coefficients
of 11, and E L as functions of thc rate li, Since E~ strictly is a function of
0, and the relation between 8 and Ii depends sorncwhut on n, a number
of slightly different R scales are required at the bottom of the curve.
This, however, was considered u bettor means of presenting the data
than the use of auxiliary curves to relate II and o. These same curves
give the coefficient of n in the upper bounds (the straight line part to-
gether with the curve to the right of the straight line sogmcnt ). The point
of tangency is the critical R (or critical 0). In other words, the curve and
thc curve plus straight line, read against the 11, = 00 scalo, give upper
find lower bounds OIl the reliability measure. The upper and lower bounds
on E for low R are also included in these curves. The upper bound is thc
horizontal line segment running out from R = 0, E = A 2/4. Tho lower
bound is the curved line running down Irom this point to the tangent
liuc. Thus, the reliability It lies in the four-sided figurc defined by these
lines to the left of R, . It is equal to the curve to the right of R; . Fig, 12
gives channel capacity C and the critical rate lie as functions of o. 1.'01"
A very small, the It t.(ll) curve approaches a limiting forill. In fact, if
8 = ("../2) - e, with f smnll, to a close approximation by obvious expan-
sions we find

A2 2

Et(R) == - - AE + ~ and
2 2

2
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Eliminating e, we obtain
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Coding Theorems for a Discrete Source
With a Fidelity Criterion-

Claude E. Shannon**

Abstract

Consider a discrete source producing a sequence of message letters from a finite alphabet.
A single-letter distortion measure is given by a non-negative matrix (d ij). The entry d ij

measures the "cost" or "distortion" if letter i is reproduced at the receiver as letter j. The
average distortion of a communications system (source-coder-noisy channel-decoder) is taken
to be d = L P;jd ij where P ij is the probability of i being reproduced as j. It is shown that

i.]

there is a function R (d) that measures the "equivalent rate" of the source for a given level of
distortion. For coding purposes where a level d of distortion can be tolerated, the source acts
like one with information rate R(d). Methods are given for calculating R(d), and various
properties discussed. Finally, generalizations to ergodic sources, to continuous sources, and to
distortion measures involving blocks of letters are developed.

In this paper a study is made of the problem of coding a discrete source of information,
given a fidelity criterion or a measure of the distortion of the final recovered message at the
receiving point relative to the actual transmitted message. In a particular case there might be a
certain tolerable level of distortion as determined by this measure. It is desired to so encode the
information that the maximum possible signaling rate is obtained without exceeding the
tolerable distortion level. This work is an expansion and detailed elaboration of ideas presented
earlier [I}, with particular reference to the discrete case.

We shall show that for a wide class of distortion measures and discrete sources of
information there exists a function R(d) (depending on the particular distortion measure and
source) which measures, in a sense, the equivalent rate R of the source (in bits per letter
produced) when d is the allowed distortion level. Methods will be given for evaluating R(d)
explicitly in certain simple cases and for evaluating R(d) by a limiting process in more
complex cases. The basic results are roughly that it is impossible to signal at a rate faster than
C / R(d) (source letters per second) over a memoryless channel of capacity C (bits per second)
with a distortion measure less than or equal to d. On the other hand, by sufficiently long block
codes it is possible to approach as closely as desired the rate C / R(d) with distortion level d.

Finally, some particular examples, using error probability per letter of message and other
simple distortion measures, are worked out in detail.

The Single-Letter Distortion Measure. Suppose that we have a discrete information source
producing a sequence of letters or "word' m = m I , m 2, m 3 , .•• , m t» each chosen from a
finite alphabet. These are to be transmitted over a channel and reproduced, at least

* Institute of Radio Engineers, International Convention Record, vol. 7, 1959.

** This work was supported in part by the U.S. Army (Signal Corps), the U.S. Air Force
(Office of Scientific Research, Air Reserve and Development Command), and the
U.S. Navy (Office of Naval Research).
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approximately, at a receiving point. Let the reproduced word be Z = ZI, Z2,.'" z,. The z ,
letters may be from the same alphabet as the m , letters or from an enlarged alphabet including,
perhaps, special symbols for unknown or semi-unknown letters. In a noisy telegraph situation
m and Z might be as follows:

m = I HAVE HEARDTHE MERMAIDS SINGING...
?

Z = I H?VT HEA?D TSE B?RMAIDZ ??NGING...

In this case, the Z alphabet consists of the ordinary letters and space of the m alphabet, together
? ?

with additional symbols "T", "A", "B", etc., indicating less certain identification. Even
more generally, the Z alphabet might be entirely different from the m alphabet.

Consider a situation in which there is a measure of the fidelity of transmission or the
"distortion" between the original and final words. We shall assume first that this distortion
measure is of a very simple and special type, and later we shall generalize considerably on the
basis of the special case.

A single-letter distortion measure is defined as follows. There is given a matrix d ij with
dij ~ O. Here i ranges over the letters of the m alphabet of, say, a letters (assumed given a
numerical ordering), while j ranges over the Z alphabet. The quantity d ti may be thought of as
a "cost" if letter i is reproduced as letter j.

If the Z alphabet includes the »1 alphabet, we will assume the distortion between an m letter
and its correct reproduction to be zero and all incorrect reproductions to have positive
distortion. It is convenient in this case to assume that the alphabets are arranged in the same
indexing order so that d ii = 0, d ij > 0 (i ~ j).

The distortion d, if word m is reproduced as word Z, is to be measured by

1 '
d(m, Z) = - ~ dm~ z, .

t k=l

If, in a communication system, word m occurs with probability P(m) and the conditional
probability, if m is transmitted, that word Z will be reproduced, is P(ZI m), then we assume that
the over-all distortion of the system is given by

d = ~ P(m) P(Zlm) d(m, Z) .
m,l

Here we are supposing that all messages and reproduced words are of the same length t. In
variable-length coding systems the analogous measure is merely the over-all probability that
letter i reproduced as}, multiplied by d ij and summed on i and}. Note that d = 0 if and only if
each word is correctly reproduced with probability 1, otherwise d > 0 (in cases where the Z
alphabet includes the »1 alphabet).

Some Simple Examples. A distortion measure may be represented by giving the matrix of its
elements, all terms of which are non-negative. An alternative representation is in terms of a
line diagram similar to those used for representing a memoryless noisy channel. The lines are
now labeled, however, with the values d ij rather than probabilities.

A simple example of a distortion measure, with identical m and Z alphabets, is the error
probability per letter. In this case, if the alphabets are ordered similarly, d ij = 1 - 0ij: If
there were three letters in the m and and Z alphabets, the line diagram would be that shown in
Fig. I (a). Such a distortion measure might be appropriate in measuring the fidelity of a teletype
or a remote typesetting system.
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o
( a )

EMERGENCY....----.... EMERGENCY

. ALL'S WELL &.- ---A ALL'S WELL

( b)

Fig. 1.

Another example is that of transmitting the quantized position of a wheel or shaft. Suppose
that the circumference is divided into five equal arcs. It might be only half as costly to have an
error of plus or minus one segment as larger errors. Thus the distortion measure might be

o i =J
Ii - JI
Ii - jl >

(mod 5),

(mod 5).

A third example might be a binary system sending information each second, either "all's
well" or "emergency," for some situation. Generally, it would be considerably more
important that the "emergency" signal be correctly received than that the "all's well" signal
be correctly received. Thus if these were weighted 10 to 1, the diagram would be as shown in
Fig. l(b).

A fourth example with entirely distinct m and Z alphabets is a case in which the m alphabet
consists of three possible readings, - 1, 0 and + 1. Perhaps, for some reasons of economy, it is
desired to work with a reproduced alphabet of two letters, - ~ and + Y2. One might then have
the matrix that is shown in Fig. 2.

I I--+-2 2

-I I 2
0 I I

I 2 ,
Fig. 2.

The Rate-Distortion Function Rid). Now suppose that successive letters of the message are
statistically independent but chosen with the same probabilities, Pi being the probability of
letter i from the alphabet. This type of source we call an independent letter source.



328 C. E. Shannon

Given such a set of probabilities P i and a distortion measure d ij» we define a rate-distortion
curve as follows. Assign an arbitrary set of transition probabilities q i (j) for transitions from i

to j. (Of course, q i (j) ~ 0 and L q i (j) = 1.) One could calculate for this assignment two
j

things: first, the distortion measure d(q i (j» = L Pi q i (j) dij jf letter i were reproduced as j
ij

with conditional probability q; (j), and, second, the average mutual information between i and j
if this were the case, namely

«, (j)
R(qi(j» = E Jog ----L r, qk(j)

k

= L Pi qi(j) log L ~i(j) ( 0)
i.i k q k J

k

The rate-distortion function R(d*) is defined as the greatest lower bound ofR(q i (j» when the
q, (j) are varied subject to their probability limitations and subject to the average distortion d
being less than or equal to d*.

Note that R (q i (j» is a continuous function of the q i (j) in the allowed region of variation
of q i (j) which is closed. Consequently, the greatest lower bound ofR is actually attained as a
minimum for each value of R that can occur at all. Further, from its definition it is clear that
Rt d) is a monotonically decreasing function of d.

Convexity of the Rid) Curve. Suppose that two points on the R(d) curve are (R, d) obtained
with assignment q i (j) and (R', d') attained with assignment q; (j). Consider a mixture of
these assignments 'Aq i (j) + (1 - A) q~ (j). This produces a d" (because of the linearity of d)
not greater than Ad + (1 - A) d': On the other hand, R(qi(j» is known to be a convex
downward function (the rate for a channel as a function of its transition probabilities). Hence
R" $ AR + (] - A) R'. The minimizing q;' (j) for d" must give at least this Iowa value of
R". Hence the curve R as a function ofd (or conversely) is convex downward.

The minimum possible d value clearly occurs if, for each i, q i (j) is assigned the value I for
the j having the minimum d i j : Thus the lowest possible d is given by

d min = L Pi min dij .
i J

If the m alphabet is imaged in the Z alphabet, then d min = 0, and the corresponding R value is
the ordinary entropy or rate for the source. In the more general situation, R(dmin ) may be
readily evaluated if there is a unique min d i j by evaluating R for the assignment mentioned.

J
Otherwise the evaluation of R(dmin ) is a bit more complex.

On the other hand, R = 0 is obtained if and only if q i (j) = Qj' a function of j only. This
is because an average mutual information is positive unless the events are independent. For a
given Qj giving R = 0, the d is then ~ Pi Qj dij = L o, L Pi dij. The inner sum is

ij j i

non-negative. If we wish the minimum d for R = 0, this would result by finding aj that gives a
minimum L P;dij(sayj*)andmakingQr = 1. This can be done by assigning c.I j ") = 1

(all other q i (j) are made 0).

Summarizing, then, R(d) is a convex downward function as shown in Fig. 3 running from
R(dmin ) at d min = L Pi min d.. to zero at d max = min L Pi dij. It is continuous both

J J
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ways (R as a function of d or d as a function of R) in the interior of this interval because of its
convexity. For d ~ d max' we have R = O. The curve is strictly monotonically decreasing from
d min to d max. Also it is easily seen that in this interval the assignment of q i (j) to obtain any
point R(d *) must give a d satisfying the equality d = d * (not the inequality d < d "), For
d" > d max the inequality will occur for the minimizing q i (j). Thus the minimizing problem
can be limited to a consideration of minima in the subspace where d = d"; except in the range
d" > d max (whereR(d*) = 0).

The convex downward nature of R as a function of the assigned q i (j) is helpful in
evaluating the Rt d) in specific cases. It implies that any local minimum (in the subspace for a
fixed d) is the absolute minimum in this subspace. For otherwise we could connect the local
and absolute minima by a straight line and find a continuous series of points lower than the
local minimum along this line. This would contradict its being a local minimum.

Furthermore, the functions R(q i (j» and d( q i (j» have continuous derivatives interior to
the allowed q i (j) set. Hence ordinary calculus methods (e.g., Lagrangian multipliers) may be
used to locate the minimum. In general, however, this still involves the solution of a set of
simultaneous equations.

Solution for Rid) in Certain Simple Cases. One special type of situation leads to a simple
explicit solution for the R (d) curve. Suppose that all a input letters are equiprobable:
P i = 1/a. Suppose further that the d ij matrix is square and is such that each row has the same
set of entries and each column also has the same set of entries, although, of course, in different
order.

R(dl

d . =IR min d iJ·min i I j

d

An example of this type is the positioning of a wheel mentioned earlier if all positions are
equally likely. Another example is the simple error probability distortion measure if all letters
are equally likely.

In general, let the entries in any row or column be d I , d 2, d 3 ' ... , d a. Then we shall
show that the minimizing R for a given d occurs when all lines with distortion assignment d k

are given the probability assignment
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~ -Ad
~ e I

d=

Here A is a parameter ranging from 0 to 00 which determines the value of d. With this
minimizing assignment, d and R are given parametricaIly in terms of A:

~ d, e- Ad
,

i

R = log a - Ad .
~ e-Ad,

i

1
When A = 0 it can be seen that d = - ~ d, and R = O. When A ~ 00, d ~ d min and

a i

R ~ log ~ where k is the number of d i with value d min'

This solution is proved as follows. Suppose that we have an assignment q i (j) giving a
certain d" and a certain R *. Consider now a new assignment where each line with d ij value d I

is assigned the average of the assignments for these lines in the original assignment. Similarly,
each line labeled d 2 is given the average of alJ the d 2 original assignments, and so on. Because
of the linearity of d, this new assignment has the same d value, namely d": The new R is the
same as or smaller than R ", This is shown as follows. R may be written H(m) - H(m 'Z).
H(m) is not changed, and H(mIZ) can only be increased by this averaging. The latter fact can
be seen by observing that because of the convexity of - ~ x i log x i we have

- ~ f!j ~ xjl) log xj!) ~ - ~ [~ f!jX;t)] log ~ Clj x5t) ,
} t t J }

where for a given t, xJt} is a set of probabilities, and Clj is a set of weighting factors. In
particular

~ qjS)
qjO qJO

~
s

~ log-
j ~ q~S)

t ~ qjS) ~ qjS)
s.i

~ q)T} ~ qjO

~ - ~
j

log
j

~ q~s) ~ q~S)
,

I

s.i s.i

where qjs) is the original assignment to the line of value d , from letter s. But this inequality
can be interpreted on the left as Him JZ) after the averaging process, while the right-hand side
is H (m IZ) before the averaging. The desired result then follows.

Hence, for the minimizing assignment, all lines with the same d value will have equal
probability assignments. We denote these by q,. corresponding to a line labeled die The rate R
and distortion d can now be written
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d= ~q·d·k I I'

R = Jog a + L q i log q i ,

331

since all z's are now equiprobable, and H(m) = log a, H(mIZ) = - L q; log qi' We wish,
i

by proper choice of the q i» to minimize R for a given d and subject to ~ q i = 1. Consider

then, using Lagrange multipliers,

U = log a + ~ q i log q i + A L q i d , + Jl L q i ,

au
~ = 1 + log q i + Adi + ~ = 0 ,
oq,

qi = A e -Ad, .

If we choose A = 1_Ad we satisfy L q ; = I. This then gives a stationary point and by
L e ' i

the convexity properties mentioned above it must be the absolute rmrurnum for the
corresponding value of d. By substituting this probability assignment in the formulas for d and
R we obtain the results stated above.

Rate for a Product Source with a Sum Distortion Measure. Suppose that we have two
independent sources each with its own distortion measure, d ij and d;' /' and resulting in rate
distortion functions R I (d I ) and R2 (d 2)' Suppose that each source produces one letter each
second. Considering ordered pairs of letters as single letters the combined system may be
called the product source. If the total distortion is to be measured by the sum of the individual
distortions, d = d I + d-; then there is a simple method of determining the function Rt d) for
the product source. In fact, we shall show that R(d) is obtained by adding both coordinates of
the curves R 1(d 1 ) and R2 (d 2) at points on the two curves having the same slope. The set of
points obtained in this manner is the curve R(d). Furthermore, a probability assignment to
obtain any point of R(d) is the product of the assignments for the component points.

We shall first show that given any assignment qu' (j, j') for the product source, we can do
at least as well In the minimizing process using an assignment of the form q i (j) q;' (j') where
q and «' are derived from the given q i,/ (j, j'). Namely, let

q,.(j) ~, p;, q,..;, si.i'')
i ,j

q;'(j') = ~ Pi qi,;'(j,j') .
i,j

We see that these are non-negative and, summed on j and t' respectively, give 1, so they are
satisfactory transition probabilities. Also the assignment q i (j) q;' (j') gives the same total
distortion as the assignment q i,;' (j ,j'). The former is
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~ I P i P~' q i (i) q~' (i') [d ij + d~' / ]
i,i ,j,j

= !, Piqi(i)dij + ~, P~ q;(j') d;'/
i,j i ,j

= ~ Pi P:' qi,i'(i,i')[dij + d:',/] .
i,i
j,j

C. E. Shannon

This last may be recognized as the distortion with q i ,;' (j .i' ).

On the other hand, the mutual information R is decreased or left constant if we use
q i (j) q;" (j) instead of q I,;' (j ,j'). In fact, this average mutual information can be written in
terms of entropies as follows (using asterisks for entropies with the assignment q i (i) q:'(j')
and none for the assignment q i,;' (),}'». We have

r = Ht i , i') - Ht i, i' Ij, j')

~ H(i ,i') - H(i1j) - uu' Ij')

= H(i,i') - H* (if}) - H* (i' fi') .

Here we use the fact that with our definition of qi(j) and q;' (j') we have r,: (ilj) = Pr(ilj)
and n: (i' Ij') = prti' Ii'). (This follows immediately on writing out these probabilities.)
Now, using the fact that the sources are independent, H(i ,i') = H(i) + nir,
= H* (i) + H* (I'). Hence our last reduction above is equal to R *. This is the desired
conclusion.

It follows that any point on the R (d) curve for the product source is obtained by an
independent or product assignment q i (j) q;' (j'), and consequently is the sum in both
coordinates of a pair of points on the two curves. The best choice for a given distortion d is
clearly given by

R(d) = min [R I (I) + R 2(d - I)] ,
t

and this minimum will occur when

d d
-R)(t) = - R 2(d - t) .
dt dt

Thus the component points to be added are points where the component curves have the same
slope. The convexity of these curves insures the uniqueness of this pair for any particular d.

The Lower Bound on Distortion for a Given Channel Capacity. The importance of the
R(d) function is that it determines the channel capacity required to send at a certain rate and
with a certain minimum distortion. Consider the following situation. We have given an
independent letter source with probabilities Pi for the different possible letters. We have given
a single-letter distortion measure d ij which leads to the rate distortion function R (d). Finally,
there is a memoryless discrete channel K of capacity C bits per second (we assume that this
channel may be used once each second). We wish to transmit words of length 1 from the source
over the channel with a block code. The length of the code words in the channel is n. What is
the lowest distortion d that might be obtained with a code and a decoding system of this sort?

Theorem 1. Under the assumptions given above it is not possible to have a code with
distortion d smaller than the (minimum) d" satisfying
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R(d*) = !!.- C ,
t

or, equivalently, in any code, d ~ cl> [ ; c], where cl> is the function inverse to R(d).

This theorem, and a converse positive result to be given later, show that R(d) may be
thought of as the equivalent rate of the source for a given distortion d. Theorem I asserts that
for the distortion d and t letters of text, one must supply in the channel at least t R(d) total bits
of capacity spread over the n uses of the channel in the code. The converse theorem will show
that by taking nand t sufficiently large and with suitable codes it is possible to approach this
limiting curve.

To prove Theorem 1, suppose that we have given a block code which encodes all message
words of length t into channel words of length n and a decoding procedure for interpreting
channel output words of length n into Z words of length t. Let a message word be represented
by m = m 1, m 2 , ••• , m 1. A channel input word is X = Xl, X 2 , ••• , X n • A channel output
wordisY = YI,Y2, ... ,Ynandareproduced,orZ,wordisZ = ZI,Z2, ••• ,Z1. By the given
code and decoding system, X is a function of m and Z is a function of Y. The m, are chosen
independently according to the letter probabilities, and the channel transition probabilities give
a set of conditional probabilities P(Y Ix) applying to each X; , Y; pair. Finally, the source and
channel are independent in the sense that P(Yfm, X) = P(YIX).

We wish first to show that H(mIZ) ~ H(m) - nt', We have that H(mIZ) ~ H(mIY)
(since Z is a function of Y) and also that H(ml Y) ~ H(X' Y) - H(X) + H(m). This last is
because, from the independence condition above, H(Ylm, X) = H(YIX), so
H(Y, m .. X) - H(m, X) = H(X, Y) - H(X). But H(m, X) = H(m), since X is a function of
m, and for the same reason H(m, X, Y) = Htm, Y). Hence, rearranging, we have

H(X, Y) = H(m, Y) + H(X) - H(m, X)

= H(m, Y) + H(X) - H(m) ,

H(XIY) ~ H(mIY) + H(X) - H(m) .

Here we used H(m, x) = H(m) and then subtracted H(Y) from each side. Hence
H(mIZ) ~ H(XIY) - H(X) + H(m).

Now we show that H (X \Y) ~ nC. This follows from a method we have used in other
similar situations, by considering the change in H(XI Y) with each received letter. Thus (using
Yk for the first k of the Y letters, etc.),

.1H(XIY) = H(XIYl,Y2"··,Yk) -H(XIYI,Y2,···,Yk+1)

= H(X,Xk) -H(Y k ) -H(X,Yk,Yk+l) +H(Yk,Yk+l)

= H(Yk+IIYk) - H(Yk+II X , Yk )

= H(Yk+IIYk) - H(Yk+ll xk+l)

~ H(Yk+ I) - H(Yk+ 1 IXk+ 1)

s C.

Here we used the fact that the channel is memoryless, so P(y k + 1 IX, Yk) = P(y k + I Ixk + 1 ) and
therefore H(Yk + I IX, Yk) = H (Yk + I 'x k + I ). Finally, C is the maximum possible
H(y) - H(yIX), giving the last inequality.
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Since the incremental change in H(XI Yk) is bounded by C, the total change after n steps is
bounded by nCo Consequently, the final H(XI Y) is at least the initial value H(X) less nC.
Therefore

H(mIZ) ~ H(XI Y) - H(X) + H(m)

~ H(X) - nC - H(X) + H(m) ,

H(mIZ) ~ H(m) - nC .

We now wish to overbound H(mIZ) in terms of the distortion d. We have

H(mIZ) = Him , m2 ... mtlz} z2 ... zr)

1: H(m;) - 1: (H(m;) - H(mtlz;»

(1)

The quantity H (m.) - H (m i , z;) is the average mutual information between original message
letter m, and the reproduced letter Z i : If we let d, be the distortion between these letters, then
R(d , ) (the rate-distortion function evaluated for this d i) satisfies

R(d;) $; H(m;) - H(milz;) ,

since R (d;) is the minimum mutual information for the distortion d i- Hence our inequality
may be written

r t

H(mlZ) s 1: H(m;) - 1: R(d;) .
;=1 ;= 1

Using now the fact that R(d) is a convex downward function, we have

H(m/Z) s ~ H(m;) - tR[~ ~;] .

d i
But 1: = d, the overall distortion of the system, so

H(mIZ) s 1: H(m;) - t R(d) .

Combining this with our previous inequality (1) and using the independent letter assumption,
wehaveH(m) = 1: H(mj),so

H(m) - nC ~ H(m) - t R(d) ,

nC ~ tR(d) .

This is essentially the result stated in Theorem 1.

It should be noted that the result in the theorem is an assertion about the minimum
distortion after any finite number n of uses of the channel. It is not an asymptotic result for
large n. Also, as seen by the method of proof, it applies to any code, block or variable length,
provided only that after n uses of the channel, t (or more) letters are reproduced at the receiving
point, whatever the received sequence may be.
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The Coding Theorem for a Single-Letter Distortion Measure. We now prove a positive
coding theorem corresponding to the negative statements of Theorem 1; namely, that it is
possible to approach the lower bound of distortion for a given ratio of number n of channel
letters to t message letters. We consider then a source of message letters and single-letter
distortion measure dij. More generally than Theorem 1, however, this source may be ergodic;
it is not necessarily an independent letter source. This more general situation will be helpful in
a later generalization of the theorem. For an ergodic source there will still, of course, be letter
probabilities Pi, and we could determine the rate distortion function R (d) based on these
probabilities as though it were an independent letter source.

We first establish the following result.

Lemma 1. Suppose that we have an ergodic source with letter probabilities Pi» a single-
letter distortion measure dij' and a set of assigned transition probabilities q i (j) such that

~ Pi q,.(j) dij = d" ,
i.]

~ P ( ') 1 qi(j) = R .
~ i q i J og ~ P ( ')
i,l ~ k qk J

k

Let Q(Z) be the probability measure of a sequence Z in the space of reproduced sequences if
successive source letters had independent transition probabilities q; (j) into the Z alphabet.
Then, given e > 0, for all sufficiently large block lengths t. there exists a set a of messages of
length t from the source with total source probability P(a) ~ 1 - E, and for each m belonging
to a a set of Z blocks of length t, say ~m» such that

1) d(m, Z) ~ d" + E for m e ti and Z E ~m ,

2) Q(Pm) ~ e-t(R + E) for any m e si: .

In other words, and somewhat roughly, long messages will, with high probability, fall in a
certain subset a. Each member m of this subset has an associated set of Z sequences ~ m : The
members of ~m have only (at most) slightly more than d" distortion with m and the logarithm
of the total probability of ~m in the Q measure is underbounded by e-t(R + E).

To prove the lemma, consider source blocks of length t and the Z blocks of length t.
Consider the two random variables, the distortion d between an m block and a Z block and the
(unaveraged) mutual information type of expression below:

1
d = - 1: d m ., ,

t i '-I

ltm; Z) = ~ log Pr(Zlm) = ~ 1: log Pr(z;jmj) .
, t Q(Z) t i Q(z i )

Here m i is the i th letter of a source block m, and Z i is the ;th letter of a Z block. Both Rand d
are random variables, taking on different values corresponding to different choices of m and Z.
They are both the sum of t random variables which are identical functions of the joint (m, Z)
process except for shifting along over t positions.

Since the joint process is ergodic, we may apply the ergodic theorem and assert that when t

is large, d and R will, with probability nearly 1, be close to their expected values. In particular,
for any given E I and 0, if t is sufficiently large, we will have with probability ~ 1 - 02/ 2 that
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d$LPiqi(})dij+EI =d*+Elo
i,}

Also, with probability at least 1 - 02 / 2 we will have

o q;(j)
l~ LP;qi(J)log-- +£, =R(d*)+£1 0

i.] Qj

c. E. Shannon

Let y be the set of (m, Z) pairs for which both inequalities hold. Then Pr(y) ~ 1 - 02 because
each of the conditions can exclude, at most, a set of probability 02 / 2. Now for any m I define
~ml as the set of Z such that (m I, Z) belongs to y.

We have

on a set of ex of m whose total probability satisfies Pr( n) ~ 1 - o. This is true, since if it were
not we would have a total probability in the set complementary to 'Y of at least 0 . 0 = 02, a
contradiction. The first 0 would be the probability of m not being in c, and the second 0 the
conditional probability for such m's of Z not being in 13m. The product gives a lower bound on
the probability of the complementary set to y.

IfZ E ~ml' then

1 Pr(Zlml)
- log Z ~ R(d*) + E I ,
t Q( )

Pr(Zlml) ~ Q(Z) et(R(d·) +(1) ,

Q(Z) ~Pr(Z'ml)e-t(R(d·)+£,) 0

Sum this inequality over all Z E ~ml:

Q(f3m) = L Q(Z)
Ze Pml

~ e-t(R+E ,) L Pr(Zlml) 0

z « flm,

If m I E (X then L Pr(ZJ mI) ~ 1 - 0 as seen above. Hence the inequality can be
z e ~m,

continued to give

R ~ -feR + E)
Q(Pm,)2(I-u)e , m c e ti ,

We have now established that for any e I > 0 and 0 > 0 there exists a set (X of m's and sets
~m of Z's defined for each m with the three properties

I) Pr(a) ~ 1 - 0,

2) d(Z,m)$d*+EI' ifZef3m.

3) Q(f3m)~(I-O)e-t(R+EI), ifmeu,

provided that the block length t is sufficiently large. Clearly, this implies that for any E > 0
and sufficiently large t we will have
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1) Pr( a) ~ 1 - E,

2) d(Z,m)sd*+E, ifZEllm'

3) Q(~m) ~ e-t(R + E),

since we may take the E I and 0 sufficiently small to satisfy these simplified conditions in which
we use the same E. This concludes the proof of the lemma.

Before attacking the general coding problem, we consider the problem indicated
schematically in Fig. 4. We have an ergodic source and a single-letter distortion measure that
gives the rate distortion function R(d). It is desired to encode this by a coder into sequences u
in such a way that the original messages can be reproduced by the reproducer with an average
distortion that does not exceed d" (d' being some fixed tolerable distortion level). We are
considering here block coding devices for both boxes. Thus the coder takes as input successive
blocks of length t produced by the source and has, as output, corresponding to each possible m
block, a block from a u alphabet.

riON
WITH m 'S ~ d •

ERGODIC
SOURCE ~ CODER REPRODUCER

R{d)
m u Z

H(u)~ R(d·) +E AVERAGE DISTOR

Fig. 4.

The aim is to do the coding in such a way as to keep the entropy of the u sequences as low
as possible, subject to this requirement of reproducibility with distortion d * or less. Here the
entropy to which we are referring is the entropy per letter of the original source. Alternatively,
we might think of the source as producing one letter per second and we are then interested in
the u entropy per second.

We shall show that, for any d* and any E > 0, coders and reproducers can be found that are
such that H (It) ~ R(d *) + E. As E ~ °the block length involved in the code in general
increases. This result, of course, is closely related to our interpretation of R(d*) as the
equivalent rate of the source for distortion d ". It will follow readily from the following
theorem.

Theorem 2. Given an ergodic source, a distortion measure d tt: and rate distortion function
R(d) (based on the single-letter frequencies of the source), given d" ~ d min and 0 > 0, for any
sufficiently large t there exists a set A containing M words of length t in the Z alphabet with the
following properties:

l) llog M $ R(d*) + 0 ,
t

2) the average distortion between an m word of length t and its nearest (i.e., least distortion)
word in the set A is less than or equal to d * + o.

This theorem implies (except for the () in property (2) which will later be eliminated) the
results mentioned above. Namely, for the coder, one merely uses a device that maps any m
word into its nearest member of A. The reproducer is then merely an identity transformation.
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The entropy per source letter of the coded sequence cannot exceed R(d *) + b, since this would

be maximized at ! log M if all of the M members of A were equally probable and 1- log Mis,
t t

by the theorem, less than or equal to R(d *) + O.

This theorem will be proved by a random coding argument. We shall consider an ensemble
of ways of selecting the members of A and estimate the average distortion for this ensemble.
From the bounds on the average it will follow that at least one code exists in the ensemble with
the desired properties.

The ensemble of codes is defined as follows. For the given d" there will be a set of
transition probabilities q;(j) that result in the minimum R, that is, Rtd"). The set of letter
probabilities, together with these transition probabilities, induce a measure Q (Z) in the space of
reproduced words. The Q measure for a single Z letter, say letter j, is I: P; q; (j). The Q

;

measureforaZwordconsistingoflettersj(,h,··· .i, is Q(Z) = rr [I: PiqiUd).
k= I i

In the ensemble of codes of length t, the integers from I to M are mapped into Z words of
length t in all possible ways. An integer is mapped into a particular word Z 1, say, with
probability Q (Z 1), and the probabilities for different integers are statistically independent.
This is exactly the same process as that of constructing a random code ensemble for a
memoryless channel, except that here the integers are mapped into the Z space by using the
Q (Z) measure. Thus we arrive at a set of codes (if there are f letters in the Z alphabet there will
be f 1M different codes in the ensemble) and each code will have an associated probability. The

M

code in which integer i is mapped into Z i has probability n Q(Z i ).

;=1

We now use Lemma 1 to bound the average distortion for this ensemble of codes (using the
probabilities associated with the codes in calculating the average). Note, first, that in the
ensemble of codes if Q(~) is the Q measure of a set ~ of Z words, then the probability that this
set contains no code words is [1 - Q(~ )]M, that is, the product of the probability that code
word 1 is not in ~, that for code word 2, etc. Hence the probability that f3 contains at least one
code word is 1 - [1 - Q(~)JM. Now, referring to Lemma 1, the average distortion may be
bounded by

Here d max is the largest possible distortion between an M letter and a Z letter. The first term,
ed max' arises from message words m which are not in the set a. These have total probability
less than or equal to E and, when they occur, average distortion Jess than or equal to d max. The
second term overbounds the contribution that is due to cases in which the set ~m for the
message m does not contain at least one code word. The probability in the ensemble of this is
certainly bounded by [I - Q( ~m)] M, and the distortion is necessarily bounded by d max'

Finally, if the message is in a and there is at least one code word in ~m» the distortion is
bounded by d" + E, according to Lemma 1. Now, Q<Pm) ~ e-/(R(d

O

) + E). Also, for
o < x ~ I,

1

(1 - x) x
~ log (I - x)

= e'
I [ x

2

]- -x+-
x 2

::; e
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(using the alternating and monotonically decreasing nature of the terms of the logarithmic
expansion). Hence

and replacing the exponent by

we see that this is

~ exp (- ~ e-t(R(d·) + e) M} .

If we choose for M, the number of points, the value et(R(d·) + 2£) (or, if this is not an integer, the
smallest integer exceeding this quantity), then the expression given above is bounded by
exp {- 1'2 e'"}. Thus the average distortion is bounded with this choice of M by

d ~ £dmax + exp {- Y2 e t£} d max + d* + E

~ d" + 0 ,

provided that e in Lemma I is chosen small enough to make (£dmax + 1) ~ '0/2 and then t is
chosen large enough to make exp {- ~ e"] d max ~ '0/2. We also require that E be small
enough and t large enough to make M , the integer just greater than or equal to e t(R(d·) + 2£) ,

less than or equal to et(R(d·) + 0) . Since Lemma 1 holds for all sufficiently large t and any
positive E, these can all be simultaneously satisfied.

We have shown, then, that the conditions of the theorem are satisfied by the average
distortion of the ensemble of codes. It follows that there exists at least one specific code in the
ensemble whose average distortion is bounded by d" + E. This concludes the proof.

Corollary: Theorem 2 remains true if 0 is replaced by 0 in property (1). It also remains true
if the 0 in property (1) is retained and the 0 in property (2) is replaced by 0, provided in this
case that d * > d min' the smallest d for which R(d) is defined.

This corollary asserts that we can attain (or do better than) one coordinate of the R(d) curve
and approximate, as closely as desired, the other, except possibly for the d min point. To prove
the first statement of the corollary, note first tha!..it is true for d * ~ d I, the value for which
R(d-1 ) = o. Indeed, we may achieve the point d = d I with M = 1 and a code of length 1,
using only the Z word consisting of the single Z letter which gives this point of the curve. For
d min ~ d" < d 1, apply Theorem 2 to approximate d'" = d* + 0/2. Since the curve is strictly

decreasing, this approximation will lead to codes with d s d" + 0 and 1- log M s R(d*), if
t

the 0 in Theorem 2 is made sufficiently small.

The second simplification in the corollary is carried out in a similar fashion, by choosing a
d'" slightly smaller than the desired d' that is such that R(d**) = R(d*) + 0/2, and by using
Theorem 2 to approximate this point of the curve.

Now suppose we have a memoryless channel of capacity C. By the coding theorem for
such channels it is possible to construct codes and decoding systems with rate approximating C
(per use of the channel) and error probability ~ E 1 for any E 1 > O. We may combine such a
code for a channel with a code of the type mentioned above for a source at a given distortion
level d * and obtain the following result.

Theorem 3. Given a source characterized by R(d) and a memoryless channel with capacity
C > 0, given E > 0 and d * > d min' there exists, for sufficiently large t and n, a block code that
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maps source words of length t into channel words of length n and a decoding system that maps
channel output words of length n into reproduced words of length t which satisfy

I) d ~ d" ,

2) nC s R (d *) + e .
t

Thus we may attain a desired distortion level d' (greater than d min ) and at the same time
approximate using the channel at a rate corresponding to R(d*). This is done, as in the
corollary stated above, by approximating the J.?(d) curve slightly to the left of d", say, at
R(d*) - b. Such a code will have M = e

,
(R ( d - 0) + 0,) words, where b1 can be made small

by taking t large. A code for the channel is constructed with M words and of length n, the

largest integer satisfying nC S R(d* - 0) + 0I. By choosing t sufficiently large, this will
t

approach zero error probability, since it corresponds to a rate less than channel capacity. If
these two codes are combined, it produces an over-all code with average distortion at most d":

Numerical Results for Some Simple Channels. In this section some numerical results will be
given for certain simple channels and sources. Consider, first, the binary independent letter
source with equiprobable letters and suppose that the distortion measure is the error probability
(per digit). This falls into the class for which a simple explicit solution can be given. The R (d)
curve, in fact, is

R(d) == 1 + d log2 d + (1 - d) log2 (1 - d) .

This, of course, is the capacity of a symmetric binary channel with probabilities d and (1 - d),
the reason being that this is the probability assignment q i (j) which solves the minimizing
problem.

This R(d) curve is shown in Fig. 5. Also plotted are a number of points corresponding to
specific simple codes, with the assumption of a noiseless binary channel. These will give some
idea of how well the lower bound may be approximated by simple means. One point, d = 0, is
obtained at rate R = 1 simply by sending the binary digits through the channel. Other simple
codes which encode 2, 3, 4 and 5 message letters into one channel letter are the following. For
the ratio 3 or 5, encode message sequences of three or five digits into 0 or I accordingly as the
sequence contains more than half zeros or more than half ones. For the ratios 2 and 4, the same
procedure is followed, while sequences with half zeros and half ones are encoded into O.

At the receiving point, a 0 is decoded into a sequence of zeros of the appropriate length and
a 1 into a sequence of ones. These rather degenerate codes are plotted in Fig. 5 with crosses.
Simple though they are, with block length of the channel sequences only one, they still
approximate to some extent the lower bound.

Plotted on the same curve are square points corresponding to the well-known single-error
correcting codes with block lengths 3, 7, 15 and 31. These codes are used backwards here -
any message in the I5-dimensional cube, for example, is transmitted over the channel as the
eleven message digits of its nearest code point. At the receiving point, the corresponding
fifteen-digit message is reconstructed. This can differ at most in one place from the original

message. Thus for this case the ratio of channel to message letters is ..!!., and the error
15

probability is easily found to be _1_. This series of points gives a closer approximation to the
16

lower bound.
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It is possible to fill in densely between points of these discrete series by a technique of
mixing codes. For example, one may alternate in using two codes. More generally, one may
mix them in proportions Aand 1 - A, where Ais any rational number. Such a mixture gives a

d . h . R f h II . b I A (1 - A) hco e Wit a new ratto 0 message to c anne etters, given y - = - + R ,were
R R} 2

R I and R 2 are the ratios for the given codes, and with new error probability

p _ ARtPe1 + (I - A)R 2 Pe2

e - AR I + (1 - A) R2

This interpolation gives a convex upward curve between any two code points. When applied to
the series of simple codes and single-error correcting codes in Fig. 5, it produces the dotted-line
interpolations indicated.

Another channel was also considered in this connection, namely, the binary symmetric
channel of capacity C = Y2. This has probabilities 0.89 that a digit is received correctly and
0.11 incorrectly. Here the series of points (Fig. 6) for simple codes actually touches the lower
bound at the point R = Yi. This is because the channel itself, without coding, produces just this
error probability. Any symmetric binary channel will have one point that can be attained
exactly by means of straight transmission.

Figure 7 shows the R(d) curve for another simple situation, a binary independent letter
source but with the reproduced Z alphabet consisting of three letters, 0, I, and? The distortion
measure is zero for a correct digit, one for an incorrect digit, and 0.25 for? In the same figure
is shown, for comparison, the R (d) curve without the? option.

Figure 8 shows the R(d) curves for independent letter sources with various numbers of
equiprobable letters in the alphabet (2, 3, 4, 5, 10, 100). Here again the distortion measure is
taken to be error probability (per digit). With b letters in the alphabet the R(d, b) curve is
given by

l-d
Rt d, b) = log2 b + d log , d + (1 - d) log2 -- .

b -1

Generalization to Continuous Cases. We will now sketch briefly a generalization of the
single-letter distortion measure to cases where the input and output alphabets are not restricted
to finite sets but vary over arbitrary spaces.

Assume a message alphabet A = {m} and a reproduced letter alphabet B = {z}. For each
pair (m, z) in these alphabets let d(m, z) be a non-negative number, the distortion if m is
reproduced as z. Further, we assume a probability measure P defined over a Borel field of
subsets of the A space. Finally, we require that, for each z belonging to B, d(m, z) is a
measurable function with finite expectation.

Consider a finite selection of points zi (i = 1, 2, ... ,I) from the B space, and a
measurable assignment of transition probabilities q(z d m). (That is, for each i , q(z i 1m) is a
measurable function in the A space.} For such a choice of Z i and assignment q (z i 1m), a mutual
information and an average distortion are determined:

f q(zilm)
R = L qt z, 1m) log f dP(nl) ,

i q(zilm)dP(nl)

d = L f d (m, Z i) q (z i 1m) dP (m) .
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We define the rate distortion function R(d * ) for such a case as the greatest lower bound of
R when the set of points zi is varied (both in choice and number) and the q(z i'm) is varied over
measurable transition probabilities, subject to keeping the distortion at the level d * or less.

Most of the results we have found for the finite alphabet case carry through easily under this
generalization. In particular, the convexity property of the R(d) curve still holds. In fact, if
R(d) can be approximated to within E by a choice Z i and q(z i 1m,) and R(d' ) by a choice of z;
and q' (z;1m), then one considers the choice z;' consisting of the union of the points zi and z;,
together with q"(z;'lm) = ~[q(z;'tm) + q'(z;'lm)] (using zero if q(z"Im) or q'(z"lm)
is undefined). This leads, by the convexity of R and by the linearity of d, to an assignment for
d" = ~ d + Y; d", giving an R" within E of the midpoint of the line joining d R(d) and
d' R(d'). It follows, since E can be made arbitrarily small, that the greatest lower bound of
R(d") is on or below this midpoint.

In the general case it is, however, not necessarily true that the R(d) curve approaches a
finite end-point when d decreases toward its minimum possible value. The behavior may be as
indicated in Fig. 9 with R(d) going to infinity as d goes to d min' On the other hand, under the
conditions we have stated, there is a finite d max for which R(d max) = O. This value of d is
given by

d m ax = g./.b. E[d(m, z)J .

The negative part of the coding theorem goes through in a manner essentially the same as
the finite alphabet case, it being assumed that the only allowed coding functions from the
source sequences to channel inputs correspond to measurable subsets of the source space. (If
this assumption were not made, the average distortion would not, in general, even be defined.)
The various inequalities may be followed through, changing the appropriate sums in the A
space to integrals and resulting in the corresponding negative theorem.

For the positive coding theorem also, substantially the same argument may be used with an
additional E involved to account for the approximation to the greatest lower bound of R(d) with
a finite selection of Z i points. Thus one chooses a set of zi to approximate the R (d) curve to
within E, and then proceeds with the random coding method. The only point to be noted is that
the d max term must now be handled in a slightly different fashion. To each code in the
ensemble one may add a particular point, say zo, and replace d max by E(d(m, zo), a finite
quantity. The results of the theorem then follow.

Difference Distortion Measure. A special class of distortion measures for certain continuous
cases of some importance and for which more explicit results can be obtained will now be
considered. For these the m and z spaces are both the sets of all real numbers. The distortion
measure d(m, z) will be called a difference distortion measure if it is a function only of the
difference m - z, thus d(m, z) = d(m - z). A common example is the squared error measure,
dt m, z) = (m - z)2 or, again, the absolute error criterion dtm, z) = 'm - z ~

We will develop a lower bound on R(d) for a difference distortion measure. First we define
a function <Il(d) for a given difference measure d(u) as follows. Consider an arbitrary
distribution function G(u) and let H be its entropy and d the average distortion between a
random variable with a given distribution and zero. Thus

H = - t: log dG(u) dG(u) ,

d = t: d(u) dG(u) .
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We wish to vary the distribution G(u), keeping d ~ d", and seek the maximum H. The least
upper bound, if finite, is clearly actually attained as a maximum for some distribution. This
maximum H for a given d" we call <J>(d*), and a corresponding distribution function is called a
maximizing distribution for this d*.

Now suppose we have a distribution function for the m space (generalized letter
probabilities) P(m), with entropy H(m). We wish to show that

R(d) ~ H(m) - <t>(d) .

Let Z i be a set of z points and q(z i J m) an assignment of transition probabilities. Then the
mutual information between m and z may be written

R = H(m) - ~ Q; H(mlz;) ,

where Q; is the resulting probability of z i- If we let d j be the average distortion between m and
Z i» then

This is because <t>(d) was the maximum H for a given average distortion and also because the
distortion is a function only of the difference between m and z, so that this maximizing value
applies for any Zi. Thus

R ~ H(m) - ~ Qi q>(d i )
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Now <t>(d) is a concave function. This is a consequence of the concavity of entropy
considered as a function of a distribution function and the linearity of d in the same space of
distribution functions, by an argument identical with that used previously. Hence
L Qi $( d i) ~ <t>(L Qi d i) = <p (d), where d is the average distortion with the choice Z i and
i i

the assigned transition probabilities. It follows that

,. ~ H(m) - <t>(d) .

This is true for any assignment Z i and q( Z i 1m), and proves the desired result.

If, for a particular P(m) and d(u), assignments can be made which approach this lower
bound, then, of course, this is the R(d) function. Such is the case, for example, if P(m) is
Gaussian and d( u) = U 2 (mean square error measure of distortion). Suppose that the message
has variance 0 2 , and consider a Gaussian distribution of mean zero and variance 0 2 - d in the
z space. (If this is zero or negative, clearly R(d) = 0 by using only the z point zero.) Let the
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conditional probabilities q(mlz) be Gaussian with variance d. This is consistent with the
Gaussian character of P(m), since normal distributions convolve to give normal distributions
with the sum of the individual variances. These assignments determine the conditional
probability measure q(zlm), also then normal.

A simple calculation shows that this assignment attains the lower bound given above. The
resulting R(d) curve is

R(d) =

This is shown for 0 2 = 1 in Fig. 9.

o
log-
~

o

Definition of a Local Distortion Measure. Thus far we have considered only a distortion
measure do (or d(m, z) which depends upon comparison of a message letter with the
corresponding reproduced letter, this letter-to-Ietter distortion to be averaged over the length of
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message and over the set of possible messages and possible reproduced messages. In many
practical cases, however, this type of measure is not sufficiently general. The seriousness of a
particular type of error often depends on the context.

Thus in transmitting a stock market quotation, say: "A.T.&T. 5900 shares, closing 194,"
an error in the 9 of 5900 shares would normally be much less serious than an error in the 9 of
the closing price.

We shall now consider a distortion measure that depends upon local context and, in fact,
compares blocks of g message letters with the corresponding blocks of g letters of the
reproduced message.

A local distortion measure of span g is a function d(m 1, m2' ... , mg; Z 1,22, .•• , Zg) of
message sequences of length g and reproduced message sequences of length g (from a possibly
different or larger alphabet) with the property that d ~ O. The distortion between
m = m I , m2 , ... , mt and 2 = 2 I , Z2, .•• , 2 t (t ~ g) is defined by

1 t-g+J

d(m,Z) = -- ~ d(mk,mk+l, ... ,mk+g-l; Zk,Zk+l"",Zk+g-l)'
t - g k= I

The distortion of a block code in which message m and reproduced version Z occur with
probability P(m, Z) is defined by

d = ~ P(m,Z) d(m,Z) .
m,l

In other words, we assume, with a local distortion measure, that the evaluation of an entire
system is obtained by averaging the distortions for all block comparisons of length g each with
its probability of occurrence a weighting factor.

The Functions R n (d) and R(d) for a Local Distortion Measure and Ergodic Source.
Assume that we have given an ergodic message source and a local distortion measure,
Consider blocks of m message letters with their associated probabilities (as determined by the
source) together with possible blocks Z of reproduced message of length n. Let an arbitrary
assignment of transition probabilities from the m blocks to the Z blocks, q(Zf m), be made. For
this assignment we can calculate two quantities: 1) the average mutual information per letter

R = 1.- E [lOg q(Zlm)] and 2) the average distortion if the m's were reproduced as Z's with
n Q(z)

the probabilities q(Zlm). This is d = 1: P(m, Z) d(m, Z). By variation of q(Zlm), while
m,Z

holding d ~ d"; we can, in principle, find the minimum R for each d", This we call R n (d*).

The minimizing problem here is identical with that discussed previously if we think of m

and Z as individual letters in a (large) alphabet, and various results relating to this minimum can
be applied. In particular, R n (d) is a convex downward function.

We now define the rate distortion function for the given source relative to the distortion
measure as

R(d) = lim inf Rn(d) .
n~oo

It can be shown, by a direct but tedious argument that we shall omit, that the' 'inf" may be
deleted from this definition. In other words, R n (d) approaches a limit as n ~ 00.
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We are now in a position to prove coding theorems for a general ergodic source with a local
distortion measure.

The Positive Coding Theorem for a Local Distortion Measure.

Theorem 4. Suppose that we are given an ergodic source and a local distortion measure
with rate distortion function R(d). Let K be a memoryless discrete channel with capacity C, let
d" be a value of distortion, and let E be a positive number. Then there exists a block code with

distortion less than or equal to d * + e, and a signaling rate at least [~ - e1message letters

per channel letter.

Proof. Choose an nl so that R; (d*) - R(d*) < ~ and, also, so large that
I 3

~ d max < ~. Now consider blocks of length n I and "letters" of an enlarged alphabet.
nl 3
Using Theorem 3 we can construct a block code using sufficiently long sequences of these
"letters" signaling at a rate close to (say within £/3 of) R n , (d* )/e (in terms of original

message letters) and with distortion less than d* + ~. It must be remembered that this

distortion is based on a single "letter" comparison. However, the distortion by the given local
distortion measure will differ from this only because of overlap comparisons (g for each n I

letters of message) and hence the discrepancy is, at most, ~ d max < ~. It follows that this
nl 3

code signals at a rate within e of R(d*) and at a distortion within E of d",

The Converse Coding Theorem.

Theorem 5. Suppose that we are given an ergodic source and a local distortion measure
with rate distortion function R(d). Let K be a memoryless discrete channel with capacity C, let
d" be a value of distortion, and let E be a positive number. Then there exists to which is such
that any code transmitting t ~ to message letters with n uses of the channel at distortion d *, or
less, satisfies

.!!.. c ~ R(d*) - E .
t

That is, the channel capacity bits used per message letter must be nearly R(d*) for long
transmissions.

Proof. Choose to so that for t ~ to we have R t (d) ~ R(d) - E. Since R(d) was defined
as lim inf R1(d), this is possible. Suppose that we have a code for such a f ~ to which maps

t ~ 00

sequences m consisting of t message letters into sequences X of n channel letters and decodes
sequences Y of n channel output letters into sequences Z of reproduced messages. The channel
will have, from its transition probabilities, some P( YIX). Furthermore, from the encoding and
decoding functions, we shall have X = f(m) and Z = g(Y). Finally there will be, from the
source, probabilities for the message sequences P(m). By the encoding function j'(m) this will
induce a set of probabilities P(X) for input sequences. If the channel capacity is C, the average
mutual information R(X, Y) between input and output sequences must satisfy

R(X, Y) = E log P(XI Y) s nC ,
P(X)

since nC is the maximum possible value of this quantity when P(X) is varied. Also, since X is
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a function of rn and Z is a function of Y, we have

R(m Z) = E 10 P(mIZ) R X Y) C, g P(m) $ (, $ n .

349

The coding system in question amounts, overall, to a set of conditional probabilities from m

sequences to Z sequences as determined by the two coding functions and the transition
probabilities. If the distortion of the overall system is less than or equal to d *, then
t R t (d*) = min Rtm, Z) is certainly less than or equal to the particular R(m, Z) obtained

P(Z/m)

with the probabilities given by the channel and coding system. (The t factor is present because
R t (d) is measured on a per message letter basis, while the R(m, Z) quantities are for sequences
of length t.) Thus

tRt(d*) ~ R(m, Z) ~ nC ,

t (R (d *) - E) $ nC ,

!!.- c ~ R(d*) - E .
t

This is the conclusion of the theorem.

Notice from the method of proof that again the code used need not be a block code,
provided only that, after n uses of the channel, t recovered letters are written down. If one has
some kind of variable-length code and, starting at time zero, uses this code continually, the
inequality of the theorem will hold for any finite time after to message letters have been
recovered; and of course as longer and longer blocks are compared, E ~ O. It is even possible
to generalize this to variable-length codes in which, after n uses of the channel, the number of
recovered message letters is a random variable depending, perhaps, on the particular message
and the particular chance operation of the channel. If, as is usually the case in such codes, there
exists an average signaling rate with the properties that after n uses of the channel then, with
probability nearly one, t letters will be written down, with t lying between t I (1 - 0) and
t I (1 + B) (the b ~ 0 as n ~ (0), then essentially the same theorem applies, using the mean t]

for t.

Channels with Memory. Finally we mention that while we have, in the above discussion,
assumed the channel to be mernoryless, very similar results, both of positive and negative type,
can be obtained for channels with memory.

For a channel with memory one may define a capacity C n for the first 11 use of the channel

starting at state So. This en is l.- times the maximum average mutual information between
11

input sequences of length 11 and resulting output sequences when the probabilities assigned the
input sequences of length 11 are varied. The lower bound on distortion after n uses of the
channel is that given by Theorem 1 using C n for C.

We can also define the capacity e for such a channel as e = lim sup en' The positive
n~oo

parts of the theorem then state that one can find arbitrarily long block codes satisfying
Theorem 3. In most channels of interest, of course, historical influences die out in such a way
as to make C n ~ C as 11 ~ 00. For memoryless channels, en = C for all 11.

Duality of a Source and a Channel. There is a curious and provocative duality between the
properties of a source with a distortion measure and those of a channel. This duality is
enhanced if we consider channels in which there is a "cost" associated with the different input
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letters, and it is desired to find the capacity subject to the constraint that the expected cost not
exceed a certain quantity. Thus input letter i might have cost a i and we wish to find the
capacity with the side condition ~ Pia ; ~ a, say, where Pi is the probability of using input

i

letter i. This problem amounts, mathematically, to maximizing a mutual information under
variation of the Pi with a linear inequality as constraint. The solution of this problem leads to a
capacity cost function C(a) for the channel. It can be shown readily that this function is
concave downward. Solving this problem corresponds, in a sense, to finding a source that is
just right for the channel and the desired cost.

In a somewhat dual way, evaluating the rate distortion function R(d) for a source amounts,
mathematically, to minimizing a mutual information under variation of the q i (j), again with a
linear inequality as constraint. The solution leads to a function R(d) which is convex
downward. Solving this problem corresponds to finding a channel that is just right for the
source and allowed distortion level. This duality can be pursued further and is related to a
duality between past and future and the notions of control and knowledge. Thus we may have
knowledge of the past but cannot control it; we may control the future but have no knowledge
of it.
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1. Introduction

A two-way communication channel is shown schematically in figure 1. Here XI

is an input letter to the channel at terminal 1 and Yl an output while X2 is an

XI : I : Y2
CHANNEL

y. x2

TERMINAL TERMINAL 2
l~lGURE 1

input at terminal 2 and Y2 the corresponding output. Once each second, say,
now inputs Xl and X2 may be chosen from corresponding input alphabets and
put into the channel; outputs Yl and Y2 may then be observed. These outputs
will be related statistically to the inputs and perhaps historically to previous
inputs and outputs if the channel has memory. The problem is to communicate
in both directions through the channel as effectively as possible. Particularly, we
wish to determine what pairs of signalling rates R, and R2 Ior the two directions
can be approached with arbitrarily small error probabilities.

x. ~

I
K1 ) ~ Y2

Y1
.. I K 2 I .. )(2

l'~IGUUE 2

Before looking these notions precise, we give some simple examples. In figure 2
the two-way channel decomposes into two independent one-way noiseless binary
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chanucls K, and ](2. Thus Xl, J.~2, Y. and Y2 are all binary variables and the opera-
tion of the channel is defined by Y2 = Xl and y. = X2. We can here transmit in
each direction at, rates up to one bit, per second. Thus we can find codes whose

rates (ll., 1l2) approximate as closely as desired nuy point in tho square, figure 3,
with arbitrarily small (in this case, zero) error probability.

In figure 4 all inputs and outputs arc again binary and the operation is defined

MOD.2 ADDER

hy u, = 112 = Xl + X2 (mod 2). Hero again it is possible to transmit one bit per
second in each direction simultaneously, but the method is a bit more sophis-
ticated. Arbitrary binary digits may be fed in at .'f;, and X2· but, to decode, the
observed y 1l1USt be corrected to compensate for the influence of the transmitted
x. Thus an observed Yl should be added to the just transmitted Xl (mod 2) to
determine the transmitted X2. Of course here, too, one may obtain lower rates
than the (1, 1) pair and again approximate any point in the square, figure 3.

A third example has inputs Xl and X2 each from a ler1l,ary alphabet and outputs
YJ anti Y2 each Irom a binary alphabet. Suppose that the probabilities of different
output pairs (Ut, 1/2), conditional on various input pairs (.1;1, X2), are given by
table I. It may be seen that by using only Xl = 0 at terminal 1 it is possible to
send one bit per second in the 2 - 1 direction using only the input letters 1
and 2 at terminal 2, which then result with certainty in a and b respectively at
terminal 1. Similarly, if X2 is held at 0, transmission in the 1 - 2 direction is
possible at one bit per second. By dividing the time for use of these two strategies
in the ratio X to 1 - X it is possible to transmit in the two directions with
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TADLE I
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Output Pair
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Input
Pair

00
01
02
10
11
12
20
21
22

all

]/4
1/2
o

1./2
1/4
1/4
o

III
1/4

ai,

1/4
J /2
o
o

1/4
1/4
1/2
J /4
1/4

1/4
o

1/2
1/2
J /4
]/'J
o

]/4
1/4

1,1,

1/4
o

1/2
o

1/4
lit!
J/2
1/4
J/il

average rates R 1 = 1 - ~, 112 = ~. Thus we can find codes approaching any
point in the triangular region, Iiguro 5. It is not difficult to sec, and will follow

Frounu 5

f rom later results, that 110 point outside this triangle can be approached with
codes of arbitrarily low error probability.

In this channel, communication in the two dircotions Blight bc called in-
compatihle. Forward communicntion is possible only if X2 is held at zero. Other-
wise, all Xl letters arc completely noisy. Conversely, backward communication
is possible only if ~~l is held at, zero, The situntion is a kind of discrete analogue
to a common physical twe-way system; n pair of radio telephone stations with
"push-to-talk" buttons so arranged that when the button is pushed the local
receiver is turned ofT.

A fourth simple example of a two-way channel, suggested by Blackwell, is the
binary multiplying channel. Here all inputs and outputs are binary and the
operation is defined Yl = Y2 = Xt;l;2. The region of approachable rate pairs for this
channel is not known exactly, hut, we shall later find bounds on it.

In this paper we will study the coding properties of two-way channels. In
particular, inner and outer bounds on the region of approachable rate pairs
(R., R2) will be found, together with bounds relating to the rate at which zero
error probability can be approached. Certain topological properties of these
bounds "rill be discussed and, finally, wo will develop an expression describing
the region of approachable rates in terms of a limiting process.
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(I)

2. Summary of results

We will summarize hero, briefly anti somewhat roughly, the main results of
the paper. It will be shown that for a memoryless discrete channel there exists
a convex region G of approachable rates. For any point in G, say (R I , R2) , there
exist codes signalling with rates arbitrarily close to the point and with arbitrarily
small error probability. This region is of the form shown typically in figure 6,

FIGURE G

bounded by the middle curve G and the t\VO axis segments. This curve can be
described by a limiting expression involving mutual informations for long se-
quences of inputs and outputs.

In addition, we find an inner and outer bound, Gr and Go, which are more
easily evaluated, involving, as they do, only a muximizing process over single
letters in the channel. Go is the set of points (R 12, R2l ) that may be obtained by
assigning probabilities P{Xl, X2} to the input letters of the channel (an arbitrary
joint distribution) and then evaluating

R - E (1 P{xllx2, Y2}) - '" ]> ( • '1 P{xl(X2,1I21
12 - I og {I} - c: l·ttX2Y2i og f I 1.P Xl X2 ZJX21/2 P lXJ .'f,2J

u - }(1 (1 P{x2lxlt YI})
"21 - :.J og P f . I . } ,

lX2 ;l·t

where E(p,) means expectation of p. The inner bound Gr is found in 3 similar way
but restricting the distribution to an independent one P{Xl' X2} = P{Xl}P{X2}'
Then Gr is the convex hull of (R12, R21) points found under this restriction.

It is shown that in certain important cases these bounds are identical so the
capacity region is then completely determined from the bounds. An example is
also given (the binary multiplying channel) where there is a discrepancy between
the bounds.

The three regions GI , G and Go are all convex and have the same intercepts
on the axes. These intercepts are the capacities in the two directions when the
other input letter is fixed at its best value [for example, Xl is held at the value
which maximizes R21 under variation of P{X2}]. For any point inside G the error
probabilities approach zero exponentially with the block length n. For any point
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(2)

outside G at least one of the error probabilities for the two codes will be bounded
away from zero by a bound independent of the block length.

Finally, these results may be partially generalized to channels with certain
types of memory. If there exists an internal state of the channel such that it is
possible to return to this state in a bounded number of steps (regardless of
previous transmission) then there will exist again a capacity region G with similar
properties, A limiting expression is given determining this region.

3. Basic definitions

A discrete memorulcse two-way channel consists of a set of trunsitiou probabil-
ities P{YI, Y21xt, X2} whore XI, X2, YI, Y2 nil range over finite alphabets (not neces-
sarily the same).

A block code pair of length 1t for such a channel with I'l l messages in the fOI"-
ward direction and AI2 in the reverse direction consists of two sets of n functions

fo(n11), 11 (n1.1, Yu),!2(1nl, Yn, YI2), · · · ,/ra-I(/"'1, Yll, · · . , Vr, "-.)

00(1112), (Jl(11l2, Y21), (/2(111.2, Y2J, Y22), ••• ,On-l(nl2, Y21, _.. , Y2.'I-I).

Hero the f functions all take values in the Xl alphabet and the (J functions in
the X2 alphabet, while 11'11 takes values from 1 to ItII (the Iorward messages) and
1n2 takes values from 1 to M 2 (the backward messages). Finally YH, for i =
],2, ... , n - 1, takes values from the YI alphabet and similarly for Y2i- The f
functions specify how the next input letter at terminal 1 should be chosen as
determined by the message ?Ill to be transmitted and the observed outputs
Yn, Y12, • _. at terminal 1 up to the current time. Similarly the g functions
determine how message 1112 is encoded as a function of the information available
at each time in the process.

A decoding systcl1t for a block code pair of length n consists of a pail- of func-
tions 4>(1nt, Yu, Y12, • - • , Yin) and 1/!(tn2, Y21, 1/22, - •• ,Y2n). These functions take
values from 1 to Af2 and 1 to Afl respectively.

The decoding function cp represents a way of deciding on the original trans-
mitted message Irom terminal 2 given the information available at terminal 1 at
the end of a block of 11,received letters, namely, Yn, Yl2, .. to • , Yin together with the
transmitted message 1111 at terminal 1. Notice that the transmitted sequence
Xu, X12, •• - , Xl n although known at terminal 1 need not enter as an argument
in the decoding function since it is determined (via the encoding functions) by
In! and the received sequence.

We will assume, except when the contrary is stated, that all messages 111,1 arc
equiprobablc (probability 1/!lfl ) , that all messages 1n2 are equiprobable (prob-
ability 1/M2) , and that these events are statistically independent. We also as-
sume that the successive operations of the channel are independent,

(~) p {Yn, Y12, • • • , YIn, Y2l, Y22, • - - , y2nlxll , X12, • - - , Xln, X21, X22, · • - , X2n}
n

= II P{Yli, Y2i};Cli, X2i}.
i-I
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This is the meaning of the memoryless condition. This implies that the probabil-
ity of a set of outputs from the channel, conditional on the corresponding in-
puts, is the same as this probability conditional on these inputs and any previous
inputs.

The signalling roie« III antlll2 for u block e()d(~ pail' with 11f. and ltf2 messages
for the two directions are defined by

1
III = - log AI,

n
(4 )

(5)

Given a code pair and a decoding system, together with the conditional prob-
abilities defining a channel and our assumptions concerning message probability,
it is possible, in principle, to compute error probabilities for a code. Thus one
could compute for each message pair tho probabilities of the various possible
received sequences, if these messages 'VCI·C transmitted by the given coding
functions. Applying the decoding functions, the probability of an incorrect de-
coding could be computed. This could be averngcd over all messages for each
direction to arrive at final error probabilities Pe1 and Pe2 for the t\VO directions.

We will say that a point (R., R2) belongs to the capacity reqioti G of a given
memoryless channel K if, given any E > 0, there exists a block code and decoding
system for the channel with signalling rates Rt and R~ satisfying IRI - RTI < E

and IR2 - R~I < E and such that the error probabilities satisfy Pd < E and
Pe2 < E.

4. Average mutual information rates

The two-way discrete memoryloss channel with finite alphabets has been
defined by a set of transition probabilities P{Yi, Y21x., X2}. Here Xl and X2 are the
input letters at terminals 1 and 2 and VI and Y2 are the output letters. Each of
these ranges over its corresponding finite alphabet.

If a set of probabilities P{Xt} is assigned (arbitrarily) to the different letters
of the input alphabet for Xl and another set of probabilities P {:C2} to the alphabet
for X2 (these two taken statistically independent) then there will be definite cor-
responding probabilities for Yl and 1/2 and, ill fact, for the set of four random
variables X., X2, Yt, Y2, namely,

P { ) - P t; ) P (Ol· ) P 11,1 Y Ix x 1.xl, X2, y., 112)" - t·"I)"·"t' '2/ l;J 1, 2 J,' 2)

l~ {Yt} = E /){,r., X2, Yt, Y2},
.l1,Z2,1I2

and so forth.
Thinking first intuitively, and in analogue to the one-way channel, we might

think of the rate of transmission from x. to the terminal 2 as given by [/(XI) -
II(Xtlx2, Y2), that is, thc uncertainty or entropy of Xl less its entropy conditional
on what is available at terminal 2, namely, Y2 and X2 .. Thus, \"C might write
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«)

(7)

These are the average mutual informations wit.h t.he ussigued input probabilities
between the input at one terminal and the input-output, pair at the other tor-
minal, We might expect, then, that by suitable coding it should be possible to
send in the two directions simultaneously with arbitrarily small error probabilities
and at rates arbitrarily close to R12 and R21• The codes would be based on these
probabilities I'{Xl} and f'{X2} in generalization of the one-way channel. We will
show that in fact it is possible to find codes based on the probabilities P{XI} and
P {X2} which do this.

However the capacity region 111ay be larger than the set of rates available by
this means. Roughly speaking, the difference comes about because of the prob-
ability of having Xl and X2 dependent random variables. In this case the appropri-
ate mutual informations are given by II(x21xI) - I/(x2(xl, YI) and lI(xltx2) -
If(XtlX2, Y2). The above expressions fOI· R21 and 1112 of course reduce to these
when Xl and X2 nrc independent.

5. The distribution of information

The method we follow is based 011 random codes using techniques similar to
those used in [1] for the one-way channel. Consider a sequence of 11, uses of the
channel Of, mathematically, the product probability space. The inputs are
Xl = (xu, a~12, .•. ,Xln ) and X2 = (.-r:ll, X22, •• • ,X2n) and the outputs YI =
(Un, Y12, •.. , Yin) and Y2 = (Y21, 1/22, .• • ,Y2n), that is, sequences of 11, choices
from the corresponding alphabets.

The conditional probabilities for these blocks are given by

(8)

This uses the assumption that the channel is memoryless, or successive operations
independent. We also associate a probability measure with input blocks X,
and X2 given by the product measure of that taken for Xl, X2' Thus
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(9)
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It then follows that other probabilities arc also the products of those for the
individual letters. Thus, for example,

P{Xl, X 2, ])"1, ]"2} = II 1'{Xlk, X2k, Ylk, Y2k}
k

(10)

The (unnveraged) mutual information between, say, X, and the pair X 2, lJ'2

may be written as a sum, as follows:

(11)

( 12)

Thus, the mutual information is, as usual in such independent situations, the
sum of the individual mutual informations. Also, as usual, we may think of the
mutual information as a random variable. Here [(Xl; X 2 , 1"2) takes on different
values with probabilities given by P{X1, X 2, 1"2}. The distribution function for
[(Xl; X 2, })"2) will be denoted by PI2(Z) and similarly for I(X2 ; Xl, 1'1)

P12(Z) = P{I(XI ; X 2, J'"2) ~ Z}

P:u(Z) = ]>{I(X2 ; X., }r.) ~ Z}.

Since each of the random variables [(Xl; X 2, 1"2) and I(X2 ; Xl, }J'l) is thc sum
of n independent random variables, each with the same distribution, we have
the familiar statistical situation to which one may apply various central limit
theorems and laws of large numbers, The mean of the distributions P12 and P21

will be nR12 and nR21 respectively and the variances n times the corresponding
variances for one letter. As n ~ 00, P12[11,(R12 - E)] --. 0 Cor any fixed E> 0, and
similarly for P21. In fact, this approach is exponential in n; P12[n(RI2 - E)] ~
cxp [-A(E)n].

6. Random codes for the two-way channel

After these preliminaries we now wish to prove the existence of codes with
certain error probabilities bounded by expressions involving the distribution
functions P12 and P21.

We will construct an ensemble of codes Of, 1110re precisely, of code pairs, one
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code for the 1 - 2 direction and another for the 2 - 1 direction. Bounds will
he established on the error probabilities P d and Pt'2 averaged over the cn~clnl)lc,

and from these will be shown the existence of particular codes in the ensemble
with related bounds on their error probabilities.

The random ensemble of code pairs for such a two-way channel with !tIl words
in the 1 - 2 code and Al2 words in the 2 - 1 code is constructed as follows,
The lV!l integers 1,2, · · · , ili l (the messages of the first code) are mapped in
nil possible ways into the set of input worda Xl of length 11. Similarly the integers
1,2, .. · , llf2 (the messages of thc second code) arc mapped in all possible ways
into the set of input words X2 of length n.

If there wore at possible input lcuers at terminal 1 and a2 input lelicrs at ter-
minal 2, there will be a1 and a; input words of length nand a1A/ 1 1nappings in
the first code and a;·u2 ill the second code. We consider all pairs of these codes, a
total of a1A11

a ; Af l pairs.
Each code pair is given a weighting, or probability, equal to the probability

of occurrence of that pair if the two mappings wore done indepcndently and an
integer is mapped into a word with the assigned probability of that word, 'rhus,
n code pair is given a weighting equal to the product of the probabilities as-
sociated with all the input words that the integers arc mapped into {or both
codes. This set of code pairs with these associated probabilities we call the
random ensemble of code pairs based on the assigned probabilities P{XI } and
P{X2} .

Any particular code pair of the ensemble could be used to transmit informa-
tion, if we agreed upon a method of decoding. The method of decoding will here
consist of two functions cP(XI , lTI ) and 1/!(X2, Y2), a special case of that defined
above. Here X, varies over the input words of length 11, at terminal 1, and 1"1
over the possible received blocks of length 11,. The function cP takes values from
1 to M 2 and represents the decoded message for a received IT. if X, was trans-
mitted. (Of course, X, is used in the decoding procedure in general since it may
influence Y I and is, therefore, pertinent information for best decoding.)

Similarly, l/!(X2, 1"2) takes values from 1 to 1\11 and is a way of deciding on
t.hc transmitted message 1nt OIl the basis of information available at terminal 2.
It should be noted here that the decoding functions, q, and ,p, need not be the
same for all code pairs in the ensemble.

We also point out that the encoding functions for our random ensemble are
11101'e specialized than the general case described above. Tho sequence of input
letters Xl for a given message lnt do not depend on the received letters at ter-
minal 1. In any particular code of the ensemble thoro is a strict mapping from
messages to input sequences.

Given an ensemble of code pairs as described above and decoding functions,
one could compute for each particular code pair two error probabilities for the
t,\VO codes: P~I, tho probability of error in decoding the first code, and Pe2 that
for the second. Here "Fe are assuming that the different messages in the first
code occur with equal probability 1/lef., anti similarly for the second.
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(13)

(14)

13y the average error probabilities for the ensemble of code pairs we mean the
averages E(Pe1) and E(Pe2) where each probability of error for a particular code
is weighted according to the weighting factor or probability associated with the
code pair. We wish to describe a particular method of decoding, that is, a choice
of ep and 1/1, and then place upper hounds on these average error probabilities
for the ensemble.

7. Error probability for the ensemble of codes

'l'IIEORNM 1. Suppose probability assiqiuneiu» P{~\l} and P{X2} in a discrete
memorples« t1lJo-way channel produce information distribution functions p12(Z) and
P2.(Z). Let M 1 = exp (R11~) and M2 = cxp (R2n) bearbitrary integers and 01 and O2

be arbitrary positive numbers. Then. the random ensemble of code pairs with M 1

and Af2 messaqes has (with appropriate decodi1l,Y functions) aoeraqe error probabil-
ities bounded as follows:

E(Pet) ~ P12[n(R1 + 01) J+ c-nOr

1~(Pe2) ~ P21[1l,(ll2 + O2) ] + e -uo,.

There will exist in the c11,sel1tlJle at least one code poir whose indi vidual error prob-
abilities are bounded by t\VO times these expressions, that is, .~alisfying

Pel ~ 2pJ2[n(R1 + 01) ] + 2e-nOa

Pe2 ~ 2p21[11,(ll2 + O2) ] + 2e-nth•

This theOl'CJ11 is a generalization of theorem 1 in [1] which gives a similar
bound on P. for a one-way channel. Tho proof for the two-way channel is a
generalization of that proof.

Tho statistical situation here is quite complex. There are sever-al statistical
events involved: the choice of messages 111,1 and 1112, the choice of code pair in
the ensemble of code pairs, and filially the statistics of the channel itself which
produces the output words 1"". and 1"2 according to P {l"., l"2(X1, X 2} _ '!'he en-
semble error probabilities we nrc calculating nrc averages over oll those statistical
events.

We first define decoding systems for the various codes in the ensemble. For a
given 82, define for each pair Xl, 1'\ a corresponding set of words in the X 2 space
denoted by S(X), JT)) as follows:

( 1.1;) S( ,,.. 1"")'-: {',.. II r ]> {Xl, X 2, 1~2} . ([> + 0 )1.
u "'lI 1 - .t\.2 og J>{X

2}P{X.,
]T

J
} > It "2 2 J"

That is, S(X1, l""J) is the set of X 2 words whose mutual information with the
particular pair (Xt , Yl) exceeds a certain level, n(R2 + 82) . In a similar way, we
define n set S'(X2, 1"2) of X, words for each X 2, }"2 pair as follows:

f' r r { P{X1,.tY2, l'9"I} }
(16) S (X 2, J 2) = XII log P{X

1}P{X2
, Y2} > n(R. + 0.) ·
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(li)

'·Ye will lise these sets ,5 and ,5' l.o defino t.he decoding procedure and (,0 aid
in ovcrbounding the error probabilities. The decoding process will be as Iollows.
In any particular code pair in the rundom cnsomblo, suppose message 1nl is
sent and this is mapped into input word X i- Suppose that 1"1 is received at ter-
minal 1 in the corresponding block of 11, letters. Consider the subset of X 2 words,
S(Xt , Y1) . Several situations may occur. (1) There is 110 message 111-2 mapped into
the subset S(X., Y1) for the code pair in question. In this case, Xl, Y I is decoded
(conventionally) as message number one. (2) Thoro is exactly one message
mapped into the subset. In this case, we decode as this particular message,
(3) There arc more than one such messages. In this case, wo decode as tho
smallest numbered such mossngo.

The error probabilities that "·C arc ostimating would normally be thought of
as calculated in the following manner. For each code pair one would calculate
the error probabilities for all messages .,,1. and '''2, and from their avcruges get,
the error probabilities for that code pail" Then these error probabilities arc
averaged over the ensemble of code pairs, using the appropriate weights or
probabilities. We may, however, interchange this order of averaging. 'Ve may
consider the cases where a particular m, and rn2 arc the mcssngcs and these nrc
mapped into particular X, and X 2, and the received words are PI and Y2.
Thoro is still, in the statistical picture, the range of possible code pairs, thnt
is, mappings of the other ]tIl - 1 messages for one code and 11/2 - 1 for the
other, We wish to show that, averaged over this subset of codes, the probabil-
ities of any of these messages being mapped into subsets S'(X2, Y2) and l3(XI , VI)
respectively do not exceed exp (-nOt) and ext> (-11,02) .

Note first that if Xl belongs to the set l,'(X2, Y2) then by the dofinitiou of
this set

I 1~{"'\1, X2 , Y2L iu )
og I'{X

I
}I'{X

2
/ Y

2
} > n 1,1 + 01

P ( ,~ I,,,. -)T} > 1J ( ,~ l. e'l(ll, +0,)
\ ...\ 1 .A'\.2, 2 \. "'\.1) •

Now sum each side over the sot of Xl belonging to 8'("'\2, Y2) to obtain

(18) 1 ~ }: }'{X IIK2, V2} > CJl{Il,+OI) ~ I~{Xl}.
X,ES'{X"rs) Xl ES'(X" 1',)

'!'he left inequality here holds since a sum of disjoint probabilities cannot exceed
one. The SUll1 on the right "·C 11130y denote hy ['{.S'(X2, Y2)}. Combining the
first and last members of this relation

(1Q) I~{.S'(.t\2, Y2)} < c -n{U,+O,).

That is, the total probability associated with any set S'(X2, V2) is bounded by
an expression involving 1t, III and 01 but independen: of the pnrbicular X2 , Y2.

Now recall that the messages were mapped indcpcndontly into the input
words using the probabilities [J {Xl} anti P {X 2} . Tho probability of a particular
message being mapped into S'(X2 , Y2) in the ensemble of code pairs is just
jJ{S'(X2, Y2)}. Tho probability of being in the oomplomcntury set is 1 -
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]J{S'(X2J Y2)}. The probability thai, all nlcs~ag{~H ol.hcr than »il will be mapped
into this complementary set is

(20) [1 - P{S'(X2, Y2)} ])\1 1-1 ~ 1 - (111 1 - 1)J'{S'(X2, V2)}

~ 1 - llf}P{S'(X2, V2) }

~ 1 - AIle-rt(Ul+O,)

= 1 - c-nO
'.

Hero "·C used the inequality (1 - x)p ~ 1 - px, the relation (1U) and finally
thc fact that Jlfl = exp (nR t ) .

'Vc have established, then, that in tho subset of cases being considered (m1

and m2 mapped into Xl and X2 and received as Y. and 1'2), with probability
at least 1 - exp (-nOt), there will be no other messnges mapped into S'(X2, Y2)'
A similar calculation shows that with probability exceeding I - oxp ( -1~02)
thoro will be no other JllCSSltgCH mapped into "~(4'\h YI). These hounds, as nol.cd,
are independent of the particular Xl, Y1and ~\2, V2•

We now bound the probability of the actual message ffl. being within the
subset S'(X2, Y2). Recall that from the definition of PJ2(Z)

(21) [ (R + 0 )] - P {I P{XI , X 2, Y2} < (R + O)}
PI2 nIt - og P{Xl}P{~Y2, 1"2} = 1~ 1 l'

In thc ensemble of code pairs a message m., say, is mapped into words X, with
probabilities just equal to P {XI}. Consequently, the probability in the full e11-
semble of code pairs, message choices and channel statistics, that the actual
message is mapped into S'(X2, 1'2) is precisely 1 - P12[n(Rl + 01)],

Tho probability that the actual message is mapped outside S'(X2, P2) is there-
fore given by P12[n(Rl + 8.)1and the probability that there arc any other mes-
sages mapped into S'(X2, 1'2) is bounded as ShO\"1l before by exp (-n01)' The
probability that either of these events is true is then certainly bounded by
P12[n(Rt + 81) ] + exp (-nOl); but this is then a bound olll!J(Pc1 ) , since if neither
event occurs the decoding process will correctly decode.

Of course, the same argument with interchanged indices gives the correspond-
ing bound for E(Pe2)' This proves the first part of the theorem.

With regard to the last statomcnt of the theorem, ,ve will first prove a simple
combinatorial lemma which is useful not only here but in other situations in
coding theory.

LEMMA. SU,lJPO'SC lVC have a set (~r objects IJI , B2, • • • , /1'1 ioith. associated. prob-
abilities PI, T'2, .. · , P«, and a number of numcricolu; ialucd properties (Iunction,~)

of the objects fJ, 12, ... ,!d. These arc all nonncqoiioc, fi(Bj) ~ 0, and we laun» the
averages A i of these properties over the oojca»,

(22) L Pjfi(Bj) = It i ,
j

i = 1,2, · .. , d.

Then there cxisi« an o/~ject 11p for which

"l = 1, 2, · · · , d.
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(27)

More generally, given any ,<Ict of K, > 0 sali·Vying ~f-l (l/l(i) ~ I, then there
exists an object B" with

(24) li(IJp ) ~ ](iA i , i = .1,2, .. · , d.

PROOF. Tho second part implies the first by taking K, = d. To prove the
second part let Qi be the total probability of objects B for which Ji(B) > [(iA t-

Now the average Ai> Qi[(iA i since Qi[(iA i is contributed by the B, with
f(B) > [(iA i and all the remaining B have I, values ~ o. lIenee

]
(25) Q'<J(,' t=1,2,···,d.

Tho total probability Qof objects violating any of the conditions is less than or
equal to the sum of the individual Qi, so that

d 1
(26) Q < E }--;- ~ l.

i-I \. i

Hence there is at least one object not violating any of the conditions, conclud-
ing the proof.

For example, suppose we know that a room is occupied hy n number of people
whoso average age is 40 and average height 5 feet. Here d = 2, and using the
simpler form of the theorem we can assert that there is someone in the room
not over 80 years old and not over ten feet tall, even though the room might
contain aged midgets and youthful basketball players. Again, using [(I = 8/a,
[(2 = 8/5, we can assert the existence of an individual not over 8 feet tall and
not over 106 2/3 years old.

Returning to the proof of theorem J, we can now establish the last sentence.
We have a set of objects, the code pairs, and two properties of each object, its
error probability Pet for the code from 1 to 2 and its error probability Pe2 for
the code from 2 to 1. These are nonnegative and their averages are bounded as
in the first part of theorem 1. It follows from the combinatorial result that there
exists at least one particular code pair for which simultaneously

p d ~ 2 {P12[n(R l + 01) ] + e-nO,}

Pe2 ~ 2{P21[n(R2 + O2) ] + c- n"' } .

This concludes the proof of theorem 1.
It is easily seen that this theorem proves the possibility of code pairs arbitrar-

ily close in rates III and 112 to the mean mutual information PCI" letter RJ2 and R21

for any assigned P {Xl} and P {X2} and with arbitrarily small probability of
error. In fact, let Ill? - III = Il21 - 112 = E > 0 and in the theorem take 81 =
O2 = E/2. Since P12[n(R I2 - E/2)] ~ 0 and, in fact, exponentially fast with n (the
distribution function En/2 to the left of the mean, of a sum of n random variables)
the bound on P d approaches zero with increasing n exponentially fast. In a sim-
ilar way, so docs the bound on Pe2' By choosing, then, a sequence of the M 1

and }It/2 for increasing 1t which approach the desired rates R, and R2 from below,
we obtain the desired result, which may be stated as follows.
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THEOREM 2. Suppose in a two-way memorflcs« channel K an assiqnmcn: of
probabilities to the input leucrs ]J {;rJ} and /-J{J~2} y·ivcs aoeraqc mutual information»
in the two directions

(28)

Then give1~ E > 0 there cxisls a code pair Jor all sllJJiciently large block length n
with signalling rates in the two directions greater than R 12 - E and R 21 - E respcc-
t·ively, and with error pl·obabilitics Pel ~ oxp [ - A (E)n], Pt!2 ~ cxp [ - A (E)n] where
A (E) is positive and independent of 'It.

By trying different assignments of letter probabilities and using this result,
one obtains various points in the capacity region. Of course, to obtain the best
rates available from this theorem wo should seek to maximize these rates. This
is most naturally done a la Lagrange by mnximizing 1112 + "'ll21 for various
positive ~.

8. The convex hull G1 as an inner bound of the capacity region

In addition to the rates obtained this way we may construct codes which are
mixtures of codes obtained by this process. Suppose one assignment P {Xl} ,
P {X2} gives mean mutual informations R l2, R21 and a second assignment P' {Xl},
P' {X2} gives R~2, R~l. Then we may find a code of (sufficiently large) length n
for the first assignment with error probabilities < a and rate discrepancy less
than or equal to E and a second code of length n' based on P' {Xl}, P' {X2} with
the same ~ and E. We now consider the code of length n + n' with .llflMl words
in the forward direction, and ltf2M~ in the reverse, consisting of all words of the
first code followed by all words for the same direction in the second code.
This has signalling rates Rt and R~ equal to the weighted average of rates for
the original codes [Rt = nRJ/(n + n') + n'Il~/(n + 1~'); R~ = nR2/(n + n'l +
1t'R~/(n + n')] and consequently its rates are within E of the weighted averages,
IRt - nll12/(n + n') - n'R~2/(n + n')1 < E and similarly. Furthermore, its error
probability is bounded by 2~, since the probability of either of two events (an
error in either of the two parts of the code) is bounded by the sum of the original
probabilities. We can construct such a mixed code for any sufficiently large n
and n'. Hence by taking these large enough wo can approach any weighted
average of the given rates and simultaneously approach zero error probability
exponentially fast. It follows that we can annex to the ::;ct oj points found by the
assignment of letter probabilities all points in the c01tVeX hull oj this tel. This
actually does add new points in some cases as our example, of a channel (table I)
with incompatible transmission in the two directions, shows. By mixing the
codes for assignments which give the points (0, 1) and (1, 0) in equal proportions,
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(2U)

(3] )

"·C obtain the point, (.1./2, ] /2). There is no single letter assigumcut. giving this
pair of rates. We may summarize as follows.

THEOREM 3. Lct 0 1 be the amoex hull of pouu« Ut«. 1l21)

R =}t' (I P{XIJX2' Y2})
. ,12 ~ og P ( }

"tXI

R -}i' (I P{3;21xt, VI})
·21 - :J og I:) {:r2}

1vhc1l, P {Xl} and P {X2} are (JilJcn various prolJalJilily assiqnmcnl«. A II points of Gr
arc in the capacitu region. For any point (Rt , R2) in Gland any E > 0 wc can find
codes whose .<;ignalling ralc« arc wit/tin E oJ HI and Il2 and who.f)C error prolJal)ill~lir,.r;;

in, both directions arc les« than oxp [ - A (E)n] for all su.fTicicnlly large n, and some
positive A (E) •

It may be noted that the convex hull (/1 ill this thCOl'CIH h; a closed set, (con-
tains ull its limit points). This follows Irom tho eontinuit.y of Il12 and 1121 us
functions of tho probability assiguments l){~rl} and J){~r2}. Furl.hermoro if G1

contains a point (Ill, 1l2) it contains the projections (Ii), 0) and (0, Il2) . This will
now be proved.

It will clearly follow if \VC call show that the projection of any point obtained
by n letter probability assignment is also in GI • To show this, suppose P{x.}
and l'{X2} give the point (ll12 , R21) . Now 1112 is the average of the various par-
ticular 1112 when X2 is given various particular values. Thus

(30) I. - "" P t: \ '" I' ( .,.) 1 P{xlI·'t2' 1I21-.
l12 - £J \·l;2J LJ \Xl, Y2 X-2j og P ( }

z. ZI,1/1 'tXl

Thoro must exist, then, a particulur J~2, say x~, for which the inner SHin is at
least as great as the average, that is, for which

~ P ( . I .•, 1 ]-'{xlix;, Y2}
L..J \J,I, Y2 :1'2)" og J' { \

ZI,'I1 Xl'

Tho assignment P {xlla:;} for letter probabilities Xl and the assignment P {X2} = 1
if X2 = x; and 0 otherwise, now gives a point 011 the horizontal axis below or to
the right of the projection of the given point R12, R21• Similarly, we can find an xl
such that the assignment P{x2Ixt} for X2 and l"J{xt} = 1 gives a point on the
vertical axis equal 10 or above the projection of Il 12, 1l21. Notc also that the as-
signmcnt P{xT} = 1, l>{x;} = 1 gives the point (0,0). By suitable mixing of
codes obtained for these four assignments one can approach any point of the
quadrilateral defined by the corresponding pairs of rates, and in particular any
point in the rectangle subtendcd by Il12, 1l21. It follows from these rcmnrks that
the convex hull Gr is a region of the form 8ho'''11 typically in figure 7 bounded
by a horizontal segment, a convex curve, a vertical segment, and two segments
of the axes. Of course, any of these parts may be of zero length.
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Tho convex hull G1 is, as we have seen; inside t.he capncity region and \\'C will
refer to it as the inner bound.

FJOUJl}~ 7

It is of some interest to attempt a sharper evaluation of tho rate of improve-
mont of error probability with increasing code length n, This is done in the
appendix and leads to a generalization of theorem 2 in [1]. Tho bound we arrive
at is based on Iogarithms of moment generating functions.

9. An outer bound on the capacity region

While in some cases the convex hull Gr, the inner bound defined above, is
actually the capacity region this is not always the case, By an involved calcu-
lation R. G. Gallager has shown that in the binary multiplying channel the
inner bound is strictly interior to the capacity region. However a partial con-
verse to theorem 3 and an outer bound on the capacity region can be given.
Suppose lve have a code starting at time zero with messages 1nl and ""'2 at the
two terminals. After ''I, operations of the channel, let Y I and 1'2 be the received
blocks at the two terminals (sequences of n letters), and let Xl, X2, Yt, Y2 be the
next transmitted and received letters. Consider the change in "equivocation" of
message at the two terminals due to the next received letter. At terminal 2, for
example, this change is (making some obvious reductions)

(32) A = H(mllm2, Y2) - H(ml11n21 Y2, Y2)

= E [log P{m2! Y2} J- E [log P{m2! Y2! Y2} J
[-){ml, m2, Y2} P{mt, 1n2, Y2, Y2}

= E [log P{t(21m,11 ~! Y2} P{t(2Ix2} J.
P{Y2Ix2} P{Y21 Y2, 1n2}

Now IJ(Y2Iml, l1t2, Y2) ~ J[(Y2I,nI, m2, YI, Y2) = J](Y2Ixt , X2) since adding a con-
ditioning variable cannot increase an entropy and since P {Y2I m l ' 111,2, Y I , 1'2}
P {Y2Ixl, X2}.
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(34)

1\180 II(Y2\x2) ~ II (Y2\ l"2, 1n2) since X2 is a Iuuolion of l~2 and "'2 by the coding
function. Therefore

< ,~, (I I.){Y2Ix l ' X2} ) ll( Ir ) II ( I )~ = ~ og }:J{ I 1. + Y2 2, 111.2 - . Y2 .l~2
Y2 X2J

A < E' (1 P{Y21Xt , X2}) _ 'i' (I P {1}2, X., X2} J> {X2} )
L.1 = og P { I.) -.l:J og P f • 1. J:> {. • 1.

Y2 X2f l:l'2, 112, J'l, 3'2,

= }I' (I J> {Xtl X 2' IJ2} )
~ og I~{ I) ·

Xl X2J

This would actually lead to a converse of theorem 1 if we had independence of
the random variables 3~1 and X2. This last expression would then reduce to
E[log (P {xllx2, Y2} /P {Xl} )]. Unfortunately in a general code they arc not neces-
sarily independent. In fact, the next Xl and :t~2 may be functionally related to
received X and Y and hence dependent.

We may, however, at least obtain an outer bound on the capacity surface.
Namely, the above inequality together with the similar inequality for the second
terminal imply that the vector change in equivocation due to receiving another
letter must be a vector with components bounded by

(35) l~ (log PfX tlx2! lh}), E (log P{x2lxh lb})
p {X.I X2} ]:J {x2IX t}

for some P {X., X2}. Thus the vector change is included in the convex hull of all
such vectors Go (when P{XI, X2} is varied).

In a code of length 11" thc total change in equivocation from beginning to end
of the block cannot exceed the sum of 11, vectors from this convex hull. Thus this
sum will lie in the convex hull nGo, that is, Go expanded by a factor n,

Suppose now our given code has signalling rates III = (1/11,) log ]IfI and /l2 =
(lin) log !f2• Then the initial equivocations of message are uli, and 11,R2• Sup-
pose the point, (nIlt, 11,R2) is outside the convex hull nGo with nearest distance
?lEt, figure 8. Construct a line L passing through the nearest point of nGo anti

perpendicular to tho nearest approach segment with nGo on one side (using the
fact that nCo is a convex region). It. is clear that for any point (nllt, nR;) on the
nGo side of L and particularly for any point of nGo, that \VC have InRi - nRTI +
I11Jl2 - 11,R;1 ~ n « (since the shortest, distance is llE) and Iurl.hormorc at least
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one of the nJI~l - /I nT uno 1l1l2 - nll~ is at least IIt/v2. (In u right, triangle at

least 011e leg is as great as the hypotenuse divided by v2.)
Thus after n uses of the channel, if the signalling rate pair Ill, Il2 is distance E

outside the convex hull Go, at least one of the two final equivocations is at least

E/V2, where all equivocations are on 0, per second basis. Thus for signalling
rates E outside of Go the equivocations per second arc bounded from below inde-
pendent of the code length n, This implies that the error probability is also
bounded Irom below, that is, at least one of the two codes will have error prob-
ability ~ J{E) > 0 independent of n, as shown in [2], appendix.

To summarize, the capacity region G is included in the convex hull Go of
all poinIs 1i12, 1121

(36)

when arbitrary joint. probability assignments l:>{Xl, X2} arc made.
Thus the inner bound Gr and the outer bound Goarc both found by the same

process, assigning input probabilities, calculating the resulting average mutual
informations R12 and R21 and then taking the convex hull. The only difference
is that for the outer bound a general joint assignment P{Xl, X2} is made, while
for the inner bound the assignments arc restricted to independent P{Xl} P{X2}.

We now develop SODle properties of the outer bound.

10. The concavity of R12 and R 21 as functions of P(XhX2)

THEOREM 4. Gioen the transition probabilitics P {VI, Y21xt, X2} for a channel K,
the rates

(37)

are concave downward functions of theassigned inpu: probabilitiesP {Xl, X2}. For ex-
ample, R12(P l {Xl, X2} /2 + P2{XI, X2} /2) ~ IlJ2(Pl {Xl, X2} )/2 + Il12(P2{X., X2} )/2.

This concave property is a generalization of that given in [3] for a one-way
channel. To prove the theorem it suffices, by known results in convex functions,
to show that

(38)
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But Il 12(PI {Xl, X2}) and R12(P2{Xt, X2}) may be written

R (P f }) - " P f } " }l (, I .) 1 P2{Y21~rlz :r2}
12 IlXJ, X2 - c: IlX2 z: I ·l·CI, Y2 :l2i og P f I )

.%2 ZI.Y2 1 t!l2 X2/
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(40)

(41)

(43)

11e1"e the subscripts 1 on probabilities correspond to those produced with the
probability nssignment ]>1{Xl, X2} to the inputs, and similnrly for the subscript 2.
rrhe inner sum L:.r.t.f/t PI {Xl, Y21 x2} log (PI {Y21Xt, X2} / PI {Y21 x2}) may be recognized
as the rate for the channel from Xl to Y2 conditional on X2 having a particular
value and with the Xl assigned probabilities corresponding to its conditional prob-
ability according to PI {X., X2}.

The corresponding inner sum with assigned probabilities P2 {XI, X2} is
I:ZltJlt P2{Xt, Y21 x2} log (P2{Y2I x1, X2} /1'>2 {1J2!X2} ), which may be viewed as the rate
conditional on X2 for the same one-way channel but with the assignment J)2 {Xl'X2}
for the input letters.

Viewed this way, we may apply the concavity result of [2]. In particular, the
weighted average of thesc rates with weight assignments PI {X2} /([.>.{X2} +
P2{X2}) and P2{X2}/(PI{X2} + P2{X2}) is dominated by the rate for this one-
way channel when the probability nssignments are the weighted average of the
two given assignments. This weighted average of the given assignment is

1)1 {X2} . { I } 1~2 {X2} { \ 1.
Pl{X2} + P2{X2} PI Xl X2 + P.{X2} + P2{X2} P2 Xl X2J

- ! 1. 2 (I' c- X 1. + J~ Ix x})- 2 (Ill {X2} 4- [>2 {X2} ) 1 l·
lIl,

• 2J 2 l" 2 •

Thus the sum of two corresponding terms (the same ~r2) from (38) above is
dominated by PI {X2} + P2{X2} multiplied by the rate for this one-way channel
with these averaged probabilities. This latter rate, on substituting the averaged
probabilities, is seen to be

(42) " P { I·' 1. 1 /)a{Y2Ix l , x21·
LJ 3 Xl, Y2 X2J og P { I 1.

%I.l/t 3 Y2 X2J

where the subscript 3 corresponds to probabilities produced by using P3 {XI, X2}
(Pl{Xt, X2} + P2{Xt, x2}/2)/2. In other words, f.ho sum of (39) and (40) (in-
cluding the first summation on X2) is dominated hy

P r.,11 Ix -to l
" (P { } + }> { }) '" ["-> { I} I . ;I \ 12 1, ·~2!LJ I X2 2 X2 L.", 3 Xl, Y2 X2 og l~' { I 1.
%. %1.11' 3 Y2 X2J

~ P { } P3{Y21xtz X2}= 2 L." 3 Xl, Y2, X2 log P { , ) ·
%1,%2.112 . 3 Y2 X'lJ

This is the desired result for the theorem,
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11. Applications of the concavity property; channels with symmetric
structure

Theorem 4 is useful in a number of "rays in evaluating the outer bound for
particular channels. In the first place, we note that RI2+ 'XR21 as a function
of P {Xl, X2} and for positive 'X is also a concave downward function. Consequently
any local maximum is the absolute maximum and numerical investigation in
locating such maxima by the Lagrange multiplier method is thereby simplified,

In addition, this concavity result is very powerful in helping locate the maxima
when "symmetries" exist in a channel. Suppose, for example, that in a given
channel the transition probability array P {YI, Y2fxI, X2} has the following prop-
erty. There exists a relabelling of the input letters Xl and of the output letters YI
and Y2 which interchanges, say, the first two letters of the XI alphabet but leaves
tho set of probabilities P{Yh Y2lxt, X2} the same. Now if S0111C particular assign-
mont P{XI, X2} gives outer hound rates R12 and 1l2h then if we apply the same
permutation to the x alphabet in P{Xl, X2} we obtain 3, new probability assign-
mont which, however, will ~ive exactly the same outer bound rates R12 and R21•

By our concavity property, if we nvcrugo these t\VO probability nssignmonts we
obtain a new probability assignment which will give at least as largo values of 1112
and Jl21• In this averaged assignment for any particular X2 the first two letters in
the Xl alphabet arc assigned equal probability. In other words, in such a case
an assignment for maximising R12 + 'XR'Jl' say J:> {.'tl, l~2} viewed as a matrix, will
have its first two rows identical.

If the channel had sufficiently symmetric structure that any pair of Xl letters
might be interchanged by relabelling the XI alphabet and the YI and Y2 alphabets
while preserving P {yl, Y2rXI , X2}, then a maximiaing assignment P {Xl, X2} would
exist in which all rows arc identical. In this case the entries are functions of X2

only: P{Xl, X2} = P{x2}/a where ex is the number of letters in the XI alphabet.
Thus the maximum for a dependent assignment of P{XI, X2} is actually obtained
with Xl and X2 independent. In other words, in this case of a [ull set of synunetric
interchanges on the Xl alpha.bet, the inner and outer bounds arc idcntical. This gives
an important class of channels for which the capacity region can be determined
with comparative casco

An example of this type is the channel with f.ransitionprobnbilitios as follows,
All inputs and outputs are binary, YI = ;l~2 (that is, there is a noiseless binary
channel from terminal 2 to terminal 1). If X2 = 0, then Y2 = Xl, while if X2 = 1,
Y2 has probability .5 of being 0 and .5 of being 1. In other words, if X2 is 0 the
binary channel in the forward direction is noiseless, while if ~~2 is 1 it is com-
plctely noisy. We note here that if the labels on thc Xl alphabet are interchanged
while we simultaneously interchange the y2labcls, thc channel remains unaltered,
all conditional probabilities being unaffected. Following the analysis above, then,
the inner and outer bounds will be the same and give the capacity region.
Furthermore, the surface will be attained with equal rows in the P {~';1, :l~:l}

matrix as shown in table II.
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q/2

For u particular p this assignment gives the rates

(44) R J2 = 1J, R'!l = -(plogp + 'llogq).

These come Irom substituting in the formulas or hy noting that in tho 1 - 2
direction the channel is acting like an erasure channel, while in the 2 - 1
direction it is operating like a binary noiseless channel with unequal probabilities
assigned to the letters. This giveR the cupucity region of figure 9.

- ( p log P + q log q )
t--......- ........~

There arc many variants and applications of these interchange and symmetry
tricks for aid in the evaluation of capacity surfaces. For example, if both the Xl

and X2 alphabets have a full set of interchanges leaving the transition prob-
abilities the same, then the maximiaing distribution 111Ust bc identical both in
rows and columns and hence all entries are the same, P{X., X2} = l/ac where a
and c are the number of letters in the Xl and X2 alphabets. In this case, then, all
attainable R12R21 points arc dominated by the particular point obtained from
this uniform probability assignment. In other words, the capacity region is a
rectangle in the case of a full sct of synunctricinterchanges for bothXl and X2.

An example of this typc is tho channel of figure 2 defined by Yt = !J2 = Xl Ef) X2

where Ef) means mod 2 addition.

12. Nature of the region attainable in the outer bound

We now will usc the concavity property to establish 80111C results concerning
the set r of points (R I 2 J R21) that can be obtained h)' all possible nssignments of
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probubilitics I){Xl, X2} in a, given channel K, unrl whoso convex hull is (jo. We
will show that the set I' is in fact already convex and therefore identical with Go
and that it consists of all points in or on the boundary of a region of the type
shown in figure 10 bounded by a horizontal segment Ll, an outward convex seg-

FHiUIU'; 10

mont £2,a vertical segment L3 and two segments of the coordinate axes. Thus Go
has a structure similar to G1.

Suppose some P{Xl, X2} gives a point (R12, R21) . Here 1112 is, as ,YC have ob-
served previously, an average of the different R12 which would be obtained by
fixing X2 at different values, that is, using these with probability 1 and applying
the conditional probabilities P {XltX2} to the Xl letters. The weighting is accord-
ing to factors P {X2}. It follows that SODle particular X2 will do as well at least as
this weighted average. If this particular X2 is x;, the set of probabilities P{xllx;}
gives at least as large a value of R12 and simultaneously makes R21 = O. In

c'

a

figure 11 this means we cau find a point in r below or to the right of the projec-
tion of the given point as indicated (point Q).

Now consider mixtures of these t\VO probability assignments, that is, assign-
111Cnts of the form ~1.J {XIX2} + (1 - ~)l'> {xllx~}. Hero ~ is to vary continuously
from 0 to 1. Since Il r!. and R21 are continuous functions of the assigned prob-
ability, this produces a continuous curve C running from the given point to the
point Q. Furthermore, this curve lies entirely to the upper right of the connecting
line segment. This is because of the concavity property for the Rn and fl2l ex-
pressions. In a similar way, we construct a curve C', as indicated, of points be-
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longing to r and lying on or above the horizontal straight line through the
given point.

Now take all points on the curves C and C' and consider mixing the corre-
sponding probability assignments with the assignment P {xt, x;} = 1 (all other
pairs given zero probability). This last assignment gives the point (0, 0). The
fraction of this (0, 0) assignment is gradually increased for 0 up to 1. As this is
done the curve of resulting points changes continuously starting at the CC'
curve and collapsing into the point (0, 0). The end points stay on the axes dur-
ing this operation. Consequently by known topological results the curve S\VCCPS

through the entire area bounded by C, C' and the axes and in particular covers
the rectangle sub/ended by the oriqinal point (R12, R21) .

FIGUn1'1 12

We will show that the set of points r is a convex set. Suppose Ql and Q2,
figure 12, nrc t\VO points which can be obtained by nssignmcnts Pi{Xl, X2} and
])2 {Xl, X2}.

By taking mixtures of varying proportions one obtains a continuous curve C
counccting them, lying, by the concavity property, to t.ho upper right of the
connecting line segment. Since these arc points of r nll of their subtended rec-
tangles nrc, as just shown, points of r. It Iollows that all points of the connecting
line segment are points of I', Note that if Ql and Q2 are in the first and third
quadrants relative to each other the result is trivially true, since then the con-
necting line segment lies in the rectangle of one of the points.

These results are sufficient to imply the statements at the beginning of this
section, namely the set I' is convex, identical with Go, and if we take the largest
attainable R 12 and for this R12 the largest R2t, then points in the subtcnded
rectangle are attainable. Similarly for the largest R 21•

It may be recalled here that the set of points attainable by independent as-
signments, P {Xl, X2} = P {Xl} P {X2} , is not necessarily a convex set. This is shown
by the example of table I.

It follows also from the results of this section that the end points of the outer
bound curve (where it reaches the coordinate axes) are the same as the end points
of the inner bound curve. This is because, as we have seen, the largest Rn can be
achieved using only one particular X2 with probability 1. When this is done,
P{Xl, X2} reduces to a product of independent probabilities.
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13. An example where the inner and outer bounds differ

The inner and outer bounds on the capacity surface that we have derived
above are not always the same. This was shown by David Blackwell for the
binary multiplying channel defined by YI = Y2 = XIX2. The inner and outer
bounds for this channel have been computed numerically and are plotted in
figure 13. It may be seen that they differ considerably, particularly in the middle
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of the range. The calculation of the inner bound, in this CLL".iC, amounts to finding
the envelope of points

.lll'l = -1)2[]Jl log PI + (1 - 1)t) log (1 - 1)1)]

11~21' = -lJt[P2log P2 -J- (1 - P2) log (1 - ])2)].

These are the rutes with iudepondcut probability assignments at the two ends:
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(46)

probability lJl for using letter 1 at terminal I and probability P2 for using letter 1
at terminal 2. By evaluating these rates for different PI and P2 the envelope
shown in the figure was obtained.

For the outer bounds, the envelope of rates for a general dependent assign-
ment of probabilities is required. However it is easily seen that any assignment
ill which P {O, O} is positive can be improved by transferring this probability to
one of the other possible pairs. Hence we again have a two parameter family of
points (since the BUIll of the three other probabilities must be unity). If the prob-
abilities arc denoted by Pl = P{l, O}, P2 = P{O, 1}, 1 - Pl - P2 = P{l, I}, we
find the rates are

1112 = -(1 -Pl)[~lOgJL-+(l---l!1-)log(I--1!!-)J
1 - 1JJ 1 - PI I - IJI 1 - PI

1121 = -(.1 -P2)[--.l!.!-IOg----E.!-+(1--1-)1-)log(1---l!.L-)].
1 - P2 1 - 1)2 I - P2 1 - P2

Hero again a numerical evaluation for various values of PI and P2 led to the
envelope shown in the figure.

In connection with this channel, D. W. Hagelbarger has devised an interesting
and simple code (not a block code however) which is error free and transmits at
average rates R 12 = R21 = .571, slightly less than our lower bound. His code
operates as follows. A 0 or 1 is sent from each end with independent probabilities
1/2, 1/2. If a 0 is received then the next digit transmitted is the complement of
what was just sent. This procedure is followed at both ends. If a 1 is received,
both ends progress to the next, binary digit of the message, It may be seen that
three-fourths of the ti111C on the average the complement procedure is followed
and one-fourth of the Limo a new digit is sent. Thus tho average number of
channel uses per messago digit, is (3/4)(2) + (1/4)(1) = 7/4. The average rate
is 4/7 = .571 in both directions. Furthermore it, is readily seen that the message
digits can be calculated without error for each conununieation direction.

By using message sources at each end with biased probabilities it is possible
to improve the Hagelbargor scheme slightly. 'rhus, if 1'8 occur as message digits
with probability .63 and 0'8 with probability .37, we obtain rates in both direc-
tions

(47) 1.) - I~ - - .63 log .63 - .37 log .37 593
"12 - "21 - 1 - (.63)2 =..

We will, in a later section, develop a result which in principle gives for any
channel the exact capacity region. However, the result involves a limiting process
over words of increasing length and consequently is difficult to evaluate in most
cases. In contrast, the upper and lower bounds involve only maximising opera-
tions relating to a single transmitted letter in each direction. Although sometimes
involving considerable calculation, it, is possible to actually evaluate them when
the channel is not too complex,
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14. Attainment of the outer bound with dependent sources

With regard to the outer bound there is an interesting interpretation relating
to a somewhat more general communication system. Suppose that the message
sources at the two ends of our channel are not independent but statistically
dependent. Thus, one might be sending weather information from Boston to
New York and from New York to Boston. The weather at these cities is of
course not statistically independent. If the dependence wore of just the: right
type for the channel or if the messages could be transformed so that this were
the case, then it, may be possible to attain transmission a.t. tho rates given by
the outer bound. For example, in the multiplying channel just, discussed, sup-
pose that the messages at the t\VO ends consist of streams of binary digits which
occur with the dependent. probnhilitics given hy lnbl« TlT. Suocossivo .1~1, :r:! pairs

'rABIA~ III
.._-- ~- .-

o

o o .275
XI

.275 .45

arc assumed independent. Then by merely sending these streams into the channel
(without processing) the outer bound curve is achieved at its midpoint,

It is not known whether this is possible in general. Docs there always exist a
suitable pair of dependent sources that can be coded to give rates Ill, Il2 within E

of any point in the outer bound? This is at least often possible in tho noiseless,
memoryless case, that is, when Yl and Y2 are strict Functions of Xl and X2 (no
channel noise). The source pair defined by the assignment P{Xl' X2} that produces
the point in question is often suitable in such n case without coding as in the
above example,

The inner bound also has an interesting interpretation. If we artificially limi t
the codes to those where the transmitted sequence at each terminal depends
only on the message and not on the received sequence at that terminal, then the
inner bound is indeed the capacity region. This results since in this case we have
at each stage of the transmission (that is, given the index of the letter being
transmitted) independence between the two next transmitted letters. It follows
that the total vector change in equivocation is bounded by the sum of n vectors,
each corresponding to an independent probability assignment. Details of this
proof are left to the reader. The independence required would also occur if the
transmission and reception points at each end were at different places with no
direct cross communioation.
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15. General solution for the capacity region in the two-way channel

For a given memoryless two-way channel K we define a series of de,.ived
channels [(I, 1(2, · ••. These "rill also be memorylcss channels and the capacity
region for K will be evaluated as n limit in terms of the inner bounds for the
series tc;

The channel ](1 is identical with K, 'I'he derived channel I\.2 is one whoso
input letters are nel.ually strategies for working with K for a block of two input
letters. "fhus the input letters at terminal 1 for ](2 consist of pairs [xl, f(xl, vI)].
Here xl is the first transmitted letter of the pair and ranges therefore over the a
possible input letters of K, Now l(x:, 11:) represents any function from the first
input letter xl and output letter yl to the second input letter x~. 'rhus this Iunc-
tion may be thought of as a rule for choosing a second input letter at terminal 1
depending on the first, input letter and the observed first output letter. If xl can
assume a values anti 111 can assume b values, then t.ho (:I;:' liD pair-can nssumo ab
values, and since the Iuncl.ion j' takes values £1·OIH a, possibilities t.hcro nrc a"
possible functions. Hence there arc a ·ad" possible pairs [z], f(xI, ?II)], or possible
input letters to ](2 at terminal I.

J11 a similar way, at terminal 2 consider pairs [x~, (J(.l;~, 1J~)]. Here g ranges over
functions from the first received and l.runsmitted letters at terminal 2 and takes
values from the X2 alphabet. Thus these pairs have C·Cr.d values, where c and d
are the sizes of the input and output alphabets at terminal 2.

Tho pairs [xl,f(xl, yl)] and [x~, g(x~, y~)] may be thought of as strategies for
using the channel K in two letter sequences, the second letter to be dependent
on the first, letter sent and the first letter received. Tho technique here is very
similar to that occurring in the theory of games. There one replaces Or sequence
of moves by a player (whose available information for making Dr choice is in-
creasing through thc series) by a single move in which he chooses a strategy.
The strategy describes what the player will do at each stage in each possible
contingency. Thus a game with many moves is reduced to a game with Dr single
move chosen from a larger set.

The output letters for [(2 arc, at terminal 1, pairs (y:, ?J~) and, at terminal 2,
pairs (y~, y~); that is, the pairs of received letters at the two terminals. The
transition probabilities for [(2 arc the probabilities, if these strategies for intro-
ducing a particular pair of letters were used in K, that the output pairs would
occur. Thus

(48) 1)1\2 {(111, yj), (y!, y~) I[xl, f(x{, yI)], [x~, g(x~, y~)]}

= PK {yl, y~lxl, x~} [-'K {yl, y~lf(.l;l, yl), (J(x~, y~)} ·

In a similar way the channels [(3, 1(4, • · · are defined. Thus K; may be thought
of as a channel corresponding to n uses of K with successive input letters at a
terminal functions of previous input and output letters at that terminal. There-
fore the input letters at terminal 1 are n-tuplcs
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(49) [xl,/(xl, yl), .•• ,fn-t(X}, xi, ... ,X~-l, 11:' y~, ••• ,yT- 1) ] ,

a possible alphabet of

C.E.Shannon

(50)

possibilities, The output letters at terminal 1 consist of n-tuples

(51) ( 1 2 n)Yt,1}I, •• • , 111

and range therefore over an alphabet of bn generalized letters. The transition
probabilities are defined for K n in' terms of those for K by the generalization of
equation (39)

(52) I~K..{yf, 1J~, •• • , y11(xl, JI, l'J' ... , /n-I), (x~, rll, 02, .. · , Un-I)}
n

= II PK {lIl1 f .- t, Oi-I}.
i-I

The channel K; may be thought of, then, as u memoryless channel whose
properties nrc identical with using chnnnel K in blocks of n, allowing transmitted
and received letters within a block to influence succeeding choices.

For each of the channels K; one could, in principle, calculate the lower bound
on its capacity region. The lower bound for ](n is to be multiplied by a factor lin
to compare with K, since K n corresponds to n uses of K,

TllEOREM 5. Let B; be the lower bound of th, capacity rcqion. for the derived
channel K; reduced in scaleby a/actor l/n. Then as n --+ 00 the regions B; approach
a limit B which includes all the particular regions and is the capacity region of K,

Pnoor. We first show the positive assertion that if (R12, R21) is any point in
some B; and E is any positive number, then we can construct block codes with
error probabilities P e < E and rates in the two directions at least R n - E and

R21 - E. This follows readily from previous results if the derived channel K;
and its associated inner bound B; are properly understood. K; is a memoryless
channel, and by theorem 3 we can find codes for it transmitting arbitrarily
close to the rates R 12, R21 in B; with arbitrarily small error probability. These
codes are sequences of letters from the K; alphabet. They correspond, then, to
sequences of strategie8 for blocks of n for the original channel K,

Thus these codes can be directly translated into codes for K 1~ times as long,
preserving all statistical properties, in particular the error probability. These
codes, then, can be interpreted as codes signalling at rates lin as large for the K
channel with the same error probability. In fact, from theorem 3, it follows that
for any pair of rates strictly inside B; we can find codes whose error probability
decreases at least exponentially with the code length.

We will now show that the regions B; approach a limit B as n increases and
that B includes all the individual B". By a limiting region we mean a set of
points B such that for any point P of B, and E > 0, there exists no such that
for 1~ > no there are points of B; within E of P, while for any P not in B there
exist E and nosuch that for n > no no points of B,. are within E of P, In the first
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place IJ" is included in B"" for any integer k. This is because the strutogios for
B"" include as special cases strategies 'VhCl-C tho functional influence only in-
volves subblocks of n. Hence all points obtainable by independent probability
assignments with K; are also obtainable with [(Ie" and the convex hull of the
latter set must include the convex hull of thc former set.

It Iollows that the sct B"" approaches a limit B, the union of all the B,," plus
limit points of this set. Also B includes B«, for any 11,1- For 11, and 11,1 have a C0I11-

1110n multiple, for example nnt, and B includes Bm H while IJnn, includes B;•.
Furthermore, any point obtainable with ](ha can be obtained with [(kn+a, for

o ~ a ~ 11" reduced in both coordinates by a factor of not more than k,/(Ic + 1).
This is because we may usc tho strategies for [(I.;" followed by a series of a of
the first letters in the Xl and J~2 alphabets. (Thut is, fill out the assignments to
the length /.;11, + a with essentially dummy transmitted lottcrs.) The only dif-
ference then "rill he in the uormuliziug factor, l/{hlock length). By making k:
sufficiently large, this discrepancy from a factor of J, namely J/(k + J), can be
Illude as small as desired. 'I'hus for any E > 0 und any point I' of /J there is u
point of 13m within E of P fOI- all sufficiently large Itt.

With regard to the converse part of the theorem, suppose we have a block
code of length 11. with signalling rates (Il t , 1l2) corresponding to a point outside B,
closest distance to B equal to E. Then since B includes B n , the closest distance
to B" is at least E. We may think of this code as a block code of length 1 for the
channel K«. As such, the messages 1nt and 1n2 uro mapped directly into "input
letters" of K; without functional dependence on the received letters. We have
then since »t1 and nt2 arc independent the independence of probabilities associated
with these input letters sufficient to make the inner bound and outer bound the
same. Hence the code in question has error probability bounded away from zero
by n quantity dependent Oil E but not on n..

16. Two-way channels with memory

The general discrete two-way channel with memory is defined by n set of
conditional probabilities

(53) P{Yln, 1/2nlxu, X12, • - • , Xl n; X2l, X22, • · • , X2,t;

Yu, ?i12, · . · , YIn-I; Y2h Y22, · · - , Y2n-l}.

"!'his is the probability of the nth output pair 1/1n, Y2n conditional on the preced-
ing history from time t = 0, that is, the input and output sequences from the
starting timc in using the channel. In SUCll a general case, the probabilities might
change in completely arbitrary fashion as n increases. Without further limita-
tion, it is too general to be either useful or interesting. What is needed is some
condition of reasonable generality which, however, ensures a certain stability
in behavior and allows, thereby, significant coding theorems. For example, one
might require finite historical influence so that probabilities of letters depend
only on a boundcd past history, (Knowing the past d inputs and outputs, earlier
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inputs anti outputs do not, influoncc the conditional probubilil.ics.) 'Vc shall,
however, usc 8, condition which is, hy and largo, more general and also InOl·C

realistic for actual applications.
We will say that a two-way channel has thc recoverable slate properly if it

satisfies the following condition. There exists an integer d such that for any input
and output sequences of length n, X l n , X 2n , YIn, Y2n, there exist t\VO functions
!(Xl n, YI,,), g(X2n , }"2n) whoso values arc sequences of input letters of the same
length less than d and such that if these sequences f and g are now sent over the
channel it is returned to its original state. Thus, conditional probabilities after
this are the same as if the channel were started again at time zero.

The recoverable state property is common in actual physical communication
systems where there is often a "zero" input which, if applied for a sufficient
period, allows historical influences to die out. Note also that the recoverable
state property may hold even in channels with an infinite set of internal states,
provided it is possible to return to n "ground" state in a bounded number of
steps.

Tho point of the recoverable state condition iH that if we have u block code
for such a channel, we may annex to the input words of this code the functions f
and g at the two terminals and then repeat the use of the code. Thus, if such n
code is of length n and has, for one usc of the code, signalling rates R, and R2

and error probabilities P d and P,2, we may continuouslu signal at rates R~ ~

nIlt/{n + d) and R~ ~ nll2/{n + d) with error probabilities f':. ~ P d and
/:J:2 s Pe2'

For a recoverable state channel we may consider strategies for the first n
letters just us we did in the memoryless case, and find the corresponding inner
bound 11" on the capacity region (with scale reduced by 1/11,). We define the
region /J which might be called the limit supremum of the regions En. Namely,
B consists of all points which belong to an infinite number of B; together with
limit points of this set.

rrllEOUEM 6. Let (ll., Il 2) be any point in the region B. Lel no be any integer
and let El and E2 be any positive numbers. Then. there exists a block code of length
11, > no tvith signalling rates llf, ll~ satisfying (RI - RH < EI, IR2 - R~I < El and
error probabilities satisfl/ing P d < E2, P ~2 < E2. Converscly , if (Ill, R2) is not in B
then there exist no and a> 0 such that any block code of length exceeding no has
either J:>tJ > aor Pe2 > a (or both).

Pnoor, To show the first part of the theorem choose an 1t1 > no and also
largo enough to make both dR1/(d + n) and dR2/(d + 11,) less than Et/2. Since
the point (R t , R2) is in an infinite sequence of Bn , this is possible. Now construct a
block code based on ttl uses of the channel as individual "letters," within f.1/2
of the rate pair (R t , R2) and with error probabilities less than E2. To each of the
"letters" of this code annex the functions which return the channel to its original
state. We thus obtain codes with arbitrarily small error probability < E2 ap-
proaching the rates R I , R2 and with arbitrarily large block length.

To show the converse statement, suppose (R., 1l2) is not in B. Then for some
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110 every Bn , where n > no, is outside I), circle of some radius, say E2, centered
on (R t , R2) . Otherwise (Rt , R2) would be in a Unlit point of the Bn• Suppose we
have a code of length 11,1 > no. Then its error probability is bounded away from
zero since ,ve again have a situation where the independence of "letters" obtains.

The region B may be called the capacity region for such a recoverable state
channel. I t is readily shown that B has the same convexity properties as had
the capacity region G for a mernoryless channel. Of course, the actual evalua-
tion of B in specific channels is even 1110re impractical than in the memoryless
case,

17. Generalization to T-terminal channels

Many of the tricks and techniques used above may be generalized to channels
with three or more terminals. However, some definitely new phenomena appear
in these more complex cases. In another paper we will discuss the case of n
channel with two or more terminals having inputs only and one terminal with
an output only, a case for which a complete and simple solution of the capacity
region bas been found.

o o o o o
,11~1)ENDIX. ERROR PIlOBABILITY BOUNDS IN TEIll1IS OF

ltfO:AfEN1.' GENERATIl\TG FUNCTIONS

Suppose we assign probabilities ]:J{;l~l} to input letters at terminal 1 and P {X2}
to input letters at terminal Z, (Notice that we are here working with letters, not
with words as in theorem 2.) \Vc can theu calculate the log of the moment
gcncrat.iug functions of the mutual information between input letters at ter-
minal 1 and input letter-output letter pairs at terminal 2. (This is the log of
the moment generating function of the distribution P12 when 11, = 1.) The exprcs-
sions for this and the similar quantity in the other direction arc

( ~4) "t(S) - 1 "'"" J~ { • } • (1 1> {~l;l, :t:2, 1!2} )
u ,... - og L..J X., X2, Y2 exp 8 og 1> f 1.P f 1.

XI,X2,Y2 tXt) tX2, 1/2)

= log L P{Xlt X2, V2},+1 I

%1,%2,1/2 P{Xl}'P{X2, Y2}'

(55) #12(8) = log L P{XIr X2, VI},+t ·
%I,Z2,t!1 P {X2} •P {Xlt VI}'

These functions III and JJ.2 may be used to bound the tails on the distributions
P'2 and P21 obtained by adding n identically distributed samples together. In
fact, Chernoff [4] has shown that the tail to the left of a mean may be bounded
as follows:

(56)
P12[np~(81)] ~ exp {n[,ul(8t) - 81,u~(81)]},

P21[n.u~(82)] ~ ext> {n[Jl2(s2) - S2Jl~(82)]},



382 C.E.Shannon

Thus, choosing an arbitrary negative SI, this gives a bound 011 tho distribution
function at the value 1Ip~(S.). It can be shown that p'(s) is a monotone increasing
function and that p'(O) is the mean of the distribution. The minimum ",'(s) cor-
responds to the minimum possible value of the random variable in question, in
this case, the minimum l(x.; X2, Y2). Thus, an 8. may be found to place PI(St)

anywhere between Imin(xl; X2, Y2) and E(l). Of course, to the left of linin the
distribution is identically zero and to the right of E(l) the distribution ap-
proaches one with increasing 1t.

We wish to use these results to obtain 1110rc explicit bounds on Pel and p~'Z,

using theorem 2. Recalling that in that theorem O. and O2 are arbitrary, we at-
tempt to choose thorn so that the exponentials bounding the two terms are equal.
This is a good choice of 8. and 02 to keep the total bound as small as possible. The
first term is bounded by cxp {n[Ill (81) - 811l~ (81) ]} where 81 is such that ~~ (8.) =
R, + 01, and the second term is equal to cxp (-nOt). Setting these equal, we have

(57) PJ(sJ) - sJP;(s.) = -OJ, It») + 0. = p;(sJ).

Eliminating OJ, we have

(58)

and

(59) 1~(1)e1) ~ 2 exp {n[1l1(·s.) - 81Jl~('~1)]}.

This is because the two terms are now equal and each dominated by
cxp {n(Pl(sl) - 811l~(81)]}. Similarly, for

(60) R 2 = 1l2(S2) - (82 - 1)1l~(82)

we have

(61) E(1)e2) ~ 2 exp {n[p2(s2) - S2Jl~(82)]}.

These might be called parametric bounds in terms of the puramctcrs 81 and 82.

One must choose 8. and S2 such as to make the rates R l and R2 have the desired
values. These 81 and 82 values, when subst.il.uted ill the other formulas, give
bounds on the error probabilities.

The derivative of R. with respect to 81 is -('~1 - l)Il:'(SI), a quantity always
positive when 81 is negative except for the special case where pl/(O) = O. Thus,
III is n monotone increasing function of 81 as s) goes Irom -co to 0, with III going
from -Imin - log I.> {Imin} to b'(I).· The bracketed term in the exponent of
lC(I:Jd ) , namely 1l.(Sl) - 8Jlll(Sl), meanwhile varies from log P{lmin} up to zero.
Tho rate corresponding to S) = - CI'.), that is, - f min - log P {[min}, may be posi-
tive or negative. If negative (or zero) the entire range of rutos is covered from
zero up to E'(l). lIowcvcr, if it is positive, there is a gap from rate R, = 0 up
to this end point. This means that there is no wny to solve the equation for rates
in this interval to make the exponents of the t\\PO terms equal. The best course
here to give a good bound is to choose 01 ill such u way that n(Rt + OJ)
is just smaller than I min, say linin - E. Then P12[n(ll. + OJ)] = 0 and only the
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second term, cxp (8i n), is left in the bound. 'rhus exp [-n(Imin - III - E)] is a
bound on l~t. This is true for any E > o. Since we can construct such
codes for any positive E and since there arc only a finite number of codes, this
implies that we can construct a code satisfying this inequality wil.h E = o. Thus,
we may say that

(62) l~(l:Jd) s cxp [-n(llllin - Ill)], u. ~ t-:

or course, exactly similar statements hold for the second code working in the
reverse direction. Combining and summarising these results we have the fol-
lowing,

rrIIEOREl\( 7. In a two-way mcmorulcss channel K uiith. finite alphabets, let
P {Xl} an.d P {X2} be assiqnments of probabilities to the inpu! alphabets, and suppose
these lcad to the logaril1uns of 11101nCI1t (Jcncral-i1l.(J functions JOt mutual information

III(81) and J1.2 (S2) ,

(63)

(n6)

(64)

Let 11ft = cxp (Illn), 11/2 = exp (/l 2n) lJC integers, and lel '~J, S2 uc tlic solulions
(when thelJ exist) oJ

III = IlI(St) - (St + l)Il~(Sl)

R2 = 112(82) - ('<;2 + 1)1J~(s2).

The solution SI will exist if
(n5) -[min(Xl; X2, Y2) - log P{/min(XI; X2, ?/2)} ~ III ~ J!J[/(x,; ;1;2, Y2)],

and si1nilarly for 82. If both 81 and '~2 exist, then there is a. code pair [or the channel J(

of lenqth. n 1JJllh At l and 11/2 messaqcs tuul error pro1Jabililic.~ .~(fli.~r!lin.(/

[Jrl ~ '1 oxp {1-11 [Ill (.~l) - .~IJ.L: (s.)]}

JJ,.2 ~ 4 exp {+ 11.[112(82) - ~2Jl~(~2)]}'

If either (or both) of the R is so small lhai lhc corrcspondinq s docs 1101 exist, a code
pair exists unlh. the corresponding error probability bounded by

(67) I>d ~ 2 exp {-Il[I(Xl; .1;2, ]12) - Ill]}

or

(68) ]:Jc2 ~ 2 cxp {-n[/(x2; :t·l, Yl) - 1l2]}.

Thus, if 81 exists and not 82, then inequalities (66) would be used. If neither exists,
(67) and (68) hold.
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New lower bounds are presented for the minimum error prob-
ability that can be achieved through the use of block coding on noisy
discrete memoryless channels. Like previous upper bounds, these
lower bounds decrease exponentially with the block length N. The
coefficient of N in the exponent is a convex function of the rate. From
a certain rate of transmission up to channel capacity, the exponents of
the upper and lower bounds coincide. Below this parrieular rate, the
exponents of the upper and lower bounds differ J although they ap-
proach the same limit as the rate approaches zero. Examples are given
and various incidental results and techniques relating to coding
theory are developed. The paper is presented in two parts: the first,
appearing here, summarizes the major results and treats the case of
high transmission rates in detail; the second, to appear in the subse-
quent issue, treats the case of low transmission rates.

I. INTRODUCTION AND SUMMARY OF RESULTS

The noisy channel coding theorem (Shannon, 1948) states that for a
broad class of communication channels, data can be transmitted over
the channel in appropriately coded form at any rate less than channel
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capacity with arbitrarily small error probability. Naturally there is a
rub in such a delightful sounding theorem, and the rub here is that the
error probability can, in general, be made small only by making the cod-
ing constraint length large; this, in turn, introduces complexity into the
encoder and decoder. Thus, if one wishes to employ coding on a partic-
ular channel, it is of interest to know not only the capacity but also how
quickly the error probability can be made to approach zero with in-
creasing constraint length. Feinstein (1955), Shannon (1958), Fano
(1961), and Gallager (1965) have shown that for discrete memoryless
channels, block coding and decoding schemes exist for which the error
probability approaches zero exponentially with increasing block length
for any given data rate less than channel capacity.

This paper is concerned primarily with the magnitude of this exponen-
tial dependence. We derive some lower bounds on achievable error
probability, summarized in Theorems 1 to 4 below, and compare these
bounds with the tightest known general upper bounds on error probabil-
ity.

A discrete chanmei is a channel for which the input and output are
sequences of letters from finite alphabets. Without loss of generality, we
can take the input alphabet to be the set of integers (1, ... ,K) and the
output alphabet to be the set of integers (1, . · . ,J). A discrete memory-
less channel is a discrete channel in which each letter of the output
sequence is statistically dependent only on the corresponding letter of
the input sequence. A discrete memoryless channel is specified by its set
of transition probabilities P(i Ik), 1 s j ~ J, 1 ~ k s K, where
Pt] Ik) is the probability of receiving digitj given that digit k was trans-
mitted. If x = (k1 , k«, ... , kN ) is a sequence of N input letters and
y = (jt, ... ,jN) is a corresponding sequence of N output letters, then
for a memoryless channel

Pr (y Ix) (1.1 )

A block code with Ai code words of length N is a mapping from a set of
it! source messages, denoted by the integers 1 to M, onto a set of M code
words, Xl , • • . ,XM , where each code word is a sequence of N letters from
the channel input alphabet. A decoding scheme for such a code is a map-
ping from the set of output sequences of length N into the integers 1 to
M. If the source attempts to transmit message m over the channel via this
coding and decoding scheme, message m is encoded into sequence Xm ;
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after transmitting Xm , Borne sequence y is received which is mapped into
an integer m'. If m' ~ m, we say that a decoding error has occurred.

It is convenient here to consider a somewhat more general problem,
list decoding, where the decoder, rather than mapping the received se-
quence into a single integer, maps it into a list of integers each between 1
and M. If the transmitted source message is not on the list of decoded
integers, we say that a list decoding error has occurred.

List decoding was first considered by Elias (1955) for the Binary
Symmetric Channel. Most of the known bounds on error probability ex-
tend readily with simple alterations to list decoding and the concept has
been very useful both in providing additional insight about ordinary de-
coding and as a tool in proving theorems (see, for example, Jacobs and
Berlekamp (1967)).

For a given code and list decoding scheme, let Ym be the set of received
sequences for which message m is on the list of decoded integers and let
Y m

C be the complement of the set Y m • Then the probability of a list de-
coding error, given that the source message is m, is the conditional prob-
ability that y is in YmC, or

( 1.2.)

The error probability for a given code and list decoding scheme is then
defined as the average Ps,« over m.assuming that the messages are equally
likely,

1 M
P~ = - L: Pi;

M m=l
( 1.3)

We define Pe(N, M, L) as the minimum error probability for the given
channel minimized over all codes with ill code words of length N and all
list decoding schemes where the size of the list is limited to L. P e(N, M, 1)
is thus the minimum error probability using ordinary decoding. Finally
the rate R of a code with list decoding is defined as

R = In M / L = In M _ In L
N N N

( 1.4)

For ordinary decoding where L = 1, this is the usual definition of rate
and is the source entropy per channel digit for equally likely messages.
For larger L, we may think of (In L) IN as a correction term to account
for the fact that the receiver is only asserting the message to be one of a
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list of L. For example, if M = L, (1.4) asserts that R = 0, and indeed no
channel is required.

With these definitions, we can proceed to summarize the major results
of the paper. The major result of Section II is Theorem 1 below, which
lower bounds the error probability of a code in terms of the minimum
achievable error probability at 2 shorter blocklengths.

THEOREM 1. Let N, , N 2 bearbitrary blocklengths and let M, £1 , and L2

be arbitrary positive integers. Then the minimum error probability achiev-
ablefor a code of M code words of length N1 + N 2 is bounded by

P,(Nl + N 2 , M, L 2 ) ~ Pe(N1 , M, L1)P,(N2 , L 1 + I, L 2 ) (1.5)

In Section VI this theorem leads directly to an exponential type lower
bound on error probability which for low transmission rates is consider-
ably tighter than any previously known bound.

InSection III, codes containing only two code words are analyzed in
detail. We find the trade-offs between the error probability when the first
word is sent and the error probability when the second word is sent. The
results, which are used in Sections IV and V, are summarized in Section
III by Theorem 5 and Fig. 3.1.

The major result of Section IV is the "sphere packing" bound on error
probability, given below as Theorem 2. This theorem, in slightly different
form, was discovered by Fano (1961) but has not been rigorously proven
before.

THEORE:\I 2. Given a discrete memoruless channel with transition prob-
abilities P<j I k); 1 ~ k ~ K, 1 ~ j s J; Pe(N, ~f, L) is lower bounded
by

Pe(N, J.;!, L) ~ exp - N{Esp[R - ol(N)] + o2(N)1 (1.6)

where the function E,p is defined by

E,p(R) = L.U.B. [Eo(p) - pRJ
p~o

Eo(p) = max Eo(p, q)
q

J [K Jl+PEo(p, q) = -In L: L: qk P( j Ik) l/O+p}
j=l k-=l

( 1.7)

( 1.8)

(1.9 )

The maximum in (1.8) is over all probability vectors q = (Ql' . · . , qlC);
that is, over all q with nonnegative componenis summinq to 1. The quantities
o(N) go to 0 with increasing N and can be taken as
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oleN) = In 8 + K In Nand (h(N)
N N (1.10)

= .. fi In e +ln8
'V N VPmin N

where POlin is the smallest nonzero P (j Ik) for the channel and K and J
are the sizes of the input and output alphabets respectively.

The quantity in braces in (1.6) can be found graphically from E,,,( R)
by taking each point on the Esp(R) curve, moving to the right oleN)
and moving upward 02( N). Thus the major problem in understanding the
implication of the theorem is understanding the behavior of E.p(R).
Figure 1 sketches Eap(R) for a number of channels. Figure l(a) is the
typical behavior; the other sketches are examples of the rather peculiar
curves that can occur if some of the P(j Ik) are zero.

For a given p, Eo( p) - pR is a linear function of R with slope - p.
Thus, as shown in Fig. 2, E s p ( R) is the least upper bound of this family
of straight lines. It is obvious geometrically, and easy to prove analyti-
cally, that Esp(R) is nonincreasing in R and is convex U1 (see Fig. 2). It
is shown in the appendix that E.<;p( R) = 0 for R ~ C where C is channel
capacity and that Esp(R) > 0 forO ~ R < C. It sometimes happens that
Esp(R) = 00 for sufficiently small values of R (see Fig. l(b), (c), (d),
( e) ). To investigate this, we observe that for fixed p, Eo( p) - pR inter-
cepts the R axis at Eo( p) / p. As p~ 00 this line will approach a vertical
line at R = limp_co Eo( p) / p (see Fig. 2( b) ). This limiting rate is called
R~ and E 8p(R) is finite for R ~ Roo and infinite for R < R; .

-In L [L qkP(j Ik)ll<l+P)]l+P
Roo = lim max i __k _

p~oo q P

Finding the limit either by expanding in a Taylor series in 1/(1 + p) or
by using L'Hospitals rule,

Roo = max - In max L qkC(J(j I k) (1.11)
q l~j~J k

. k _\1; P(jlk) ~O
<flU I ) - 0; P(jlk) = 0

1 We will use convex U (read convex cup) and concave n (concave cap) as
mnemonic aids to the reader for convex and concave functions. It seems as diffi-
cult for the nonspecialist to remember which is which as to remember the differ-
ence between stalagmites and stala.ctites.
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FIG. 1. The sphere packing exponent for several channels.

That is, for each output, we sum the input probabilities q1c that lead to
that output. We then adjust the qk to minimize the largest of these sums;
RfI) is minus the logarithm of that min-max sum. It can be seen from this
that R~ > 0 iff each output is unreachable from at least one input.
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FIG. 2. E 3P(R) as convex hull of straight lines (same channels as Fig. 1).

R ao is an upper bound to the zero error capacity of the channel, Co .
Shannon (1956) has defined Co as the least upper bound of rates at which
information can be transmitted with no possibility of errors. Co is greater
than 0 iff there are two or more inputs from which no common output can
be reached and thus it is possible to have R; > 0 and Co = 0 (see
Fig. 1(b) for such a channel). Shannon (1956) has shown that if Co > 0,
then the expression in ( 1.11) for R ao is equal to the zero error capacity of
the channel with noiseless feedback.

If it happens that R~ equals channel capacity C, then the sphere pack-
ing bound merely states the true but uninteresting result that P. ~ 0
for R < C. It is shown in the appendix that this occurs iff the follow-
ing relations are satisfied for the input probability assignment
q = (ql, . . . , qK) that yields capacity.

(a) All transition probabilities that lead to a given output with non-
zero probability are the same (Le., P(j Ik) is independent of k for those
j, k such that q"P(j Ik) ¢ 0).

(b) The sum of the qk over inputs leading to a given output j is inde-
pendent of the output j.

These conditions are satisfied by all noiseless channels and also a few
noisy channels such as that in Fig. 1(c). For all other channels, R~ < C.
It is shown in the appendix that E,p(R) is strictly convex U and strictly
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decreasing in this region. E.p(R) need not have a continuous derivative
however (see Gallager (1965), Fig. 6).

The sphere packing bound above bears a striking resemblance to the
"random coding" upper bound on error probability of Fano (1961) and
Gallager (1965). That bound, as stated by Gallager, is

where

Pe(N, M, 1) ~ exp - NEr(R)

Er(R) = max [Eo(p) - pRJ
O~p~l

( 1.12)

(1.13)

Comparing E,(R) and E,p(R), we see that E'P(R) ~ Et(R). Equality
holds iff the value of p ~ 0 that maximizes Eo(p) - pR is between 0
and 1. It can be seen from Fig. 2 that the value of p ~ 0 that maximizes
Eo(p) - pR is nonincreasing with R. Consequently there exists a number
called the critical rate, Rcrit., such that Esp(.R) = E,(R) iff R ~ R er it•

Rer it lies between R; and C and it is shown in the appendix that
Rerit, = C iff Rw = C (i.e., if conditions (a) and (b) above are satisfied).
For all other channels there is a nonzero range of rates, Rer it ~ R ~ C,
where the upper and lower bounds on error probability agree except for
the o(N) terms (see Fig. 3).

This completes our discussion of Theorem 2. For a more complete dis-
cussion of how to calculate EBl'(R) and Er ( R) see Gallager (1965). One
additional result needed here, however, is the following (Gallager (1965),
Theorem 4): any local maximum of (1.8) over the probability vector q is
a global maximum, and necessary and sufficient conditions on q to
maximize (1.8) for a given pare

L [P(j I k)]l/(1+P) a jP ~ L a}+P for all k, 1 ~ k ~ K (1.14)
j i

where

( 1.15)

Equation (1.14) must be satisfied with equality except for those k for
which q" = 0; this can be seen by multiplying both sides of (1.14) by qk
and summing over k.

In Section V (contained in Part II) we find bounds on error proba-
bility for codes with a fixed number of code words in the limit as the
block length becomes large. The exponent EM for a code with M code
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FIG. 3. Comparison of sphere packing exponent with random coding exponent
(same channels as Fig. 1).

words is defined as

E I
, -In PeeN, M, 1)

M = im sup N
N....~

(1.16 )

The major result of the section is the following theorem concerning the
exponents, EM .

THEOREM 3. Given a discrete memoruless channel with transition prob-
abilities P(j Ik); 1 ~ k ~ K, 1 s j ~ J, and given that the zero error
capacity is zero, Pe(N, ill, 1) is louier bounded by

PeeN, M, 1) ~ exp - N[E M + o3(N)] (1.17)
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The exponents approach a limit, E~ = IimM-+co EN , given by
IC K J

s: = max - L L qi qlc In L VP(j I i)P(j 1k)
q i==l k==l ;-1

( 1.18)

The maximum in (1.18) is over all probability vectors q = (ql' · .. , qIC).
The exponents EM are bounded by

where
J

A = max - 2ln L VP(jli)P(jlk)
i,k ;==1

(1.19 )

(1.20)

( 1.21)

and [x]- denotes the largest inieqer less than or equal to x. The quantity
oa(N) in (1.17) can be taken as

In 4M .. /2
o3(N) = -r - 11 lit In Pm i n

where Pm in is the smallest nonzero P(i Ik).
Theorem 3 again requires some interpretation. Since Co = 0 byassump-

tion, every pair of inputs has at least one output in common so that
L:~-1 yP(jli)P(jlk) > 0 for all i, k; thus E~ and A in (1.18) and
(1.20) must be finite.

Each of the exponents EM can be interpreted as an exponent cor-
responding to zero rate since for fixed AI, the rate of a code R = (In It!) / N
approaches zero as N approaches infinity. On the other hand, if we choose
Jf as a function of N in such a way that limN-+oo :Al(N) = 00;
limN-+~ (In Ptf(N»)/N = 0, then (1.17) becomes

Pe(N, M(N), 1) ~ exp - N[E oo + o4(N)] (1.22)

where o4(N) approaches zero as N approaches infinity.
For channels with a symmetry condition called pairwise reversibility,

the exponents EM can be uniquely determined. A channel is defined to he
pairwise reversible iff for each pair of inputs, i and k,

J

~ yP(jlk)P(jli) In P(jlk),-1
J

= L VP(j \k)P(j' i) In P(j Ii)
j=1

(1.23 )

This condition will be discussed more fully in Section V, but it is satis-
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fled by such common channels as the binary symmetric channel and the
binary symmetric erasure channel. For any channel satisfying (1.23), it
is shown that

EM = Mft~ IM~~~MK -~t:~~ln~v'P(jli)P(jlk) (1.24)

where the M» ~ 0 are integers summing to M,
In Section VI, Theorems 1,2, and 3 are combined to yield a new lower

bound OIl error probability. The sphere packing bound is applied to
Pe(Ni , lJJ, I-J) in (1.5) and the zero rate bound is applied to
Pe(N2 , L + 1,1). The result is given by the following theorem.

THEOREM 4. Let Esp(R) and E«) be given by (1.7) and (1.18) for an
arbitrary discrete memoryless channel for uihich. Co = O. Let Esl(R) be the
smallest linear junction of R iohidi touches thecurveEsp(R) and which satis-
fies Esl(O) = E«) . Let R1 be the point iohere Esl(R) touches E,p(R) ..Then
for any code with a rate R < R1 ,

PeeN, M, 1) ~ exp - N[E,,(R-06(N ) ) + o6(N)] (1.25 )

'where o5(N) and o6(N) are given by (6.6) and (6.7) and approach zero
as N approaches infinity.

The function Esl(R) is sketched for a number of channels in Fig. 4.
~.,oo is always strictly less than E 8P(O+) unless channel capacity C is zero.
Thus the straight line bound of Theorem 4 is always tighter than the
sphere packing bound at low rates for sufficiently large block lengths
whenever C > 0, ('0 = o.

Theorem 4 can he compared with an upper bound to error probability
derived by Gallager (I B(;!), Theorem 6) using expurgated randomly
chosen codes. That result states that for any N, It!,

Pe(N, 1lI, I) ~ exp - N [Her (R + h;/)]
where the function E ex is given by

Eer(R) = L.U.B. [Ex(p) - pRJ
p~l

(1.26 )

( 1.27)

( 1.28)e.: p) = mqax - p In tr t:. qk qi [t v'P(j Ik)P(j Ii) JIP

The maximization in (1.28) is again over probability vectors q.
The function Ee:r(R) is sketched for several channels in Fig. 4. It can
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be interpreted as the least upper bound of a set of straight lines where the
lines have slope - p and zero intercept E:D( p). The function E:J:( p) is in-
creasing with p and if Co = 0, we can calculate limp... oo Ex(p) as

1C 1C J

lim E:J:(p) = max ~ ~ qkqi In ~ YP(ji k)P(jli) (1.29)
p"'OC q k ....1 i=l j-I

Also it can be seen from (1.27) that

lim E,:t(R) = lim E:t(p)
R"'O p"'OC

( 1.30)

Combining (1.18), (1.29), and (1.30), we see that

lim Eez(R) = E oo
R"'O

( 1.31)
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Thus, in the limit as R ~ 0 our upper and lower bounds on P. have the
same exponential dependence on the block length.

It is to be observed that all the upper and lower bounds to error prob-
ability discussed so far have an exponential dependence on block length
for fixed rate. The correct value of this exponential dependence, as a
function of rate, is of fundamental importance in coding theory and is
defined as the reliability function, E( R), of the channel. More precisely,

E(R) = lim sup -In P.(~ [e
N R]+,

1) (1.32)
N-+«>

where [x]+ is the smallest integer greater than or equal to x. We see that
Esp(R) and Esl(R) are upper bounds to E(R), and Er(R) and Eex(R)
are lower bounds. The bounds are identical for the rather uninteresting
case of noiseless channels and for some rather peculiar channels such as
Fig. 1( e), but for typical channels there is a region of uncertainty for
rates between 0 and Reri t • Although the bounds are close enough to give
considerable insight into the behavior of a channel with coding, it is still
interesting to speculate on the value ofE( R) in this region of uncertainty,
o< R ~ Reri t • For the binary symmetric channel, we improve on EIl(R)
in Section VI by using a bound on minimum distance derived by Elias,
but the technique does not generalize to arbitrary discrete memoryless
channels. The authors would all tend to conjecture that E(R) is equal to
E,;-Yer,(R) for R ;£ Rer it if the maximization in (1.29) is performed on a
block basis rather than a letter basis (i.e., using Pr (y Ix) in place of
Pt] Ik) and q(x) in place of q) (see Gallager (1965). As yet there is
little concrete evidence for this conjecture.

II. PROOF OF THEOREM 1

Theorem 1 establishes a lower bound on error probability for a code in
terms of the error probabilities for two codes of shorter block lengths.
Let N l and N 2 be arbitrary block lengths and consider a code with M
code words of block length Nv + N 2 • We shall be interested in consider-
ing each code word as consisting of two subsequences, the first of length
N, and the second of length N 2 • Let Xm be the mth code word and let the
prefix Xm,l be the first Nt letters of Xm and let the suffi» Xm .2 be the final
N 2 letters of x., . Likewise, we separate the received sequence y into the
prefix Yl and the suffix Y2 , consisting of Nt and N 2 letters respectively.

\Ve can visualize a list decoder of size L2 as first observing Yl , then
Y2 , and decoding on the basis of these observations. Suppose that on the



398 C. E. Shannon, R. G. Gallager, and E. R. BerJekamp

basis of Yl alone, there is a given number, say L1 , of messages that are
more likely at the decoder than the actual transmitted message. If ~ of
these £1 messages are also more likely than the transmitted message on
the basis of Y2 above, then a list decoding error should surely be made.
Reasoning heuristically, it appears that the probability of the first event
above is the probability of a list decoding error for a code of M code
words of length N 1 with a list size of L1 • Similarly, given the first event,
the probability of the second event should be lower bounded by the
probability of a list decoding error" for a code of block length N 2 consist-
ing of the L1 most likely messages plus the actual transmitted message.
We thus conclude heuristically that

P,(N1 + N 2 , M, L2 ) ~ P,(N1 , M, L1)P,(N2 , L1 + 1, L,,) (2.1)

This is the result of Theorem 1, and we now turn to a rigorous proof.
For a given code with M code words of length N I + N 2 , and a list de-

coding scheme of size £2 , let Ym be the set of received sequences y for
which message m is on the decoding list. Also, for any given received pre-
fix, Yl , let Ym,2(Yl) be the set of suffixes Y2 for which m is on the list when
Y1Y2 is received. Using (1.2) and (1.3) the error probability for the code
is given by

1 M

r. = M L L Pr (ylxm ) (2.2)
m-1 , E Ym C

For a discrete memoryless channel, Pr (y Ixm ) = Pr (Yl IXm ,l) Pr (Y2\ Xm .2)
and we can rewrite (2.2) as

1 M
P. = M L L Pr (Y11 Xnl.'> L Pr (Y21 Xm,2) (2.;{ )

m-1 11 12EY:',2(11)

Now consider the set of code word suffixes, XI,2 , • • • ,Xm ,2 , • •• ,X.w. ~ .

Pick any subset of 1.11 + 1 of the messages and consider the associated
£1 + 1 suffixes as a set of £1 + 1 code words of block length N 2 • For any
given YI , the associated L1 + 1 decoding regions Ym,2(Yl) form a list de-
coding rule of size L 2 • Presumably some suffixes Y2 are mapped into fewer
than L 2 messages from the given subset, so that this is not the best set of
decoding regions, but it is certainly a valid set. Now Pe(N2 , L1 + 1, l~.!.)

is a lower b011Ud to the error probability for any set of £1 + 1 code word-
of length N 2 with any list decoding scheme of size L2 , and at least one
code word in any such code must have an error probability that large.
Thus, for at least one value of in in any given subset of £1 + 1 suffixes,
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L Pr (Y21 X,",2) ~ Pe(N2 , L 1 + 1, L 2 ) (2.4)
12E Y~.2(11)

For any given Yl , consider the entire set of M messages again. Let
1nl(Yl), m2(Yl), · · . ,m'(Yl) be the set of messages for which (2.4) is not
satisfied. This set must contain at most L1 messages since otherwise we
would have a subset of L1 + 1 messages for which no member satisfied
(2.4). We can then lower bound the left hand side of (2.4) for any m by

L Pr (Y2 , X"',2)

{
O. m = ml(Yl), · · · ,m,(Yl) (2 .•5)

~ ;.(N2, £1 + 1, ~); m ¢ ml(Yl), .. · ,m'(Yd

where l depends on Yl but always satisfies l ~ L1 •

Interchanging the order of summation between m and Yl in (2.3) and
substituting (2.5) into (2.3), we obtain

Finally, to complete the proof, we can consider the set of prefixes
Xl,l, ... , XM,l as a set of M code words of length Nv , and the sets
1nl(Yl), .. · , m'(Yl) as a list decoding rule of size L1 (recall that l ~ L1

for all Yl). Let Y m,1 be the set of Yl for which m is on the list fil( Yl), · .. ,
m'(Yl). Interchanging the sum over m and Yl in (2.7), we obtain

r. ~ Pe(N2 , L1 + 1, L2 ) [~ t L Pr (YllXm.l)] (2.8)
",-=1 'I EY:',I

The quantity in brackets is the probability of list decoding error for this
code of length N 1 and is lower bounded by P.,( N 1 , M, L1 )

r, ~ Pe(N2 , L1 + 1, L2)Pe(NI , M, Lt ) (2.9)

Thus any code with M code words of length N, + N2 and any list decod-
ing scheme of size I.J2 has an error probability satisfying (2.9) and this
establishes (2.1).
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The above theorem can be generalized considerably. First we note
that the assumption of a discrete channel was used only in writing sums
over the output sequences. For continuous channels, these sums are re-
placed by integrals. The theorem can also be modified to apply to a
broad class of channels with memory. Also, if there is feedback from the
receiver to transmitter, the theorem is still valid. The encoder can then
change the code word suffixes depending on which Yl is received, but
( 2.5) is valid independent of the choice of the set {Xm ,2}. Finally the
theorem can be extended to the case where two independent channels are
available and Xm,l is sent over one channel and Xm.2 is sent over the other
channel.

III. ERROR PROBABILITY FOR TWO CODE WORDS

In this section we shall derive both upper and lower bounds to the
probability of decoding error for a block code with two code words of
length N. Surprisingly enough, the results are fundamental to both
Sections IV and V.

Let Pm(Y), m = 1,2, be the probability of receiving sequence Ywhen
message m is transmitted. If Ym is the set of sequences decoded into
message m, then from (1.2), the probability of decoding error when mes-
sage m is transmitted is

m = 1; 2 (3.1 )

For initial motivation, suppose that the decoder adopts a maximum
likelihood decision rule: decode y into message 1 if Pl(Y) > P2(y) and
decode into message 2 otherwise. Under these circumstances Pm(y) in
(3.1) is equal to minm,-=t ,2 P m' (y). Summing (3.1) over m, we then
get

(3.2)

For any 8 in the interval 0 < s < 1, a simple bound on min Pm(y) is
given by

min Pm(Y) ~ P 1(y ) J- 'P2(Y) ' ~ max Pm(y) (3.3)
m=1,2 m-l,2

Thus,

r.. + P,,2 ~ L P1(y )1- 'P2(Y) ' ;
t

o < s < 1 (3.4)
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We shall see later that when the right hand side of (3.4) is minimized
over s, the bound is quite tight despite its apparent simplicity.

The logarithm of the right side of (3.4) is a fundamental quantity in
most of the remainder of this paper; we denote it by

1£(8) ~ In E Pl(y)1-'P2(Y)'; 0 < 8 < 1 (3.5)
y

It is convenient to extend this definition to cover 8 = 0 and 8 = 1.

Jl(0) ~ lim p ( s) ;
,-+0+

( 3.6)

Then we can rewrite (3.4), minimized over 8, as

P etl + Pe ,2 ~ min exp ~(8)
O~,~l

(3.7)

(3.8)

Some typical modes of behavior of p.( 8) are shown in Fig. 5. The block
length in these figures is one and the first code word is the input letter 1
and the second is the input letter 2. It is shown later that Jl(s) is always
non positive and convex U.

We next show that when the block length is greater than one, Jl(s) can
be written as a sum over the individual letters in the block. Let the code
words be denoted by Xm = (km,l , ... , km,N), 111, = 1,2, and let the re-
ceived sequence be y = (jl,···, jN). Then, using (1.1), we have
Pm(y) = Il- P(in I km,n), and #l(S) becomes

J J N

p(8) = In E··· ~ II P(in Ikl ,n)l- ' P (i n Ik2tn)'
h=l iN=! n=1

J J

p(8) = In E P(jl Ikt ,l ) l- ' p ( j l Ik2,1)' E P(j21 kt ,2)1- '
il-l i2==1

J (3.9)
·P(j21 k2 ,2 ) ' ••• E P(jN Ik1 ,N)1- ' p (j N Ik2 ,N)'

iN-l

N

#l(S) = E"n(s);
n=-1

J

Jl.n(S) = In~ P(i Ikl ,,.) l- ' p (j Ik2,,,)'
i-I

(3.10)

We now generalize the bound in (3.7) in two directions. First we want
both upper and lower bounds on Pe,l and Pe l2 • Second, for reasons that
will be clear in Section IV, we want to allow ourselves the flexibility of
making Pelt very much larger than Pe ,2 or vice versa. The following
theorem achieves both of these objectives.

THEOREM 5. Let P1(y ) and P2(Y) be tioo probability assignments em a
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JM,( I-p)

I
I
I
I

'.J,,;2/3
I
I
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I

JAr,p

(b)
s
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,u(s)
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FIG. 5. The functions ~(8) = In Li P(j Il)l-·P(j I 2)· for several channels.

discrete set of sequences, let YI and Y2 be disjoint decision regions for
these sequences, let P~,l and P~,2 be given by (3.1) and assume that
Pl(y)P2(Y) ~ 0 for at least one sequence y. Then, for any s, 0 < s < 1,
either

Pe t l > i exp [I-£(s) - Sl-£' (s) - SV2Jl"(s)] (3.11 )

or

Pe,2 > i exp [pes) + (1 - s)p,'(s) - (1 - s)V2Jl"(s)] (3.12)
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Furthermore, for an appropriate choice of Y1 , Y2,

Pe,l ~ exp [#l(8) - 8~'(S)] and

Pe,2 ~ exp [IL( 8) + (1 - S)IL' (8)1

403

(3.13 )

(3.14 )

Finally IL(S) is nonpositive and convex U101· 0 < S < 1. The convexity
is strict unless Pl(y)/P2(Y) is consumi over all y for which Pl(:y)P2(Y) "¢ o.
Also p,(s) is strictly negativefor 0 < s < 1 unless Pl(Y) = P2(y) for all y.

Remarks: The probabilities P1(Y) and P2(Y) do not have to correspond
to two code words and in Section IV the theorem will be used where
P2(Y) does not correspond to a code word. For interpretation, however,
we shall consider only the problem of two code words on a memoryless
channel, in which case (3.10) is valid. Taking the derivatives of (3.10),
we have

N

Il' ( s) = L Iln I ( S ) ;
n=1

N

Il" (s) = L IJn" (s)
n=1

(3.15 )

Therefore, for any s, 0 < S < 1, the first part of the theorem states that
either

P e • 1 > 1exp{tl [lln(S) - Slln' (s)] - slI~ 21ln" (S)} (3.16)

or

Pe • 2 > t exp{tl [lln(S) + (I - S)Iln'(S)] - u - s)
'lI~lln" (S)}

(3.17)

We see from this that in some sense the terms involving p,(s) and IJ' ( 8)
are proportional to the block length N and that the term involving
vip," (8) is proportional to VN. It follows that for large N we should
focus our attention primarily on p,(s) and J.L' (s).

Figure 6 gives a graphical interpretation of the terms IJ,( s) - p.' ( 8)
and IL( s) + (1 - s) IJ' ( 8). It is seen that they are the endpoints, at 0 and
1, of the tangent at s to the curve IJ( 8). As 8 increases, the tangent
see-saws around, decreasing J.'( 8) - SJ.L' (8) and increasing IL( s) +
(1 - 8) J.L'(s). In the special case where JJ( 8) is a straight line, of course,
this see-sawing does not occur and p.( s) - SIJ'( 8) and IJ(8) + (1 - 8) p,'( s)
do not vary with s.
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so
JL (s I ) - s, Il' (5 I)

I
I
I
t,,
I
I
I
,JJ. (1,)+(1-1,' p.' (I,'

FIG. 6. Geometric interpretation of the exponents 10&(8) - 810&'(8) and

110(8) + (1 - 8)1£'(8).

(3.18)

(3.19)

Since IJ,( 8) is convex U over 0 < 8 < 1, any tangent to p. in this range
will lie on or beneath p.. Furthermore, since IJ,( 8) ~ 0 in this range, we
have in general, for 0 < 8 < 1,

J.L( 8) - 8J1,' ( 8) ~ 0

IJ,( 8) + (1 - 8)Jl'(s) ~ 0

A particularly important special case of the theorem is that in which 8

is chosen to minimize 10£(8). In that case we get the following corollary.
COROLLARY. Let s* minimize ""'(8) over 0 ~ 8 ~ 1. Then either

P e • 1 ~ 1exp [p.(s*) - 8*V2J.L"(s*)] (3.20)

or

(3.22)

(3.23)

* * - j--P e , 2 ~ 1exp [1l(S ) - (1 - s ) V 2p."(s*)] (3.21)

where if s· = 0 or 1, ,..,," (8·) is the limit of ,..,," (8) from the interior of the
interval.

Proof of Corollary: If 8* is within the interval 0 < 8* < 1, then
p.'( 8 *) = 0 and (3.20) and (3.21) follow immediately from (3.11) and
(3.12). If 8* = 0, then ,..,,'(0+) ~ 0, and

lim ,..,,(8) - 8,..,,'(8) = p.(O+) = Jl(s·)
.~o+

lim p. ( s) + (1 - s),..,,'(8) ~ P.( 0+) = Jl(8· )
.~o+

Likewise if s" = 1, then 10£'(1-) ~ 0, and

lim Jl( 8) - SJl'(8) ~ J.L( 1-) = p.(8*)
,~1-

Substituting these relations into (3.11) and (3.12) completes the proof.



Discrete MernorylessChannels. I 405

(3.24)

Notice that the exponent #-L( 8 *) appearing in (3.20) and (3.21) is the
same as the exponent in the upper bound to P.,1 + Pel' of (3.7).

Proof of Theorem 5: The sum over yin 1-&( 8) as given by (3.5) can either
be considered to be over all output sequences y or over only those se-
quences in the overlap region where Pi(Y) and Pt(y) are both nonzero.
For the remainder of the proof, we consider all sums over y to be over
only the overlap region.

Taking the derivatives of #-L( 8), we get

I {" Pl(y)1-·P2(Y)' P2(Y)
p. (8) = '7 L P1(y')1-IP2(y')' In P1(Y)

r'

Let D(y) be the log likelihood ratio,

D(y) = In P2(Y)
PI(Y)

and for 0 < 8 < 1, define

Pt(y)1-'P2(Y)'
Q,(y) = LP

1
(y' )1-IP

2
( y' )'

r'

(3.25)

(3.26)

(3.27)

It will be seen later that Q.(y) is large for those y that are likely to
cause errors; thus this probability assignment allows us to focus our
attention on the region of interest.

If we consider D(y) to be a random variable with probability assign-
ment Q,(y), then we see from (3.24) and (3.25) that P.'(8) and p." (8) are
the mean and variance of D(y) respectively. Since P."(8) is a variance,
it is nonnegative and therefore #-L( 8) is convex U. It can also be seen from
this that p,(s) will be strictly convex Uunless P2(y)/Pl(Y) is a constant
for all y in the overlap region. Since p,( 0) and J.&( 1) are nonpositive (see
( 3.5) and (3.6)), it follows from convexity that JJ. is nonpositive for all
8, 0 ~ 8 ~ 1. Furthermore, for p,(8) to be 0 at any point within the inter-
val (0, 1) it is necessary for p,(0), JJ(1), and #-L" (8) all to be ~ero. It is easy
to see that this can happen only if Pt(Y) = P 2(y ) for all y.

It can be verified easily by substituting (3.26) and (3.5) into (3.27)
that

Pi(Y) = [exp [1£(8) - sD(Y)lIQ.(y) (3.28)
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P2(Y) = {exp Lu(s) + (1 - s)D(y)]JQ,(y) (3.29)

( 3.32)

We shall now establish the second part of the theorem, (3.13) and
(3.14). For a given s, define the decision region YI to be

YI = {y:D(y) < #L'(S)! (3.30)

Then fory E Ylc, we have -sD(y) ~ -S#L'(S), and (3.28) is bounded by

PI(y) ~ [exp [p(s) - slL'(s)])Q,(y); Y E Y l
c (3.31)

Substituting (3.31) into (3.1), we have

r., ~ [exp [~(s) - SJl'(s)J) L QtI(Y)
yE y 1 c

Equation (3.13) follows upon upper bounding the sum of probabilities in
(3.32) by 1. Equation (3.14) follows in the same way upon recognizing
that (1 - s)D(y) ~ (1 - s)p.'(s) fory E Y2c

•

We now turn to the proof of the first part of the theorem. Define Y, as
the set of sequences for which D(y) is within V2 standard deviations of
its mean according to Q,(y).

Ys = {y:j D(y) - IJ.'(s) I ~ y'2IJ."(s)}

From the Chebychev inequality,

L Qs(Y) > !
yE Y.

(3.33)

( 3.34)

We now lower bound Pe,l and Pe ,2 by considering only those y in the
set Ys • This is motivated by the fact that for the decision rule (3.30),
most of the errors presumably occur when ID( y) - p' ( s) I is small.

P e ,1 = L Pt(Y) ~ L PI(Y) (3.35)
yEYt C yEYtCny"

For y t Y s , (3.33) gives us

p.'(s) - y'2p" (S) ~ D(y) ~ JJ.'(s) + y'2p"(s)

Thus, for y E Y a , (3.28) and (3.29) are bounded by

PI (y) ~ {exp [1l(S) - SIl'(S) - s y'2~"(8)]) Qa(Y)

P2 (y) ~ [exp [~(s) - (1 - s)p.'(s) - (1 - s ) y'2JJ."(s)]}

. Qa(Y)

( 3.36)

(3.37)

(3.38)

(3.39)
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Substituting (3.38) into (3.35) and (3.39) into (3.36) leaves only
Q~(y) under the summation signs.

Pe • 2 ~ {exp [1-& ( s) + (1 - s) Il' ( s ) - (1 - s ) V 21-& II ( S) ] }

L Q. (y)
yE Y2c n V,

Since Y l and Y2 are disjoint, (3.34) yields

Thus, either

or

(3.40)

(3.41 )

(3.42)

(3.43)

(3.44)

Substituting these inequalities into (3.40) and (3.41) completes the
proof of the theorem.

There are a number of other approaches that could have been taken
to prove theorems essentially equivalent to Theorem 3. The theorem
treats a simple statistical decision theory problem with 2 hypotheses.
According to the Neyman-Pearson (1928) theorem, we can minimize
Petl for a given value of Pe,2by letting YI be the set of y for which D(y)
is less than a constant chosen to give Pe.2 its given value. Then Pe,l

is the probability according to P1(y ) that D(y), which is the sum of N
independent random variables, is greater than or equal to that constant.
Likewise, Pe.2 is the probability according to P2(y) that D(y) is less
than the constant. A number of estimates and bounds on the probability
that a sum of independent random variables will be far from the mean
are given by Feller (1943), Chernoff (1952), Chapter 8 of Fano (1961),
and Gallager (1965b). The particular theorem chosen here was selected
primarily for the simplicity of the result and for its generality. Observe
that Theorem 5 is applicable whenever IJ.( s) and its first two derivatives
exist. For example y may be a sequence of real numbers and PI(y) and
P2(Y) may be replaced with probability densities.
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IV. THE SPHERE PACKING BOUND

Let Xl , X2, •.• , XM be a set of M code words each of length N for
use on a discrete memoryless channel with transition probabilities
P(j Ik). Assume a list decoding scheme in which for each received
sequence y, the decoder produces a list of at most L integers from 1 to M.
If Y m is the set of output sequences y for which message m is on the
decoding list, then, as in (1.2), the probability of list decoding error
when message ni is sent is

r.: = L Pr (y J xna)
,EY",&

(4.1)

Let P"max be the maximum over m of P"m for the code and list decoding
scheme under consideration. In this section we first find a lower bound
on P"max for a special class of codes called fixed composition codes.
We then generalize the results to arbitrary codes, and prove Theorem
2 of the introduction.

For any given m, Ps.« can generally be reduced by enlarging the size
of the decoding set Ym' this willdecrease the size of Yna' , for some m' ¢ m,
however, and thus generally increase P"m' . In order to keep some con-
trol over the size of Ym without specifically considering the other
code words, we define an arbitrary product probability measure on
the output sequences y = (jt, ... ,jN),

N

!N(Y) = II!(jn)
n-t

(4.2)

where f = tf( 1), ... ,f(J) J is an arbitrary probability assignment on
the output letters 1 to J. The size of Ym is now defined as

F( Ym ) = L !N(Y), (4.3)
,EYm

Theorem 5 can be used to relate P.,m and F( Y m) if we let Pr (y Ixm )

correspond to Pt(y) in the theorem and let !N(Y) correspond to P2(Y).
The function ~(s) of Theorem 5 corresponding to Pr (y Ixm ) and
!N(Y) is given by

1£(8) = In L Pr (y IXm)l-'!N(Y)', (4.4)

Assume that Pr (y/Xm)fN(Y) ~ 0 for at least one y. Theorem 5 then

states that for each s, 0 < s < 1, either

P.,m> I exp [~(s) - s~'(s) - s V2p"(s)] (4.5)



Discrete Memoryless Channels. I

or

409

F( Ym) > 1exp [~(s) + (1 - 8) ~'(8) - (1 - 8) V21l"(s)] (4.6)

Since/HeY) = II f(jn) , P.(8) can be broken up into a sum of terms as
n

in (3.10). Ifxm = (k m •t , ... ,km,N),wehave
N

J.t( s) = L Ilk",.,,( S, f)
11.-1

P,k(S, f) = In E p(j/k)l--f(j)-
i

(4.7)

( 4.8)

The function IJ,( s) depends on Xm only through the number of ap-
pearances of each alphabet letter in Xm • Let

() Number of times input letter k appears in x'"
q" m = -------~--------

N
(4.9)

The vector q( m) = (ql (m), ... , qJr( m» is called the composition of
the mth code word. In terms of q(m), p.(s) becomes

K

It(s) = N L qk(nl)""k(s, f)
k-=l

( 4.10)

(4.12)

Let us restrict OUf attention temporarily to codes in which all code
words have the same composition. Then the m can be dropped from
qk(m) in (4.10), and (4.5) and (4.6) become: for each e, 0 < 8 < 1,
either

P. ,m > i exp N {t: qk [/-Ik (8, f) - 8/-1k'(8, f)]

(4.11 )

-IN ¥2t:qk/-lt (s, f)}
or

F(Ym ) > ieXPN{t:qk[/-Ik(S,f) + (1- s)/-I,,'(s,f)]

(1 - 8) ~ / ~ " }- VN 11 2£rq"p." (s, f)

The square root terms in (4.11) and (4.12) turn out to be unimportant
for large N. Thus we simplify the expressions by the following loose
but general bound on Ilk" (see appendix).
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e
syPIc"(s, f) ~ In yP ,

min
(4.13)

Pmin is the smallest nonzero transition probability on the channel.
We can now relate F( Ym) to the number of code words M and the

list size L by observing that

(4.14)

Equation (4.14) follows from the facts that each y appears in at most L
decoding subsets and that LriN(Y) = 1. As a consequence of (4.14),
there must be some m for which

F(Y",) s LIM (4.15)

For this m, we can substitute (4.13) and (4.15) into (4.11) and
(4.12). Bringing the factors of i inside the exponents and upper bound-
ing P,,« by P~tmax, (4.11) and (4.12) become: either

P.,max > exp N {~q"[~k(S, f) - sp,,'(s, f)]

(4.16)
_ . /2 In y_e_ _ In 4\

'V N r.: N f
or

L . {~ ,1\.1 > exp N ~ qk[~k(S, f) + (1 - S)JJk (s, f)J

_ 1 - s • f2 In e _ In 41..
s 'VN -rp:- NfVrmin

(4.17)

Equations (4.16) and (4.17) provide a parametric lower bound on
Pe,max for a given LIM in terms of the parameter 8 in the same way that
Theorem 5 provided a parametric lower bound on P e ,I for a given P e ,2 •

The bound is valid for any fixed composition code of composition q
with M code words of length N and for any list decoding scheme with
lists of size L.

The reason for calling this a sphere packing bound is somewhat
historical, but also adds some insight into what we have done. From
the discussion following Theorem 5, we see that P~,m can be minimized
for a decoding subset of given size by picking the set Ym to be those y for
which In ffN(y)/Pr (y Ixm)J is less than a constant. If we think of
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In [IN(y)/Pr (y Ixm ) ] as a generalized type of distance from Xm to y,
then we can think of the Ym that minimizes P.,m as being a sphere
around Xm . Thus our bound on Petroax in terms of M would be a very
tight bound if we could pick the Ym as a set of spheres, each sphere
around one code word, with spheres packed into the space of output
sequences.

The bound of (4.16) and (4.17) is a function of the arbitrary prob-
ability assignment f. The straightforward approach now would be to
find that f which yields the tightest bound on Pe,max , i.e., that maximizes
the lower bound for a given composition. We could then look for the
best composition, i.e., the q that minimizes the lower bound on Pe,max •

Such a procedure turns out to be both tedious and unenlightening.
We shall instead simply state the resulting f and q as functions of the
parameter 8 and then show that this choice gives us the bound of
Theorem 2.

For a given s, 0 < s < 1, let q" = (q1", ... , qK,8) satisfy the equa-
tions

L P(j Ik)1-'aj:8(1-,) ~ L a}("O-,);
i j

where
K

oq, = L qk.,P(j I k)l-1J
k=1

Let f s = (/.( 1), ... ,fa(J)) be given by
1/(1-,,)

ai"
J
'" 1/(1-.)
L..J Oli' ••
i'=l

all k (4.18)

(4.19)

( 4.20)

This is a rather formidable looking set of equations, but the solutions
have some remarkable properties. If we set p = 8/( 1 - 8), (4.18) and
(4.19) are identical to the necessary and sufficient conditions (1.14) and
(1.15) on q to maximize the function Eo(p, q) discussed in Section I.
Thus (4.18) is satisfied with equality for those k with qk,. > O. Since
Eo(p, q) must have a maximum over the probability vectors q, (4.18)
and (4.19) must have a solution (though it need not be unique).

The fact that f is chosen here as a function of 8 in no way changes the
validity of the lower bound to Pe,max given by (4.16) and (4.17). We
must remember, however, that Ilk' (8, fs) is the partial derivative of #J.k
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with respect to 8 holding f. fixed. The condition that for each
k,J(j)P(j Ik) ~ 0 for some j is clearly met by f. , since the left side of
(4.18) must be strictly positive.

Next we show that f. has the property that plc(S, I,) is independent of
k for those inputs with qlc" ~ o. Substituting (4.20) into the expression
(4.8) for #J1c , we have

(4.21)

Using (4.18) in (4.21),

J

#Ie(8, f.) ~ (1 - s) In ~ a}~:l-'
i-I

with equality if qle .• ~ o. Finally, using (4.19) for ai", we have the
expression for Eo(p) in (1.8) and (1.9). Thus

#lk(S,',) ~ -(1 - S)EoC ~ 8); equality if qk., F- 0 (4.22)

One final property of q. and f. , which we shall not need but which
gives some insight into why t, yields the tightest bound on P e•max

for the "best" composition q" is that q, , f. yields a min-max point
for the function Lie qkJlk( 8, f). That is, for all q, f,

Lqk.,Pk(s,f) ~ Lqk,'~k(8,f,) s Lqk#k(s,f,) (4.23)
Ie Ie Ie

This relation is established in the appendix.
We can now state a theorem that is equivalent to Theorem 2 in the

introduction, with the exception that the theorem here applies only to
fixed composition codes.

THEOREM 6. Let P(i f k) be the transition probabilities for a discrete
memorpless channel and let a fixed composition code for the channel have
M code words of length N with a li8t decoding scheme of list size L. Then
at least one code word will have a probability of list decoding error bounded
by

{ ( ln4 ) 11 e 1n4}- N E,p R - - - E + -In + -
N N VPm in N

(4.24)
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(4.26)

where R = (liN) In (MIL), thefunction Esf' is given by (1.7), and E is an
arbitrarily small positive number.

Proof: We shall first express the parametric lower bound on P. ,max

of (4.16) and (4.17) in a more convenient way. Define Ri», q) as minus
the quantity in braces in (4.17), using f, for f.

Rt», q) = L - q/c[#lk(S, f,) + (1 - S)Jlk'(S, f,)]
k

+ 1 - s • / 2 In e + In 4 (4.25 )
s 'VN -rp-. NVrmin

Then (4.17) can be rewritten

R = In ~/L < R(s, q)

Also we can use (4.25) to eliminate the JJ.1c' term in (4.16), getting

P.,mn > eXPN{~qk(l + 1 ~ s)~k(s,f.) + 1 ~ sR(s,q)

t1 e ( s) In 4}- -In-- - 1+-- --N -;p-. l-s NVrmin

Thus, for every e, 0 < s < 1, either (4.26) or (4.27) is satisfied.
We now consider two separate cases

(4.27)

(a)

(b)

R = R(s, q) for some s, 0 < S < 1

R < R(s,q) for all s, 0 < 8 < 1

(4.28)

(4.29)

It is shown in the appendix that R( s, q) is a continuous function of 8

for 0 < s < 1, and it can be seen from the term containing (1 - 8) /8
in (4.25) that lims_o R( 8, q) = 00. Thus either (a) or (b) above must
be satisfied. If (a) is satisfied for some 8, then (4.26) is unsatisfied and
(4.27) must be satisfied for that s; substituting (4.22) and (4.28) into
(4.27), we have

P.,max > eXPN{ -Eoe ~ s) + 1~ s(R _l~;/)

t1 }
(4.30)

8 e In 4
- -In --

N -rrz: NVrmin

Using p for s/{ 1 - 8) and further lower bounding by taking the lowest
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upper bound of the negative exponent over o, we have

Pe ,max > exp - N {L.~p. [Eo(p) - p (R - h;/)]
+ ~) In e + In 4}

N - /p . Nv mill

> exp - N { L.~oB. [ Eo(p) - p ( R - I::v
4

- t)]

~
) e In4}

+ N In V . + N
Pnlin

(4.31 )

(4.32 )

Using the definition of E ,lp in (1.7), this is equivalent to (4.24) and proves
the theorem for case (a).

Next we show that for case (b), (4.24) reducestoPe,max ~ owhich is
trivially true. From (3.18),

( f ) 't. f) <0 't. f) < -J.'k(S,f.)Ilk s, 8 - 81J,k 8, 8 = ; - Ilk S, 8 = --8-- (4.33 )

Substituting (4.33) into ( 4.25), we obtain for all s, 0 < S < 1,

R < R(s,q) ~ -tqk(l + 1 - S)J.Lk(s,fs )
k=l S

+ 1 - S 1 2 In _e__ + In 4
8 N -rp-. NVrmin

Using (4.22) again and letting p = 8/(1 - s), this becomes

R < Eo(p) +! . /2 In e + In4; all e > 0 (4.34)
p p V N VPm i n N

Using (1.7) and (4.34), we have

s.; (R - I::V
4

- t) = L.~oB. [Eo(p) - P (R - I::V
4

- t)J
(4.35 )

1 2 e
~ L.U.B. - NIn~ + pt

P~O Pm i n

Thus E,p is infinite here and (4.24) reduces to P e •m ax ~ 0, completing
the proof.

The theorem will now be generalized to lower bound the error prob-
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ability for an arbitrary set of code words rather than a fixed composition
set. The number of different ways to choose the composition of a code
word is the number of ways of picking K nonnegative integers, N 1 , N 2 ,

· · · , N Ie such that Lk Nk= N, where K is the input alphabet size and

Nis the block length. Thus there are (N1~ ; 1) different composi-

tions, and it follows that in any code of M code words, there must be some
composition containing a number of code words M' bounded by

(4.36)

Consider the messages corresponding to this set of M' words as a fixed
composition code and assume that the same list decoding scheme is
used as for the original code. Thus for each m in the fixed composition
set, Ym is the same as for the original code and PtJ,m is the same. This is
presumably a rather foolish decoding scheme for the fixed composition
code since the decoding lists might contain fewer than L integers from
the fixed composition set. None the less, Theorem 6 applies here, and
using In (M'IL)IN for R, there is some m in the fixed composition set
for which Pe•m satisfies

Since Esp is a decreasing function of its argument, we can substitute
(4.36) into (4.37). Also Ps.« ~ P tJ •m ax for the original code, so that

{ [
In (MIL) _ In (N + K- 1)

P•.max > exp - N E,f' N K - 1

_ In 4 _ E] + . / 8 In e + In 4}
N V N v'Pmin N

(4.38)

For the given channel, define Pe.max(N, M, L) as the minimum
P.,max over all codes of M code words of length Nand all list decoding
schemes of list size L. Equation (4.38) clearly applies to the code and
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decoding scheme that achieves Pe,max(N, 111, L). Finally, since

(N ~ ~ ; 1) < N K ( 4.39)

We can rewrite (4.38) as

}> (N M L) > -N{E [In (!tIlL) _ K In N _In 4J
',max " exp 'I' N N N

(4.40)

+ . / 8 In e + In 4}
11 N VPmin N

We have chosen E > 0 to absorb the inequality in (4.39).
One more step will now complete the proof of Theorem 2. We show

that, in general,

P,(N, M, L) ~ !Pe,max(N, [M /2]+, L) (4.41 )

To see this, consider the code that achieves the minimum average error
probability P,( N, M, L). At least M /2 of these words must have
Ps.« ~ 2P,(N, M, L). This set of [M/2]+ code words with the original
decoding scheme then has Pe,max ~ 2Pe(N, AI, L). By definition, how-
ever, this P"ma" is greater than or equal to Pe,max(N, [llI/2]+, L)., thus
establishing (4.41) .

Substituting (4.40) into (4.41), we obtain (1.6), thus completing the
proof of Theorem 2.

In the proof of Theorem 2, it was not made quite clear why the
artifice of fixed composition codes had to be introduced. We started the
derivation of the bound by relating the error probability for a given
message, m, to the size of the decoding subset F( Ym), and then observ-
ing that at least one F( Ym) must be at most LIM. This last observation,
however, required that all Y m be measured with the same probability
assignment f. Unfortunately, a good choice of f for one code word com-
position is often a very poor choice for some other composition, and in
general, no choice of f is uniformly good. We eventually chose f as a
function of the parameter 8, but the appropriate value of 8 (i.e., that
which satisfies (4.28) with equality) is a function of the code word
composition q, making f. also implicitly dependent upon q.

The reliance of the bound on fixed composition codes is particularly
unfortunate in that it prevents us from extending the bound to con-
tinuous channels, channels with memory, and channels with feedback.
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In the first case the size of the input alphabet K becomes infinite, and
in the other cases IJ( 8) in (4.4) depends on more than just the composi-
tion of a code word. One way to avoid these difficulties is to classify code
words by the value of 8 for which (4.28) is satisfied with equality
but, so far, no general theorem has been proved using this approach.
These extensions to more general channels are possible, however, if the
channel has sufficient symmetry and we conjecture that the exponential
bound E.p(R) is valid under much broader conditions than we have
assumed here.

APPENDIX

PROPERTIES OF El$p(R)

Using (1.7) and (1.8) we can rewrite E,p(R) as

E,p(R) = max E(R, q)
q

E(R, q) = L.U.B. [Eo(p, q) - pRJ
p~O

(A.I)

(A.2)

Define l(q) as the average mutual information on the channel using
the input probabilities (ql, ... , qK),

K J P(j \ k)
l(g) = L L qJcP(j Ik) In K (A.3)

k'==l j==l L qiP(j Ii)
i:o=l

It has been shown by Gallager (1965, Theorem 2), that if 1(q) ~ 0,
then

Eo(pt q) ~ 0

o < aEo~:, q) ~ I(q)

a2
E o( p, q) ~ 0

(Jp2 -

(A.4)

(A.5)

(A.6)

with equality in (A.4) iff p = OJ in (A.5) if p = OJ and in (A.6) iff the
following conditions are satisfied:

( a) P(j Ik) is independent of k for those i. k such that q"P(i Ik) ~ o.
( L) The sum of the q" over inputs leading to output j with nonzero

probability is independent of j. It follows trivially from the same proof
that Eo(p, q) = 0 for all p ~ 0 if I(q) = O.
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Using these results, we can give E(R, q) parametrically as

E(R, q) = Eo(p, q) - p oEo~:, q) (A.7)

R = oEo(p, q) (A.8)
up

Equations (A.7) and (A.8) are valid for

lim dEo(p, q) < R < dEo(p, q) 1 = I(q) (A.9)
p-OO iJp iJp p.....O

also,

E(R, q) = 0 if R ~ l(q)

E(R, q) = 00 if R < lim oEo(p, q)
p-oo iJp

(A.I0)

(A.I] )

(A.12)

From (A.7) and (A.8), we have

dE(R, q)
aR = -p;

R = aEo(p, q)
up

If (A.6) is satisfied with strict inequality, then R in (A.8) is strictly
decreasing with p and from (A.12), E(R, q) is strictly decreasing with
R and is strictly convex U over the range of R given by (A.9).

We now observe from (A.tO) that if R ~ C = maxq I (q), then
E(R, q) = 0 for all q and EIJP(R) = o. Also if R < C, then for the q
that yields capacity, E(R, q) > 0 and thus E,p(R) > o. Finally, for a
given R in the range RrI) < R < C the q that maximizes E(R, q) satisfies
(A.9), and thus Esp(R) is strictly decreasing and strictly convex U in
this range.

Next suppose that Rcr i t = C. Then for some p* ~ 1, Eo(p*)jp* = C,
and thus for some q, Eo(p*, q)jp* = C. But since iJEo(p, q)jdp ~ C,
thisimpliesthatiJEo(p,q)jiJp = CforO ~ p ~ p* andilEo( p, q ) j iJp2 = 0
for 0 ~ p ~ p*. From (A.6) this implies that conditions (a) and (b)
above are satisfied for q yielding capacity. This in turn implies that
iJEo(p, q)/dp = C for all p and thus Roc = C. The same argument shows
that if Roc = C, conditions (a) and (b) above must be satisfied.

A BOUND ON JJ.k"

From (3.25), #J.k"(S) is the variance of the random variable Dk(j)
In [j(j)/P(j/k)] with the probability assignment
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(A.13)

If follows that S2p-k" (s) is the variance of sDk(j) with the same probability
assignment. From (A.13), however, we see that

D ( .) I Qsic ( j) + ()
8 Ic J = n P(j/k) #lie 8

(A.14)

Th US 8
2
JJIc" ( s) is also the variance of the random variable

In [Qsk(j)/P(j/k)] with the probability assignment Qsk(j). Since a
variance can be upper bounded by a second moment around any point,
we have

2 "( ) < ~ Q ( .) [I a:(j) I e J2s JJk S = ~ sic J n P( '/~) - n _ J .
J J C V Ps;«

(A.I5 )

where Pm in is the smallest nonzero transition probability on the channel
and the sum is over those j for which P(j/k) > o.

We next upper bound the right hand side of (A.I5) by maximizing
over all choices of the probability vector Qsk(j). There must be a maxi-
mum since the function is continuous .and the region is closed and
bounded. The function cannot be maximized when any of the Q.k(j) = 0,
for the derivative with respect to such a Qak(j) is infinite. Thus the
maximum must be at a stationary point within the region, and any
stationary point can be found by the LaGrange multiplier technique.
This gives us, for each j,

[
1 QSk(j)VP::::nJ2 + 2 I Q8k(j)V~ + '\ = 0 (A.16)
n P(j/k)e n P(j/k)e 1\

Solving for the logarithmic term, we obtain

(A.17)

There are two cases to consider: first where the same sign is used for
the square root for each i: and second when the positive square root is
used for some j and the negative for others. In the first case, all terms on
the left are equal, and Qsk(j) = P(j/k) to satisfy the constraint that
Qsk(j) is a probability vector. Then (A.i5) reduces to
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8
2
1l"" (8) s [In V;minJ (A.18)

In the second case, the left hand side of (A.17) is upper bounded by
Q,k(j) = 1, P(j/k) = P min , yielding -In eVPm in • From the right
hand side of (A.17), the terms using the negative square root can have a
magnitude at most 2 larger than the positive term. Thus

/ln Q'k( j )V Pminl 2 In -n«: I e (A19)
P(j/k)e ~ - eV min = n VPmin ·

Substituting (A.19) into (A.15) again yields (A.I8) completing the
proof.

PROOF THAT q, , f, YIELDS A SADDLE POINT FOR qkJl.k(S, f) (SEE (4.23»

From (4.22), we see that the right side of (4.23) is valid and also that

Lqk'~k(S,f.) = (1 - 8) In La}~(l-,). (A.20)
k j

In order to establish the left side of (4.23) we must show that

L qk, In [L P(j Ik)l-'f(j)'] - (1 - 8) In L a~~(1-,) s 0 (A.21)
k j j

Combining the logarithm terms, and using the inequality In z ~ z - 1
for z ~ 0 (taking In 0 as - ex) ), the left side of (A.21) becomes

~q In LiP(j Ik)1-Ij(j)" ~ L",iq",P(jlk)I-Ij(j)' _ 1 (A.22)
L....J k. (~ . ~I (I-,,) 1-, - ("'. ~/(1-'» 1-,
k LJJ Ct J• L...JJ Ct"

~ L f,(j)l-'f(j)' - 1 (A.23)
i

~ 0 (A.24)

when we have used (4.19) and then (4.20) to go from (A.22) to (A.23),
and used Holder's inequality to go from (A.23) to (A.24). This com-
pletes the proof.

PROOF THAT R(s, q) (SEE (4.25)) IS CONTINUOUS IN 8, 0 < 8 < 1

The problem here is to show that f, is a continuous vector function of 8.

It will then follow immediately that Pk( 8, f,) and PIc'(8, f.) are continuous
functions of 8, and then from (4.25) that R( 8, q) is a continuous func-
tion of 8 for fixed q.
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Eo(p, q) as given by (1.9) can be rewritten as

E (
s ) In '" ( )1J(1-.)o 1 _ 8' q = - £.; (X; 8, q

(l;(8, q) = L qi P(j Ik)l-'
Ie

421

(A.25)

(A.26)

Let q, be a choice of probability vector q that maximizes Eo(8/
(1 - 8), q). We show that (l;( s, q.), which is aj. as defined in (4.19), is a
continuous function of s, and it then follows from (4.20) that f. is a
continuous function of s. Since q, maximizes Eo(s/(I - s), q), we have

Eo(-1S ,q.) = -In min L a;(8, q)l/U-,) (A.27)
- S a("q) j

where the minimization is over the set of vectors a whose components
satisfy (A.26) for some choice of probability vector q. Since this is a
convex set of vectors and since L;a}/(l-,) is a strictlyconvex U function
of a for 0 < 8 < I, the minimizing a in (A.27) is unique and the strict
convexity tells us that for any s, 0 < S < I and for any E > 0 there
exists a 8 > 0 such that if

then

I (l;(s, q) - ai(s, q,) I ~ E/2; any j (A.28)

L aj(s, q)l/U-I> ~ L (lj(s, q.)l/(l-,) + 8
i j

(A.29)

Next we observe that Eo(s/(l - 8), q) is a continuous function of 8
with the continuity being uniform in q. It follows from this that
Eo(s/( 1 - 8), q,) is also continuous in 8. Also Qj(s, q) is continuous in
s, uniformly in q. It follows from these three statements that for a
given 8, 0 < 8 < 1, and for the given E, 8 above, there exists a 81 > 0
such that for I 81 - s I < 81 ,

I L aj( 81, q'l )1/(1-'1> - L ai( 8, q'l )1/U-,) I < 8/2 (A.30)
i i

I L aj(81 , Q'l)l/(l-'l) - L a;(s, q.)l/(1-,) I < 8/2 (A.3!)
j j

, ai( SI , q'l) - ai( S, q,!) I < E/2; all j (A.32)

Combining (A.30) and (A.3t), we see that (A.29) is unsatisfied
for q = q'1 ; thus (A.28) must be unsatisfied for all j and

I (li(S, q'l) - aj(s, q.) l < E/2; all i, '8 - S11 < 81 (A.33)
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Combining (A.32) and (A.33), we then have for allj

laj(sl,qS t ) -aj(s,qs)1 <E; Is- sl 1<~1 (A.34)

Thus (tj(s, q.) is continuous in B, completing the proof. Using other
methods, it can be shown that Clj(S, qo!) is a piecewise analytic function
of s.

RECEIVED: January 18, 1966

REFERENCES

ASH, R. B. (1965), "Information Theory." Interscience, New York.
BERLEKAMP, E. R. (1964), "Block Coding with Noiseless Feedback." Ph.D. The-

sis, Department of Electrical Engineering, M.I.T.
BHATTACHARYYA, A. (1943), On a measure of divergence between two statistical

populations defined by their probability distributions. Bull. Calcutta Moth,
Soc. 36, No.3, 99-110.

CHERNOFF, H. (1952), A measure of asymptotic efficiency for tests of an hypothesis
based on the sum of observations. Ann. Math. Statist. 23, 493.

ELIAS, P. (1955), "List Decoding for Noisy Channels." Tech. Rept. 335, Research
Laboratory of Electronics, M.I.T.

FANO, R. M. (1961), "Transmission of Information." M.I.T. Press, and Wiley,
New York.

FEINSTEIN, A. (1955), Error bounds in noisy channels without memory. IEEE
Trans. Inform. Theory IT-I, 13-14.

FELLER, W. (1943), Generalizations of a probability limit theorem of Cramer.
Trans. Am. Math. Soc. 64, 361.

GALLAGER, R. (1963), "Low Density Parity Check Codes." M.I.T. Press.
GALLAGER, R. (19650.), A simple derivation of the coding theorem and some appli-

cations. IEEE Trans. Inform. Theory IT-II, 3-18.
GALLAGER, R. (1965), "Lower Bounds on the Tails of Probability Distributions."

M.I.T. Research Laboratory of Electronics. OPR 77, pp. 277-291.
GILBERT, E. N. (1952), A comparison of signalling alphabets. Bell System Tech. J.

3,504-522.
HAMMING, R. W. (1950), Error detecting and error correcting codes. Bell System

Tech. J. 29, 47-160.
HELLIGER, E. (1909), Neue Begrundung der Theorie quadratiseher Formen von

unendlichvielen Veranderlichen. J. reine angew. Math. 136, 210-271.
JACOBS, I. M., AND BERLEKAMP, E. R. (1967), A lower bound to the distribution of

computation for sequential decoding. IEEE Trans. Inform. Theory IT-l3,
in press.

NEYMAN, J. AND PEARSON, E. S. (1928), On the use and interpretation of certain
test criterion for purposes of statistical inference, Biometrica lOA, 175, 263.

PETERSON, W. W. (1961), "Error-Correcting Codes." M.I.T. Press, and Wiley,
New York.

PLOTKIN, M. (1960), Research Division Report 51-20, University of Pennsylvania.



Discrete Memoryless Channels. I 423

Published in 1960 as: Binary codes with specified minimum distance. IEEE
Trans. Inform. Theory IT-6, 445-450.

REIFFEN, B. (1963), A note on "very noisy" channels. Inform. and Oontrol 8,
126-130.

SHANNON, C. E. (1948), A mathematical theory of communication. Bell Byatem
Tech. J. 27,379,623. Also in book form with postscript by W. Weaver, Univ.
of Illinois Press , Urbana, Illinois.

SHANNON, C. E. (1956), Zero error capacity of noisy channels. IEEE Trans.
Inform. Theory IT-I, 8.

SHANNON, C. E. (1958), Certain results in coding theory for noisy channels.
Inform. Controll, 6.

SUN, M. (1965), Asymptotic bounds on the probability of error for the optimal
transmission of information in the channel without memory which is sym-
metric in pairs of input symbols for small rates of transmission. Theory
Probab. Appl. (Russian) 10, no. 1, 167-175.



Lower Bounds to Error Probability for Coding
on Discrete Memoryless Channels. II

c. E. SHANNON· AND R. G. GALLAGER·

Departments oj Electrical Engineering and Mathematics, Research: Laboratory 01
Electronics, Massachusetts Institute of Technology, Cambridge,

Ma8Bachusetta 01139

AND

E. R. BERLEKAMPt
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New lower bounds are presented for the. minimum error probability
that can be achieved through the use of block coding on noisy discrete
memoryless channels. Like previous upper bounds, these lower
bounds decrease exponentially with the block length N. The co-
efficient of N in the exponent is a convex function of the rate. From a
certain rate of transmission up to channel capacity, the exponents of
the upper and lower bounds coincide. Below this particular rate, the
exponents of the upper and lower bounds differ, although they ap-
proach the same limit as the rate approaches zero. Examples are given
and various incidental results and techniques relating to coding
theory are developed. The paper is presented in two parts: the first,
appearing in the January issue, summarizes the major results and
treats the case of high transmission rates in detail; the second. ap-
pearing here, treats the case of low transmission rates.

1. ZERO RATE EXPONENTS

In this section we shall investigate the error probability for codes whose
block length is much larger than the number of codewords, N» M. We
assume throughout this section that the zero error capacity of the chan-
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nel, Co , is zero. We also assume that ordinary decoding is to be used
rather than list decoding, i.e., that the list size L is one.

Our basic technique will be to bound the error probability for a given
set of code words in terms of the error probability between any pair of
the words, say ~m and ~m' • We can apply the corollary to Theorem 1-5,
given by (1-3.20) and (1-3.21), as follows.' Let PI('ll) and P2('!j) in
Theorem 1-5 correspond to Pr ('Jll ~m) and Pr (y I~m') here, and let Y1

and Y2 in Theorem 1-5 correspond to the decoding regions Ym and Ym'

for the given decoding scheme here. The fact that some output sequences
are decoded into messages other than m or m' in no way effects the
validity of Theorem 5 or its corollary. From (1-3.20) and (1-3.21), the
error probabilities P•.m and Pe,m' for the given decoding scheme are
bounded by either

P e •m ~ ~ exp (""(8*) - 8* V2#L"(8*)} (1.01)

or

where

~(8) = InLPr(yl~m)1-3Pr(yl~m')'
v

( 1.02)

(1.03)

and 8* minimises 1J.( 8) over 0 ~ s ~ 1.
This result can be put into a more convenient form with the aid of the

following definitions.
The joint composition of ~m and ~m' , qi.k(1n, 1n') is the fraction of the

positions in the block in which the ith channel input occurs in codeword
~m and the kth channel input occurs in ~m' •

The function J.Li,k( s) is defined for 0 < s < 1 by

P-i.k(S) ~ InL,P(j\i)l-'P(j\k)·. (1.04)
j

As before,

and
}Li,k( 1) = lim lJ.i.k( 8).

8-+1-

1 References to equations, sections and theorems of the first part of this paper
will be prefixed by I.
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Using (1-3.10), ,..,,(s) in (1.03) can be expressed in terms of these defi-
nitions by

The discrepancy between z., and ;m' , D(1n, m'), is defined by

D(m, Ifn') ~ - min L L qi,k(m, m')pi,"(S). (1.06)
O~,~l i k

It can be seen that the quantity ""'(8*) appearing in (1.01) and (1.02) is
given by - ND( m, m'). The discrepancy plays a role similar to that of
the conventional Hamming distance for binary symmetric channels.

The minimum discrepancy for a code Dmin is the minimum value of
D( m, 1n') over all pairs of code words of a particular code.

The maximum minimum discrepancy, Dmin(N, M) is the maximum
value of Dm in over all codes containing M code words of block-length N.

THEOREM 1. If a;m and ;fm' are a pair of code words in a code of block-
length N, then either

p •.m ~ ~ exp -N [D(m, m') + I~ In (l/Pm i n ) ] (1.07)

or

where Pmin is the s1nallest nonzero transition. probability for the channel.
Proof. w« shall show that p," ( 8) is bounded by

p" (8) ~ N [In P~inl (1.09)

Then the theorem will follow from (1.01) and (1.02) by upper bounding
s* and (1 - 8*) by 1. To establish (1.09), we use (1-3.25), obtaining

" () ""' (.) [ P ( j Ik)J2 [' ()]2
I-!i.k 8 = Lr Q. J In PUI i) - I-!i.k 8 I (1.10 )

where Qs(j) is a probability assignment over the outputs for which
P(j Ik) and P(j Ii) are nonzero. Observing that

[In P(j Ik)/P(j Ii)1 ~ In (l/Pmin),

we can ignore the last term in (1.10), getting
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JJ.~k(S) ~ L Qs(j)[In (1/Pmin)]2 = [In (1/Pmin)]2.
j
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(1.11)

(1.12 )

Combining (1.11) with (1.05), we have (1.09), completing the proof.
Since the probability of error for the entire code of M code words is

lower bounded by P, ~ Pe.m/Ill for any m, it follows from the theorem
that

r. ~ 4~f exp - N [DOlin + V~ In P~iJ·
Conversely, we now show that there exist decoding regions such that

Ps,; ~ (Ill - 1) exp -NDm in for all 111,. ( 1.13)

These regions may be chosen as follows: From Theorem 1-5, there
exist decoding regions Y m(n!, 1n') and Ym'(11t, lit') for the code containing
only the codewords m and m' such that both PlI,m and Pe,m' are no greater
than exp - N DOlin . To decode the larger code, set Ym = nm, Y m( m, m').
Since the sets }"m are not overlapping, they are legitimate decoding sets.
Also, Y me = Um , } "m

C( nl , n/), and since the probability of a union of
events cannot exceed the sum of their probabilities, we have

r.; ~ L Pr (y I~m) ~ L :E Pr (y t ~m) (1.14)
lIE Y m C - m'rt!m lIE Y m C {m ,m ' ) -

~ (M - 1) exp - NDm in • (1.15 )

Combining (1.12) and (1.15) yields the first part of the following
theorem:

THEORE:\1 2. Let EM be defined by

lin;_~up - .~ In P.(N, M, 1).

Then

EM = lim sup Dillin l.'·, .11) = l.u.b, Dmi n (N, M)
N~~ N

(1.16 )
= lim Dm in (N, M).

N-oo

The second part of the theorem follows from the observation that we
can construct a code of block length AN from a code of blocklength N
hy repeating every word of the original code A times. The two codes
have equal qi,k( HZ, In') for all i, k, 111, In', and hence they have equal Dm in•
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Dmin(AN, ill) ~ Dmin(N, M). ( 1.17)

This implies the second part of the theorem. The third part follows from
( 1.17) and the fact that P fl( N, AI, 1) is nonincreasing with N.

Theorem 2 reduces the problem of computing EM to the problem of
computing Dmin(N, Ill). This computation is always easy for 1\1 = 2,
so we treat that case first. Recall from. (1.06) that - D( m, m') is the
minimum over s of a weighted sum of the Ili,k( s). This can be lower
bounded by the weighted sum of the minimums, yielding

-D(m, m') ~ L: L: Qi,k(,n, m') min JJ.i,k(S). (1.18)
i k O~8~1

with equality iff the same value of 8 simultaneously minimizes alllJ.i,k(8)

for which qi.k(m, 1n') > O. If we, set qi,k(m, m') = 1 for the i, k pair that
minimizes mino~8~1 }4i,k( 8), then (1.18) is satisfied with equality and at
the same time the right-hand side is minimized. We thus have

E2 = Dm in (N, 2) = max {- min J.'i,k(S)].
ilk O~,,~l

(1.19 )

It is interesting to compare this expression with the sphere packing
exponent E$p(R) in the limit as R -t O. If R~ = 0, some manipulation on
(1-1.7), (1-1.8), and (1-1.9) yields

Eap(O+) = lim Eo(p) = max - In L IT P(j' k)Qk (1.20)
o .....eo q i k

Comparing (1.20) with the definition of J.'.i,k(S) in (1.04), we see that
E 2 ~ E ap ( 0+) with equality iff the probability vector qthat maximizes
(1.20) has only 2 nonzero components.

Having found the pair of input letters i, k that yield E2 , it clearly does
not matter whether we set qi,k(1,2) = 1 or qk,i( 1,2) = 1. However, we
must not attempt to form some linear combination of these two optimum
solutions, for by making both qi,k(1, 2) and qk,i( 1, 2) nonzero we may
violate the condition for equality in (1.18). For example, suppose we
compare the following t\VO codes of block length N for the completely
asymmetric binary channel of Fig. I-56. The disastrous result is de-
picted below:

Code 1: ~1 = 1 1 1 1 1 1 1 1 1 1
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o 5 1/2

2

!- (42k"!" +
69 3

7ht)

..£. (21~1.+41,h.!.)
69 3 2

FIG. 1. A pairwise reversible binary input channel.

Code 2:

~2 = 2 2 2 2 2 2 2 2 2 2

~ N/2 ~ ~ N/2 ~

JIll 1 1 1 2 2 2 2 2

~2 = 2 2 2 2 2 1 1 1 1 1.

(1.21 )
all i, k.= L VP(j I i)P(j I k) In P(j Ik);

j

Using either code, an error will occur only if the received sequence con-
sists entirely of output letter 2. For Code 1t P e = !pN; for Code 2,
P _ ! N /2

p - 2P .
For a class of channels to be defined as pairwise reversible channels,

this sensitivity to interchanging letters does not occur, and for these
channels we shall soon see that the calculation of EM is relatively straight-
forward. A channel is pairwise reversible iff, for each i, k, #l; ,k(!) = O.
Differentiating ( 1.04), this is equivalent to

L YP(j I i)P(j \10 In [J( j I i)
j

Equation ( 1.21) is equivalent to Ilt",k(s) being minimized at s = ! for all
i, k. This guarantees that (1.18) is satisfied with equality and that a pair
of inputs in the same position in a pair of code words, ~m and lm' , can be
reversed without changing D( m, In').

The class of pairwise reversible channels includes all of the symmetric
binary input channels considered by Sun (196f» and Dobrushin (1962)
(which are defined in a manner that guarantees that Jli,k(S) = 1J.k,i(S)



430 C. E. Shannon, R. G. Gallager, and E. R. Berlekarnp

so

~~~_.----------...

___..,~ ~-.- 2

3~--_---5

3
2-;;:::=--~':'":---...c::...-4

6

FIG. 2. A pairwise erasing ternary input channel (nonuniform but pairwise
reversibIe) .

s0.9

0.1

o,......---------
~0.9

3-------~3 ko.l

FIG. 3. A ternary unilateral channel (TUG) (uniform but not pairwise re-
versible) .

for all s), and many other binary input channels, such as the one in
Fig. 1 (as the reader is invited to verify). For multi-input channels, there
is no relationship between the class of pairwise reversible channels and
the uniform channels discussed by Fano (1961, p. 126). The channel of
Fig. 2 is pairwise reversible but nonuniform; from any pair of inputs it
looks like a binary erasure channel. The channel of Fig. 3 is not pairwise
reversible even though it is uniform; from any pair of inputs it looks like
an asymmetric binary erasure channel.

For pairwise reversible channels, we may compute an exact expression
for E'M . To do this, we obtain a lower bound on Dmin(N, M) which can be
attained for certain values of N. The bound is derived by a method first
introduced by Plotkin (19ljl). For any pair of code words for a pairwise
reversible channel, ,ve have'

2 Readers who are familiar with the statistical literature will recognize the
expression for /Ji,Jc (l) as the measure of the difference between the distributions
P(jli) and P(;'lk) which was first suggested by Heiliger (1909) and later developed
by Bhattacharyya (1043).
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( 1.:.!2)

Since the minimum discrepancy cannot exceed the average dis-
crepancy,

D m i u (N, M) ~ M(lIfl _ 1) ~;o'~ Dt m, m'), ( 1.23)

The total discrepancy can be computed on a column by column basis,

M M N K K

L L D(nl.,1n') = - L: L L ltfi(n)Afk(n)~i'k(!),
ft, =1 If.' =1 n=l i=l k=l

(1.24 )

where 1\1k(n) is the number of times the kth channel input occurs in the
nth column. Let ill k* denote the number of times the kth channel input
occurs in the best possible column,

nU1X [-2: 2: 111;11fk~i,k (!)] = -2: 2: illi*llJk*~i'k(!) (1.25)
~ M k=M . k i k

Combining (1.2:3) through (1.2!l) results in a bound for pairwise re-
versible channels.

( 1.2G)

\Ve now show that this hound can be achieved when N = ill 1/Ilk M If *!
1"0 do this, we select the first column of the code so that it has the pre-
scribed composition, the kth channel input occurring M k * times. Then ,ve
choose as subsequent columns of the code all possible permutations of
t he first column. III the constructed code, every column contributes the
same maximum amount to the total discrepancy, assuring equality be-
tween (1.24) and (1.25). Every pair of codewords is the same distance
apart, assuring equality in (1.23). Because of these two facts, (1.26)
holds with equality when N = Ill!/ ( ilk AIk "t).

This construction can likewise be used for channels that are not pair-
wise reversible. The constructed code has the property that qi,k( m, In') =

qk.i( 111, 111,') = qi,k independent of m. and in', This guarantees that, for
this code, (1.06) is optimized by setting s = !, for #J.i,k(S) + #J.k,i(S)

alwuvs attains its minimum at s = !, even when ~i,k( s) does not.
However, it may be possible to improve upon this construction for

channels which are not pairwise reversible. We summarize these results
in a theorem, whose proof follows directly from Theorem 2, (1.26), and
the construction discussed in the preceding t\VO paragraphs.
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'fHEOREM 3.

n'.\, ~ 1j(/atf(1l1 - 1) max L L Al i Al k( -In L vI'(j/i) P(j/k»
!,MesM i k j

lcith equality for channels which are paincise reversible.
We next compare this result with Ee.t(O+), Gallager's (1965) lower

bound to E(O+), the error exponent at infinitesimal rates. Eez(O+) is given
by (1-1.29) and (1-1.30) as

Eex(O+) = max L L qiqk(-]n L Vl>(j/i)P(j/k», (1.27)
q i k j

where q is the probability vector specifying the composition of the code.
The vector q is unrestricted by the Diophantine constraints placed on
the vector M*/llf. (Here 1I1 k * is the kth component of M*). This ad-
ditional freedom can only increase Eex(O+). This proves the first of the
three corollaries.

COROLLARY 3.1. For pairioise reversible channels,

E"I ~ (Jfj(M - l»Eex(O+)

The evaluation of the expression on the right of Theorem 3 is compli-
cated by the Diophantine constraints on the components of the vector
ill. To first order in It1, however, these constraints may be ignored, as
indicated by the following corollary.

COROLLARY 3.2. For any channel,

EM ~ IJf/(ltl - I)Ecz (O+) - O(1/M2
)

4ltf(M - 1)

Here K is the number of channel inputs and /J.max. = maXi~k /J.i,k(!).

Since this corollary is not essential to the proof of Theorem 4, we omit
its proof. The details of the straightforward but tedious calculation are
given by Berlekamp (1964).

For the remainder of this section, we shall be primarily concerned with
the behavior of EM for very large M. We are especially interested in the
limit of EM as M goes to infinity, which we denote by the symbol E~ .

Since EM is a monotonic nonincreasing function of M, it is clear that
the limit exists. As a consequence of Corollaries 3.1 and 3.2, we have

COROLLARY 3.3. E'~ ~ Ee.t(O+) lvith equality for channels which are
pairwise reversible.
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This general inequality also follows directly from the definitions of
E; and Eex( 0+) without invoking Corollary 3.2.
'Ve now proceed to show that Corollary ~.:3 holds with equality even for
channels which are not pairwise reversible.

THEOREM 4. For any discrete memoruless channel Ei; = 1~'c.l(O+).

Remarks. The natural approach in attempting to prove Theorem 4
would be to attempt to calculate the average discrepancy on a column
bv column basis as in (1.24). This direct approach does not work for
channels that are not pairwise reversible, however, the difficulty being
that the value of 8 that determines D( m, nl') in (1.06) is not the same as
the value of s that minimizes #-Litk( s) for the pairs of letters in the two code
words.

We shall circumvent this difficulty by going through some manipula-
tions on a particular subset of the code words in a code. The argument is
rather lengthy and will be carried out as a sequence of 5 Lemmas. For
motivation, the reader is advised to keep the ternary unilateral channel
(TUC) of Figure 3 in mind throughout the proof. We begin by defining
a relation of dominance between code words.

DEFINITION. ~m dominates ~m' iff

( 1.2S)

Notice that either ~m dominates ~m' , or ~m' dominates ~m, or hoth.
This follows because

'(1)_ ' 1 ) _J.Li .k 2 - - JJ.k,i( 2 , ( 1.29)

( 1.30)

For the TUC the codeword consisting of all l's dominates any other
codeword which contains at least as many 2'8 as 3's, but it is dominated
by any other codeword which contains at least as many 3's as 2'8.

Notice that dominance is not necessarily transitive except when the in-
put alphabet is binary. In general, we may have ~ dominate ~' and ~'

dominate :I" without having ~ dominate ~" .
LEMMA 4.1. If lm dominates lm' , then

D( in, l1t') ~ L :E qi,k(m, 1n')[ - #Litk(!) - !#-L: ,k(~)).
i k

Proof. Recall from (1.06) that

D(m.,1n') = -min L L qi,k(1n, m')}Jl,k(S).
OS8~1 i k

( 1.06)
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The tangent line to a convex U function is a lower bound to the fune-
t ion, Taking this tangent to J,&i,k( s) at s = ~ yields

min L L qi,k( 11l, 1n' )J,&i,k( s )
O~8~1 i k

From the definition of dominance, (1.28), this linear function of s is
minimized at s* = 1.

q.e.d.
LEMMA 4.2. From an original code containing ill codewords, toe 1nay

extfact a subset of at least log2 1\1 codewords which fOr11t an "ordered" code,
in which. each icortl dominates every subsequent ioord.

Proof. We first select the word in the original code which dominates
the most others. According to the remarks following (1.28), this word
must dominate at least half of the other words in the original code. We
select this word as ~l in the ordered code. All words in the original code
which are not dominated by ;It are then discarded. From the remaining
words in the original code, we select the word which dominates the most
others and choose it as ~2 in the ordered code. The words which are not
dominated by l2 are then discarded from the original code. This process
is continued until all words of the original code are either placed in the
ordered code or discarded. Since no more than half of the remaining
words in the original code are discarded as each new word is placed in the
ordered code, the ordered code contains at least log2 J,1 codewords.

q.e.d.
Within an ordered code, every word dominates each succeeding word.

III particular, every word in the top half of the code dominates every word
ill the bottom half of the code. This fact enables us to bound the average
discrepancy between words in the top half of the code and words in the
xit tom half of the code on a column by column basis. Using this tech-

-rique, Lemma 4.3 gives us a bound to the minimum discrepancy of any
ordered code in terms of e.i«, and another term which must be investi-
gated further in subsequent lemmas.

I~El\I~fA ~.:t Consider any ordered code having 2ltf ioords of block length
N. The minimum discrepancy of this code is bounded by

M 2M

Dillin ~ L L D(1n, 11~')/J,12
II =1 TIl '=M+l
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( 1.:3:!)

(1.37 )

( 1.38)

and qt(n) = [q/ (n), ... , qKt(n) J is the composition of the nth column
(~r til; top half of the code (i .e., the kth channel input letter occurs Alqk t ( n)
times in the nth column. of the first 1V[ codeicords). Similorlu, qb( n) =

(ql'J( n), .. · , qKb(n)] is the composiiion of the nth column. of the botton" half
of the code.

Proof.

M 2M Dt m, 1n')
Dm i n s L: L: (1.33)

m=l m'=M+l M2

M 2 M K K ( ') [ 1 J
~ L: L: L: L: qi,k m'2

m,
- Uitk( 1/2) - ~ u: ,k(1/2) . (1.34)

111=1 m'=M+l i=l k=l M 2

K O\V for any values of i and k,
M 2 M ( ') N t ( ) b( )'" '" qitk m, ni =" qi n qk n (

LJ L...J LJ N 1.3S)
m=l m,=M+l M2 n=-l

because both sides represent the average number of occurrences of the
1"th letter in the top half of the code opposite the kth letter in the same
column of the bottom half of the code. Using this fact gives

1 N K K t b [ (1) 1 , (I)JDillin ~ N ~1 t; t; qi (n)qk (n) - uc: 2 - 2 u.., 2 · (1.36)

This bounds D m i n in terms of the vectors q'(n) and qb(n). We now
introduce the vectors g(n) and r( n) defined b"}" -

q(n) ~ ![qt(n) + qb(n)]

r(n) ~ ![qt(n) - qb(n)].

qt(n) = q(n) + r(n)

qb(n) = q(n) - r(n)

q/(n)qkb(n) = {qi(n) + ri(n)][qk(n) - rk(n)]
(1.39 )

= qi(n)qk(n) + ri(n)qk(n) - q/(n)rk(n).

Since q(n) is an average of the probability vectors qt(n) and qb( n),
q(n) is itself a probability vector. In fact, q(n) is just -the composition
vector for the nth column of the whole code. Since g(n) is a probability
vector.
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( 1.40)

(1.41 )

( 1.42)

Equation (1.40) follows from (1.27) and the definition of #J.i,k in (1.06).
Furthermore, since Il:,k(!) = -P.~.i(!), we have

L: L qi(n)qk(n)J.L:.k(!) = o.
i k

Substituting ( 1.39), (1.40), and (1.41) into (1.36) gives

Dm i n ~ Eex(O+) + N! t ~ L Iri(n)qk(n) - q/(n)rk(n) I
n=l I k

./ ~i'{~) + ~ ~;.k G) I
s E.AO+) + d'N" ~1 ~ ~ ITi(n)qk(n) - q;'(nh(n) I, (1.43)

where we have used the definition of dmax in (1.32). The remainder term
is bounded as follows:

L L Iri(n)qk(n) - q/(n)rk(n)1
i k

= L ITk(n)1 L Iqi(n)\ + \q/(n)\
k i

=2Ll rk(n )1
k

( 1.44)

( 1.45)

If:quation ( 1.45) follows from Cauchy's inequality which states that.

Lakbk s ot/LaA2Lb
k
2

•V k k

We have used c, = l,bk = Irk(n)l. Averaging (1.45) overallNcolumns
gives

N

liN L L L I ri(n)qk(n) - q/(n)rk(n) I
,,=1 i k

(1.46)
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by Cauchy. Substituting (1.37) into (1.46) completes the proof of
Lemma 4.3.

Lemma 4.3 bounds the minimum discrepancy in terms of the quantity

1 N K N

4N n; (; (q/(n) - qk
b(n»2 = liN Erk(n)2 = liN.?; r(n)2,

where we let r( n)2 denote the dot product of the K-dimensional vector
r( n) with itself.

To complete the proof of Theorem 4, we would like to show that
liN L:~=1 r(n)2 can be made arbitrarily small. Unfortunately, however,
the direct approach fails, because many columns may have substantially
different compositions in their top halves and their bottom halves. Nor
can this difficulty be resolved by merely tightening the bound in the
latter half of Lemma 4.3, for columns which are very inhomogeneous may
actually make undeservedly large contributions to the total discrepancy
between the two halves of the code. For example, consider a code for the
TlJ(} of Fig. 3. A column whose top fourth contains ones, whose middle
half contains twos, and whose bottom fourth contains threes contributes
-! In T10 - t In -h to the average discrepancy. We wish to show that the
minimum discrepancy for this channel is actually not much better than
- i In -1-0 - lIn 10' This cannot be done directly because of columns
of the type just mentioned. We note, however, that this column which
contributes so heavily to the average discrepancy between the top and
bottom halves of the code contributes nothing to discrepancies between
words in the same quarter of the block. It happens that all abnormally
good columns have some fatal weakness of this sort, which we exploit by
the following construction.

LEMMA 4.4. Given an ordered code with 2M uiords of block length N, tve
can [orrn a nelV rode u'ith M ioords of block length 2N by annexinq the

1
~~t-+~~2M

~l
f
~----2N----...

FIG. 4. Halving an ordered code.
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(~f + i)th word to the ith uiord jor all i = 1, ... , J! as shoion in Fig. 4.
The ne'w code has the following properties.

( 1) The new code is ordered.
(2) The minimum discrepancy of the new code is no smaller than the

minimum discrepancy of the original code.

, (1)~" 2( 3 ) Var (q ) - Var (q) = 4N ~l (q (n) - q (n + N))

(4 ) Var (q) s Var (q') < 1

where:
q(n) is the composition of the nth cotumn of the original code,

n = 1,2, ... ,N.
q'(n ) is the cornposition of the nth column of the new code,

n = 1,2, ... ,2N.
N

ij = liN L q(n)
n=-l -

-,
q

2N

1/2N L q'(n)
n==l -

Var (q) liN n~ (q(n) - q)2 = [~ ~ q(n)2] - rl

2N [1 2N ]
Var ('1') = 1/2N :; (q'(n) - ij? = 2N:; q'(n)2 - «'.

Proof of Property I. Let Q;,k(1n, 1n') be the joint composition of the
mth and m'th words in the new code, i.e., the fraction of times that the
ith channel input letter occurs in the mth word of the new code opposite
the kth channel input letter in the m'th word. By the halving construc-
tion which generated the new code (Fig. 4),

q; ,k(m, 1n') = ![qi,k( m, m') + qi,k( 111- + ill, 1n' + M)]. (1.47)

If m < ·m', then, in the original code

-L Lqi,k(m, m')~~.k(!) ~ 0
i k

Consequently, in the new code

-LLq;,k(1n,1n')~:,k(!) ~ O.
i k

(1.48 )
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Proof of Property 2. In the new code,

o'i«, m') = ![D(m, m') + D(m + M, m' + M)J.

Thus D' (m, m') can not be smaller than both D( m, m') and
D(m + M, m' + M).

Proof of Property 3. .q(n) = llq'(n) + q'(n + N»)

q = 2~ ~ (g'(n) + q'(n + N)] = ij' (1.49)

Var (q') - Var (q) = (2~ ~ q'(n)2) - (~ ~ q(n)2)

4~ i1 {2[q'(n)2 + q'(n + N)2] - (q'(n)

+ q'(n + N))2J (1.50)

1 N
= - L: ('1' (n) - q'(n +N) )2

•
4N n-l

Proof of Property 4. From Property 3, Var (q) ~ Var ('1'). Also, for
every n,

{q'(n)]2 = L: {qk'(n)]2 ~ 1 (1.51)
- Ie

1 2N

Var (9') ~ 2N ~ [q'(n)]2 ~ 1. (1.52)

We may now complete the proof of the theorem by iterating the
halving construction to prove Lemma 4.5.

LEMMA 4.5.

+ 2dm ax VI<.
Dmin(N, M) < E.,,(O ) + VUog (log M)t (1.53)

Proof. Starting from any original code containing M codewords of
block length N, we may extract a subset of 2(logOOgM)]- code words which
form an ordered code. This follows from Lemma 4.2 and the observation
that 2(lol(loIM)}- ~ logM. (Here {log(logM)]- is the largest integer less
than or equal to log (log M).)

We next halve the ordered code {log(log M)]- times. This gives us a
sequence of [log (log M)1- + 1 codes, starting with the original ordered
code and terminating with a degenerate code containing only one code-
word of block length N2(loa(lOgM»)-. Since the properties of Lemma 4.4
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( 1.54)

are hereditary, every code in the sequence is ordered and each code has a
minimum discrepancy no smaller than any of its ancestors (except the
final degenerate code, for which the minimum discrepancy is undefined).
The average variance of the column compositions of each of these codes
is at least as great as the average variance of the column compositions of
the preceding codes; yet the average variance of each code in the
sequence must be between zero and one. Consequently, this sequence of
[log (log M )]- + 1 codes must contain two consecutive codes for which
the difference in the variance of column compositions is less than
l/{log (log M)]-. The former of these two consecutive codes is non-
degenerate, and Lemma 4.3 applies, with

1 N K, b 2 1 N, , 2

4N ~1 r:; (qk (n) - qk (n ) = 4N ~1 (q (n) - q (n + N»

= Var(q') - Var(q) < 1/[log(logM)]-

q.e.d.
Theorem 4 follows directly from Lemma 4.5 and Theorem 2.

q.e.d.
Combining (1.53) and (1.12), we obtain an explicit bound on

Pe(N, M, 1).

[
+ 2dm ax y K

P.(N, M, 1) ~ exp - N E.X<O ) + y[log (log M)t
(1.55)

+ . /2 In _1_ +10 4MJ
11 N P m i n N

If we upper bound dmax , as given by (1.32) by

dmnx ~ 2 max '#J.i,k(! )1,
i,k

then (1.55) becomes equivalent to (1-1.17) and we have completed the
proof of Theorem 1-3.

Equation (1.55) has a rather peculiar behavior with M. On the other
hand, Pe(N, M, 1) must be a monotone nondecreasing function of AI,
and thus for any M greater than some given value, we can use (1.55)
evaluated at that given J.,f. It is convenient to choose this given M as
2vN"- , yielding

( 1..56)



Discrete Memoryless Channels. II

where

441

(1.59 )

( 1.60)

o4(N) = 2dmax vlK + . /2 In _1_ + In 2 + 2m 2 . (1.57)v (log N]- 'V N Pmin VN N

These equations can now be restated in a form similar to our other
bounds on Pc(N, M, 1).

THEOREM 5.

where

E (R) = {Eez(O+); R ~ 0
l r eX); R < 0

In 2
o3(N) = VN'

Proof. Observe that when M ~ 2VN we have R = (InM)jN ~

(In 2) / VN and (1.58) reduces to (1.56). For M < 2V N, (1.58) simply
states that Pt(N, M, 1) ~ o.

2. THE STRAIGHT LINE BOUND

We have seen that the sphere packing bound (Theorem 1-2) specifies
the reliability of a channel at rates above Rcr it and that the zero rate
bound (Theorem 1-3 or Theorem 5) specifies the reliability in the limit
as the rate approaches zero. In this section, we shall couple these results
with Theorem I-I to establish the straight line bound on reliability
given in Theorem 1-4. Actually we shall prove a somewhat stronger theo-
rem here which allows us to upper bound the reliability of a channel by a
straight line between the sphere packing exponent and any low rate, ex-
ponential bound on error probability.

THEOREM 6. Let E1r(R) be a nonincreasing junction of R (not neces-
sarily that given by (1.59», let o3(N) and o4(N) be nonincreasing with N
and let N 03( N) and N 04( N) be nondecreaeinq with N. Let R2 < R1 be non-
neqatiie numbers and define the linear function

E.,(Ro) = XE,p(R1 ) + (1 - X)E ,r( R2 ) ,

where E~fJ is given by (1-1.07) and A is given by

Ro == }..R1 + (1 - ).)R2•

(2.01 )

(2.02)
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Pe(N, It!, 1) ~ exp - N[E1r(R - o3(N» + o4(N)J (2.03)

is valid for arbitrary positive !If, N, then

PeeN, M, 1) ~ exp - NtEsz[R - 05(N)] + o6(N)} (2.04)

is valid for

where

R2 ~ R - os(N) ~ HI ,

o,,(N) = oleN) + o3(N) + R2/ l\T

o6(N) = o2(N) + o4(N) + ~ E1r(R2)

(2.05 )

(2.06)

(2.07 )

and ot(N) and o2(N) are given by (1-1.10) and R = (In llf)jN.
Rernarks. As shown in Figs, 5-g, P}sl( R) is a straight line JOIning

Ezr(R2 ) at R2 to E s p ( RI ) at R1 • It is clearly desirable, in achieving the
best bound, to choose RI and R2 so as to minimize Esl(R). If Elr(R) is
not convex U, it may happen, as in Fig, ~ that the best choice of R I , R2

depends on R.
Theorem 1-4 of the introduction is an immediate consequence of

Theorem 6, obtained by choosing Ezr(R) as in Theorem 5 and choosing

E si (R)

R 2 R
I

C

R

FIGS. 5-8. Geometric construction for Eal(R).
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R2 = o. The increased generality of Theorem 6 over Theorem 1-4 is non-
empty, however. In Theorem 8 we shall give an example of a low rate
bound for the binary symmetric channel in which E,T(R) behaves as in
Fig. 5.

The restriction in the theorem that E,r(R) be nonincreasing with R
is no real restriction. Since PeeN, M, 1) is nonincreasing with M, any
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R

FIG. 8

bound in which Elr(R) is increasing with R can be tightened to a bound
in which Elr(R) is not increasing. Likewise the restriction that Noa(N)
and No4(N) be increasing with N is not serious since any bound can be
weakened slightly to satisfy this restriction.

Proof. By Theorem I-I, we have

(2.08)

where N l + N 2 = Nand L is an arbitrary positive integer. Applying
the sphere packing bound, Theorem 1..2, to Pe(N 1 , M, L) and applying
(2.03) to Pe(N2 ,L + 1,1), we have

PeeN, M, 1) ~ exp { -N{E."Cn~/L - OI(NI»)+ oa(NI)]

(2.09)

- N a [ E1r Cn (~-:- 1) - oa(Na») + o4(Na)]} .

Using the expressions for ol(N) and 02(N) in (1-1.10), we see that
Noi(N) is increasing with N for i = 1, 2,3,4. Thus we can lower bound
(2.09) by

PeeN, M, 1) ~ exp { -NIE.,,(ln~/L - NO~~») - Noa(N)
(2.10)

_ N,Elr (In (L + 1) _ N03(N») _ N04(N )}
N 2 N 2
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This is valid for any positive integers Nt and N 2 summing to N, and
we observe that it is trivially valid if either Nt or N 2 is O.

We next get rid of the restrictions that L, N i , and N 2 be integers. Let
L be an arbitrary real number between Land L + 1. We can lower
bound the right-hand side of (2.10) byreplacinglnM/L withlnfl.fjL
and In (L + 1) with In L. Similarly, let N1 be an arbitrary real number
between N 1 and N, + 1. The right-hand side of (2.10) can b~ lower
bounded by replacing Nt with Nt . Finally, since N 2 ~ N - s, + 1, we
can lower bound (2.10) by replacing N 2 with N - Nt + 1. Making these
changes, we have

Pc(N, M, 1) ~ exp { -N1E.p en (MIL)N~ NOl(N»)

(2.11)

- N[02(N) + o.. (N)] - (N - N1 + l)Elr(ln L - _N03(N»)~
N - Nt + 1 If

Define X to satisfy

R - of>(N) = XRl + (1 - X)R 2 (2.12 )

From the restriction (2.05), X satisfies 0 ~ X ~ 1. Now choose N1 and
L by

Nt = XN (2.13)

In L = R2(N - J.V1 + 1) + No3(N). (2.14)

By rearranging (2.14), we see that the argument of E~lr in (2.11)
satisfies

In L - Noa(N)
N -Nt + 1 = R2 (2.15)

Likewise, using (2.12), (2.13), (2.14), and (2.06), the argument of
s.; in (2.11) is given by

In(111/£) - Not(N) 1[In M In L ]
IV

I
= ~ lr - N - oleN)

= ~ [ R- R{1 - A + ~) - ol(N) - o2(N)]

1
= X[R - R 2( 1 - X) - o5(N)] =Rt • (2.16)
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Substituting (2.15) and (2.16) into (2.11), \ve have

P.(N, M, 1) ~ exp - N {XE,p(Rl) + (1 - X+ ~) E ,r(R2 )

+ o2(N) + 04(N)}

Combining (2.12), (2.02), and (2.01), we have

E,,(R - o6(N)) = XE.p(R1 ) + (1 - X)E ,r(R2 )

(2.17)

(2.18 )

Finally, substituting (2.18) and (2.07) into (2.17), we have (2.04), com-
pleting the proof.

The straight line bound E s l ( R) depends critically on the low rate
bound E 1r ( R) to which it is joined. If the low rate bound is chosen as
Eoo , then the resulting straight line bound E.,(R) is given by Theorem
1-4. Plots of this bound for several channels are shown in Figure 1-4.

From the discussion following (1.20), we see that if C ~ 0 and Co = 0,
then E oo is strictly less than E.p ( 0+), and the straight line bound E81( R)
of Theorem 4 exists over a nonzero range of rates. Also it follows from
Theorem 7 of Gallager (1965) that Eez(R) is strictly convex U and there-
fore is strictly less than E s l ( R) in the interior of this range of rates.

There is an interesting limiting situation, however, in which E,z( R)
and Eez(R) virtually coincide. These are the very noisy channels, first
introduced by Reiffen (1963) and extended by Gallager (1965). A very
noisy channel is a channel whose transition probabilities may be ex-
pressed by

(2.19)

where r, is an appropriate probability distribution defined on the channel
outputs and IEj ,k I « 1 for all j and k. The function Eo( p) for such a
channel can be expanded as a power series in Ej,le • By neglecting all terms
of higher than second order, Gallager (1965) obtained

p
Eo(p) = 1 + pC, (2.20)

where the capacity C is given by

C = max! L rjlL qkE~,k - (L Q/eEj.k)2] (2.21)
q j k k
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The resulting random coding exponent is given by

Er(R)=(vC- VR)2 for C/4~R~C

= C/2 - R for R < Cf4.

We can calculate E~ in the same way

E':1O = max - L L qiqk In L yP(j I i)P(j I k).
q i k j

Using (2.19) and expanding to second order in E, gives

L yP(j I i)P{j I k) = L f.i( 1 + Ej,i/2 - E~.i/8)
j j

From (2.19) we observe that

L J'j'Ej ,k = 0 for all k
j

447

(2.23 )

( 2.24)

(1-1.18)

(2.2I> )

(2.26 )

L yP(j I i)fj(j 1 k) = 1 - 1L 1"j(E],i + E;'k - 2Ej,i Ej,k). (2.2i)
j j

From (2.:!7), (I -1.IS), and (2.22), \\re conclude that

E':1(J = C/2 = Er(O). (2.2S)

(2.29 )

Thus in the limit as the Ejk approach 0, the upper and lower bounds
to the reliability E( R) come together at all rates and (2.23) and (2.24)
give t he reliability function of a very noisy channel.

For channels which are not very noisy, the actual reliability may lie
well below the straight line bound from E~ to the sphere packing bound.
As a specific case in which these bounds may be improved, we consider
the binary symmetric channel.

This channel has received a great deal of attention in the literature,
primarily because it provides the simplest context within which most
coding problems can be considered. The minimum distance of a code,
dm i n , is defined as the least number of positions ill which any t\VO code
words differ. We further define d(N, 1\1) as the maximum value of dm i n

over all codes with 111 code words of length N. Here we are interested
primarily in the asymptotic behavior of d( N~ 111) for large Nand M and
fixed R = (In i1/) IN. The asumptotic distance ratio is defined as

lJ(R) ~ lim sup N! d(N, [eHN ]+).
N-.ae
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( 2.30)

(2.31 )

(2.32)

FIG. 9. Comparison of bounds on minimum distance for a binary symmetric
channel.

There are two well known upper bounds to 8(R), due to Hamming
(1950) and Plotkin (1951), and one well known lower bound due to
Gilbert (1952). These are given implicitly by

In 2 - H( 6(R)/2) ~ R (Hamming)

In 2 - 26(R) In 2 ~ R (Plotkin)

In 2 - H ( fJ( R) ) ~ R ( Gilbert) ,

where

H ( [,) = - [, In [, - (1 - a) In (1 - a). (2.33)

See Peterson (1961) for an excellent discussion of these bounds.
Here we shall derive a third upper bound to fJ(R), derived by Elias in

1960 but as yet unpublished. As shown in Fig. 9 the Elias bound is
stronger than either the Hamming or Plotkin bounds for 0 < R < In 2.
It should be observed, however, that this superiority applies only to the
asymptotic quantity, 8(R). For sufficiently small values of N, M there are
a number of bounds on deN, M) which are stronger than the Elias
bound.

THEOREM 7 (Elias).

(2.34 )

where "R 1·8 given by

In 2 - H('Xtt ) = R; (2.35 )

Before proving this theorem, we shall discuss the relationship between
['(R) and the reliability function E(R). Suppose that a code contains
two code words at a distance d apart. From 1-3.10, IJ(8) for these two
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words is given by d In [p'ql-, + q'pl-,], where p is the cross-over proba-
bility of the channel (see Fig. I-5a) and q = 1 - p, This is minimized
at s = !, and from (1-3.20) and (1-3.21), one of the code words has an
error probability bounded by

P.,,,. ~ ~ exp [d In 2ypq -1I1 In ~J. (2.36)

where we have used (1.11) in bounding p,"(!).
Next, for a code with 2M code words of block length N, we see by

expurgating M of the worst words that at least M code words havea
distance at most deN, M) from some other code word. For such a code

P. ~ ~ exp [ -d(N, M) In 2 Vpq - Vd(N, M)/2 In ~J. (2.37)

Combining (2.37) with (2.29), we obtain

rs», M, 1) ~ exp -N(6(R) In 2 y'pq + o(N)] (2.38)

E(R) ~ 8(~) In 4pq. (2.39)

Conversely, if a code of block length N has minimum distance lJ(R)N,
then it is always possible to decode correctly when fewer than !6{ R)N
errors occur. By using the Chernov (1952) bound, if p < !6( R), the
probability of !6(R)N or more errors is bounded by

P. ~ exp - N[ - 8~R) In p - (1 -8(:)) In q - He~R))] (2.40)

E(R) ~ - 8<:) In p - (1 - 8<:)) In q - H e<:)). (2.41)
For more complete discussions of techniques for bounding the error

probability on a binary symmetric channel, see Fano ( 1961), Chap. 7 or
Gallager ( 1963), Chap. 3. The bounds on reliability given by (2.39) and
(2.41) are quite different, primarily because it is usually possible to de-
code correctly when many more than !6(R)N errors occur. As p be-
comes very small, however, the minimum distance of the code becomes
increasingly important, and dividing (2.39) and (2.41) by -In p, we see
that

~(R) = lim E(R)
2 p-+O -In p ·

(2.42)
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FIG. 10. Construction for Elias bound.

Along with (2.42), there are several other interesting connections be-
tween E(R) and lJ(R). For example, if one could show that o(R) was
given by the Gilbert bound (2.32) with equality, then upon substituting
(2.32) into (2.39) one would find an upper bound for reliability which is
equal to the lower bound E ex ( R) over the range of rates for which
Eex(R) > Er(R). By combining this with Theorem 6, E(R) would be
determined for all rates and would be equal to the known lower bound to
E(R). Thus the question of determining E(R) for the BSC hinges
around the problem of determining ~(R).

Proof of Theorem 7. The proof of the Elias bound combines the argu-
ments of Plotkin and Hamming in an ingenious way. For any integer L,

o ;;; L s N /2, there are ::E;=G (~) binary N -tuples within a sphere of

radius L around any given code word (i.e., N-tuples that have a distance
L or less from the code word). For M code words, these spheres contain

M ::Ef-o (~) N-tuples, counting an N-tuple once for each appearance

in a sphere. Since there are only 2N different binary N-tuples, some criti-
cal N -tuple must appear in at least A spheres where

(2.43)

Thus this critical N -tuple contains at least A code words within a sphere
of radius L around itself.
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For the remainder of the proof, we consider only these A code words
and we assume that L is chosen so that A ~ 2. For convenience we trans-
late these code words by subtracting the critical word from each of them.
Each of the A translated code words then has at most Lones.

We next list the A translated code words as in Fig. 10. Let U; denote
the number of ones in the nth column Zn , the number of zeroes. The total
number of ones in the A X N matrix of Fig. 10 may be computed either
by summing along the columns or along the rows. This gives

( 2.44)
n

We now compute the total distance among the (:) pairs of translated

code words. The contribution to the total distance from the nth column
is llnZn . Consequently,

(2.45 )

Since the minimum distance cannot exceed the average distance, we
have

(2.46)

(2.48)

The function L~=l Un(A - [In) is a concave function of the U« , and
is therefore maximized, subject to the constraint (2.44), by making the
partial derivation with respect to U'; a constant. Thus the maximum
occurs with U; = AL/N for all 11,:

2NA2 (I~)(l L)
N - N = 2N(LIN)(l - LIN)

A(A - 1) (2.4'7-)

(1 + A ~ 1)
d . 1
~ < 2(L/N)(1 - LIN) + ---N = 2(A-l)·

Since (2.48) is valid for any L such that A ~ 2, L can be chosen so
as to optimize the bound. In the theorem, however, we are interested in
asymptotic results for fixed R, large N, and M = [eN R]+. First we lower
bound A.
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Shannon" has shown that

(~) ~ [8L(N - L)/Nl-1/2 exp NH(L/N). (2.49)

The first term is lower bounded by taking L = N /2, yielding

~ (~) > (~) ~ V~N exp NH(L/N). (2.50)

Next, choose J~ to satisfy

H (L J~ 1) < In 2- InNM + ~ I~N ~ H (t). (2.51 )

(2.52)

Observe that for any fixed R > 0, this will have a solution for large
enough N. Combining (2.43), (2.50), and (2.51) we obtain

jj:L [3 ] N
A > V 2N exp "2 In N = v"2

Next recalling- thp definition afAR in (2.35), the left-hand side of (2.51)
becomes

(2.53)

3llll:e II rs a concave n function, we can combine (2.53) with the result
that fl(!) ~ In 2 to obtain

~ -=-! < X
R

+ (~ In N)[ln 2- H(}..R)]
N 2 N ! - AR

Substituting (2.52) and (2.54) into (2.48), we have

d(~M) s 2XR (l - XR ) + o(N) I

(2.54)

(2.55 )

where o(N) can be taken as

(N) = 3 In N (Ill 2 - H(XR)) + ~ + 1 (2.56)
oN! - ~R N.y2N - 2'

If we now substitute the Elias bound (2.34) into (2.39), we get a new
upper bound on reliability given by:

THEOREM 8. For a binary symmetric channel, an upper bound on relia-

3 C. E. Shannon, unpublished seminar notes, M. I. T., 1956. For a published
derivation, see Ash (1965), p. 113.
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bility is given by

E(R) ~ E,r(R)

uihere ~R is given by (2.35).

RECEIVED: January 18, 1966

453

(2.57 )
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Letter to Vannevar Bush, February 16, 1939

Claude E. Shannon

Dear Dr. Bush,

Off and on I have been working on an analysis of some of the fundamental properties of
general systems for the transmission of intelligence, including telephony, radio, television,
telegraphy, etc. Practically all systems of communication may be thrown into the following
form:

II (t) is a general function of time (arbitrary except for certain frequency limitations)
representing the intelligence to be transmitted. It represents, for example, the pressure-time
function in radio and telephony, or the voltage-time curve output of an iconoscope in television.

T is a transmission element which operates onfl (t) through modulation, distortion, etc. to
give a new function of time F(t), which is actually transmitted. F(t) in radio and television is
the electromagnetic wave sent out by the transmitter, and in general need not be at all similar to
,fl (t), although, of course, they are closely related. I consider T to be a mathematical operator
which transforms j', into F, thus F(t) = T(fl (rj ],

F(t) enters the receiving element R and is there transformed into a third function of time
f 2 (t) which should be as closely similar to f I (t) as possible. In an ideal system it would be an
exact replica. A fundamental theorem on the subject, which so far as I can determine has not
been rigorously proved before, is that there is no system of communication of this type which
will transmit an arbitrary f. with absolute fidelity without using an infinite frequency spectrum
for the intermediate function F. This fact necessitates the mathematical definition of what we
should call the "distortion" between two functions 11 and [ : that can be applied to any
functions, for since we never can reach perfection we must have some measure of how far away
we are. Previous definitions are entirely inadequate, for example percent harmonic distortion
can only be applied when II is a pure sine wave lasting forever, and entirely neglects other
types of distortion.

I propose the following as a definition of "distortion": Dt ] , '/2) between any two
functions of time f I and 12

h~t)rdt

where A =

00

f [fa (1) ] 2 dl and B =

00

f [/2 (1)]2 dt . This rather wicked looking

formula is really a kind of root-mean-square error between the functions after they have been
reduced by the factors A and B, so that they contain the same energy. It possesses several
useful properties: if the only distortion is harmonic distortion of a small amount this formula
gives the percent harmonic distortion according to the usual formula.

Also, if f 2 is exactly like I I except for a small amount of random noise (e.g. static) the
formula gives the percent of the random noise, which has been found experimentally to
measure the psychological distortion. In speech transmission we might think that a better
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measure of distortion would be found by taking the root-mean-square error in the frequency
spectrum ofI, and 12' Actually it can be shown that the two results will always be the same,
that although the ear operates on a frequency basis and the eye (television or facsimile) on an
absolute value basis we can use the same measure for distortion.

With this definition I have been trying to prove the following theorem: for any operators
T,R the length of an arbitrary message II multiplied by its essential spectrum and divided by
the distortion of the system is less than a certain constant times the time of transmission of F
multiplied by its essential spectrum width or - roughly speaking - it is impossible to reduce
bandwidth times transmission time for a given distortion.

This seems to be true although I do not have a general proof as yet (I can prove it for certain
types of operators D.

The idea is quite old: both Hartley and Carson have made statements of this type without
rigid mathematical specifications or proof. It is by no means obvious, however. You might
think of a transmitting element T which made a Fourier spectrum analysis of the input wave f I ,

divided each frequency component by ten, combined these new frequencies to give a function F
using a band only one tenth as wide, and transmitted the function. R would perform the reverse
operation.

Such a system would be used to reduce the bandwidth of television signals, for instance.
This particular system has a theoretical faJlacy, but I am not sure that all such systems do.

There are several other theorems at the foundations of communication engineering which
have not been thoroughly investigated.

Of course, my main project is still the machine for performing symbolic mathematical
operations; although I have made some progress in various outskirts of the problem I am still
pretty much in the woods, so far as actual results are concerned and so can't tell you much
about it. I have a set of circuits drawn up which actually will perform symbolic differentiation
and integration on most functions, but the method is not quite general or natural enough to be
perfectly satisfactory. Some of the general philosophy underlying the machine seems to evade
me completely...

Claude Shannon



Circuitsfor a p.e.M. Transmitter and Receiver-

Claude E. Shannon and B. M. Oliver

Abstract

Circuits are described for a P.C.M. transmitter and receiver. The transmitter operates
on the principle of counting in the binary system the number of quanta of charge
required to nullify the sampled voltage.

* Bell Laboratories Memorandum, June 1, 1944.
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SOME TOPICS IN INFORMATION THEORY

C. E. SHANNON

Previous work in communication theory [2] has shown that amount of informa-
tion for purposes of communication has a natural measure in terms of entropy
type formulas H = - 2:p log p. This has led to theorems giving the most ef-
ficient encoding of the messages produced by a stochastic process into a standard
form, say a random sequence of binary digits, and for the most efficient use of an
available communication channel. However, no concept of information itself was
defined. It is possible to formulate an approach to the theory in which the in-
formation sources in a communication network appear as elements of a lattice.

The leading idea is that any reversible translation of the messages produced by
a stochastic process, say by a non-singular finite state transducer, should be re-
garded as containing the same information as the original messages. From the
communications point of view, knowledge of the Morse code translation of the
text originating at a telegraph office is equivalent to knowledge of the text itself.
Thus we consider the information of a source to be the equivalence class of all
reversible translations of the messages produced by the source. Each particular
translation is a representative of the class, analogous to describing a tensor by
giving its components in a particular coordinate system.

Various theories may be obtained depending on the set of translation oper-
ations allowed for equivalence. Two choices lead to interesting and applicable
developments: (1) the group of all finite state transducers (allowing effectively
positive or negative delays), (2) the group of delay free finite state transducers,
in which it is required that the present output symbol be a function of the
present and past history of the input, and similarly for the reverse transducer.

The first case is the simplest and relates most closely to previous work in which
unlimited encoding delays at transmitter and receiver were allowed. A transitive
inclusion relation between information elements, x ~ y, (inducing a partial
ordering) means that y can be obtained by operating on x with some finite state
transducer (not necessarily reversible). The entropy of a source (which is in-
variant under the group of reversible transducers) appears as a norm monotone
with the ordering. The least upper bound for two elements is the total information
in both sources, a representation being the sequence of ordered pairs of letters
from the two sources. A greatest lower bound can also be defined, thus resulting
in an information lattice. There will always be a universal lower bound, and if the
set of sources considered is finite, a universal upper bound. The lattices obtained
in this way are, in general, non-modular. In fact, an information lattice can be
constructed isomorphic to any finite partition lattice.

A metric can be defined by p(x, y) = Hz(y) + H lI (x ) satisfying the usual
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requirements. This introduces a topology and the notion of Cauchy convergent
sequences of information elements and of limit points. If convergent sequences
are annexed to the lattice as new points, withcorresponding modifications of the
definition of equality, eto., there result continuous lattices, for example the set
of all the abstractions of the total information in the system by finite state
transducers, or limiting sequences of such transducers.

The delay free theory leads also to a lattice but the problems, while perhaps
more important in the applications, are less well understood. The entropy of a
source is no longer sufficient to characterize the source for purposes of encoding,
and in fact an infinite number of independent invariants have been found. Certain
of them are related to the problem of best prediction of the next symbol to be
produced, knowing the entire past history. The delay free theory has an appli-
cation to the problem of communication over a channel where there is a second
channel available for sending information in the reverse direction. The second
channel can, in certain cases, be used to improve forward transmission. Upper
bounds have been found for the forward capacity in such a case. The delay free
theory also has an application to the problem of linear least square smoothing and
prediction [1]. A minimum phase filter has an inverse (without delay) and there-
fore belongs to the delay free group of translations for continuous time series.
The least square prediction problem can be solved by translating the time series
in question to a canonical form and finding the best prediction operator for this
form.
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Concavity of Transmission Rate as a Function of Input Probabilities*

Claude E. Shannon

Abstract

In a discrete noisy channel without memory, the rate of transmission R is a concave
downward function of the probabilities Pi of the input symbols. Hence any local
maximum of R will be the absolute maximum or channel capacity C.

* Bell Laboratories Memorandum, June 8, 1955.
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The Rate of Approach to Ideal Coding*

Claude E. Shannon

Abstract

Let C be the capacity of a noisy discrete channel without memory. Consider codes for the
channel consisting of 2Hn sequences, each sequence being n symbols long. The basic coding
theorem for a noisy channel states that by taking n sufficiently large it is possible to find codes
such that both ~ = C - H and the probability of error after reception, PE, are arbitrarily small.
This paper is concerned with the problem of estimating the necessary value of 11 as a function of
PE and A. Both upper and lower bounds are found in fairly general cases. The upper and lower
bounds for n approach each other percentage-wise as tJ. and PE approach zero, giving an
asymptotic formula for n. Various special cases are investigated in detail, such as the
symmetric binary channel and the flat gaussian channel.

* Proceedings Institute of Radio Engineers, volume 43, 1955.
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The Bandwagon*

Claude E. Shannon

Information theory has, in the last few years, become something of a scientific bandwagon.
Starting as a technical tool for the communication engineer, it has received an extraordinary
amount of publicity in the popular as well as the scientific press. In part, this has been due to
connections with such fashionable fields as computing machines, cybernetics, and automation;
and in part, to the novelty of its subject matter. As a consequence, it has perhaps been
ballooned to an importance beyond its actual accomplishments. Our fellow scientists in many
different fields, attracted by the fanfare and by the new avenues opened to scientific analysis,
are using these ideas in their own problems. Applications are being made to biology,
psychology, linguistics, fundamental physics, economics, the theory of organization, and many
others. In short, information theory is currently partaking of a somewhat heady draught of
general popularity.

Although this wave of popularity is certainly pleasant and exciting for those of us working
in the field, it carries at the same time an element of danger. While we feel that information
theory is indeed a valuable tool in providing fundamental insights into the nature of
communication problems and will continue to grow in importance, it is certainly no panacea for
the communication engineer or, a fortiori, for anyone else. Seldom do more than a few of
nature's secrets give way at one time. It will be all too easy for our somewhat artificial
prosperity to collapse overnight when it is realized that the use of a few exciting words like
information, entropy, redundancy, do not solve all our problems.

What can be done to inject a note of moderation in this situation? In the first place, workers
in other fields should realize that the basic results of the subject are aimed in a very specific
direction, a direction that is not necessarily relevant to such fields as psychology, economics,
and other social sciences. Indeed, the hard core of information theory is, essentially, a branch
of mathematics, a strictly deductive system. A thorough understanding of the mathematical
foundation and its communication application is surely a prerequisite to other applications. I
personally believe that many of the concepts of information theory will prove useful in these
other fields - and, indeed, some results are already quite promising - but the establishing of
such applications is not a trivial matter of translating words to a new domain, but rather the
slow tedious process of hypothesis and experimental verification. If, for example, the human
being acts in some situations like an ideal decoder, this is an experimental and not a
mathematical fact, and as such must be tested under a wide variety of experimental situations.

Secondly, we must keep our own house in first class order. The subject of information
theory has certainly been sold, if not oversold. We should now tum our attention to the
business of research and development at the highest scientific plane we can maintain. Research
rather than exposition is the keynote, and our critical thresholds should be raised. Authors
should submit only their best efforts, and these only after careful criticism by themselves and
their colleagues. A few first rate research papers are preferable to a large number that are
poorly conceived or half-finished. The latter are no credit to their writers and a waste of time to
their readers. Only by maintaining a thoroughly scientific attitude can we achieve rea) progress
in communication theory and consolidate our present position.

* IEEE Transactions Information Theory, volume 2, March 1956.
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Notes to Part A

The first paper, [37], is Shannon's classic paper, by far his greatest. and one of the
cornerstones of twentieth-century science (see the remarks in the Preface to Part A). It
appeared in 1948 in two parts in the Bell System Technical Journal. In this remarkable paper
Shannon presented the world with a new and exciting discipline which would be known as
"information theory" and sometimes as "Shannon theory." The theory and results that were
presented here were the culmination of nearly a decade of research and refinement, the
publication having been delayed by Shannon's participation in the war effort.

In this paper Shannon fonnutated his paradigm for the communication problem which is
represented by the famous block diagram:

INFORMATION
SOURCE

DESTIN ATION

Diagram of general communication system

He then introduces the tools and techniques that enable him to establish his fundamental
theorems. Although these theorems are quite general and powerful, this paper was hardly the
end of the matter. There remained many interesting and important questions to be answered,
Furthermore the subject of information theory turned out to be especially rich. As questions
were answered, many more questions and problems appeared to take their place. Almost
immediately. scholarly groups organized meetings to discuss research issues in information
theory. Within a few years of the publication of Shannon's paper, the Institute of Radio
Engineers (now the Institute of Electrical and Electronic Engineers - the "IEEE") formed a
"professional group" on information theory. most of the work of which was inspired directly
or indirectly by Shannon' s theory. The group is today the 6000-member IEEE Information
Theory Society ~ and its 40 years of "Transactions" contain thousands of research papers, with
the rate of publication still increasing. In addition there are many national information theory
societies, each with its journal and meetings. Among the many books that have been written on
Shannon theory are Berger [Berg71], Blahut [Blah87]. Cover and Thomas [CoTh9]], Csiszar
and Komer (CsKo81], Gallager [GaIl68], Gray [Gray90], Jelinek [Jeli68], McEliece [McEI77]
and Wolfowitz [WoIt78].

In the decade following 1948. Shannon himself was the research leader in the field that he
had founded. Most of the remaining papers in Part A represent either Shannon' s information
theory research or his efforts to explain and publicize the theory. In what follows we will
enumerate the areas that he studied in his 1948 paper. As we shall point out. Shannon's later
research papers developed certain of these areas more fully. We will also give a brief (and of
course highly abridged and subjective) indication of some of the research by others that bears
strongly and directly on issues discussed by Shannon.

The 1948 paper [37) begins with a discussion of what are now called "constrained-input
noiseless channels." and the main result is an expression for the capacity of such channels in
terms of the largest eigenvalues of a matrix that defines the input constraints. Shannon himself
did not publish anything further on this issue. Such channels occur in the study of magnetic
recording. and Shannon's influence was heavily felt in research in this area - see [Blah8?],
Chap. 2.
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In the next several sections of the paper, Shannon gets down to business with a discussion
of information sources and the concept of entropy. He obtains his entropy measure of
uncertainty using an axiomatic approach. For a detailed treatment of subsequent work in this
direction, see Aczel and Dar6czy [AcDa75]. He discusses the English language as an
information source, and gives an estimate of its entropy as no more than about 2.3 bits/per
letter. In paper [69], Shannon gave a better upper bound of about 1 bit/letter, For later work on
this subject, see Cover and King [CoKi72] and Savchuk [Savc64], and the references therein.
In these sections, Shannon establishes what we now call the asymptotic equipartition property
(AEP), which was extended by McMillan [McMi53] and Breiman [Brei57]. The concept of
entropy continues to play an important role in the development of ergodic theory (see Shields
[Shie73] and Gray [Gray90]). The AEPestablishes that the entropy of an information source is
the minimum binary rate at which the source can be represented in an error-free manner.
Hundreds of research papers have since been published concerning both the theoretical and
practical aspects of so-called "entropy coding". See Blahut [Blah39] and Cover and Thomas
[Coth91] for references.

The final sections of the first installment of the paper are devoted to discrete noisy channels,
the notion of channel capacity, and the celebrated theorem that transmission at any rate less
than capacity is possible with negligible error probability (and conversely that reliable
transmission at rates greater than capacity is not possible). It is this aspect of the Shannon
theory which inspired the greatest amount of research during tha next forty years. One
direction that was explored by many researchers was to obtain estimates of the rate of approach
to error-free coding as the coding-delay grows to infinity. Early results were obtained by Rice
[Rice50], Elias [Elia55], Shannon himself [Ill], [II7J, [122], [123] and Gallager [Ga1l65]. See
also Blahut [Blah87] and references therein.

Another direction was attempts to construct explicit and practical coding schemes. This
was and is a vast research area in which Shannon himself never participated. See MacWilliams
and Sloane [MaSl77] and references therein.

Shannon himself wrote two papers which would later set off another large body of research.
The first is his paper on "zero-error capacity" [109]. Here he formulated the notion of zero-
error capacity, and obtained bounds on this quantity. In this paper he left open a challenging
question concerning the zero-error capacity of a certain channel with five inputs and outputs, or
equivalently of the graph consisting of a single pentagon. This problem was finally solved by
Lovasz ([Lova79]; see also [Haem79]) who showed that the zero error capacity of the pentagon
is -f5, and gave a method for obtaining an upper bound on the capacity of an arbitrary graph.
Lovasz's method turns out to be closely related to the Delsarte linear programming bound for
subsets of an association scheme (see [McEI79], [McRR78], [Schr79]).

The "zero-error capacity" paper [109] also contains one of Shannon's most celebrated
results, that the capacity of a discrete memoryless channel is not increased by feedback. The
notion of two-way communication is further elaborated on in Shannon's paper [119], and a host
of papers by many other researchers. In fact these papers are the precursors of the entire area
that we call today multiple-user information theory. See Blahut [Blah8?], Cover and Thomas
[CoTh91], Csiszar and Komer [CsK081], McEliece [McEI77], Wyner [Wyne74] and Section
III of Slepian [Slep74].

The second installment of [37] is concerned with continuous sources and channels,
especially Gaussian channels and sources. He introduces the notion of differential entropy and
gives the "entropy-power" inequality (a correct proof of which was later given by Starn
[Stam59]).
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The ~ 'sampling theorem" given in § 19 of [37] has often been referred to in the literature as
the Shannon sampling theorem (or the Whittaker-Kotel'nikov-Shannon sampling theorem),
although as Shannon himself indicates, immediately following the theorem, this was already a
well-known result. In fact, the theorem, and the formula that expresses a function in terms of
its sample values (usually called the "cardinal series") have a very long history - see for
example Higgins [Higg85], Jerri [Jerr77].

As a consequence of the sampling theorem it is possible to represent a signal of bandwidth
Wand with almost all of its energy confined to a time interval of T seconds by a single point in
2WT-dimensional Euclidean space (§ 19 of [37]). This leads naturally to the question of how
many 2 WT-dimensional billiard balls can be packed into a large sphere in that space [40]. For
a current account of such packing problems see Conway and Sloane [CoSI88].

At the end of [37], Shannon gives a very brief treatment of what we now call rate-distortion
theory. Shannon himself wrote several subsequent papers that relate to this part. Paper [43] is a
detailed treatment of the continuous Gaussian channel, and includes a geometric proof of the
coding theorem and the famous "water-filling" solution for the capacity of the colored-noise
channel. Paper [117] is a very detailed study of the error probability for optimal codes on the
Gaussian channel. Finally, in paper [118]" Shannon returned to rate-distortion theory, giving
this subject a finn theoretical basis.

The third paper in this section, [14], is a hitherto unpublished and originally secret Bell
Labs memorandum" which gives a mathematical proof that the Vemam encryption scheme is
perfectly secure, and then describes an analogous scheme for continuous functions (speech, for
example). Today, nearly fifty years later, speech encryption is a flourishing business. For
descriptions of current techniques see Beker [Beke85], Gersho and Steele [GeSt84], Wyner
[Wyne79, Wyne79a], or any of the annual CRYPTO conference proceedings, for example
Menezes and Vanstone [MeVa91].
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Preface to Shannon's Collected Papers (Part B)

Besides creating the subject of information theory (see Preface to Part A), Shannon also
started the whole subject of logical circuit design and wrote the seminal paper on computer
chess, as well as several other fundamental papers on computers.

The papers in this section deal with switching circuits, analog and digital computers,
automata theory, graph theory and game-playing machines.

The central theme in many of these papers is the problem of constructing an efficient
switching circuit to perform a given task. The first paper, Shannon's Master's thesis at M.I.T.,
won the Alfred Noble Prize, and launched Shannon on his career. As mentioned in the
Biography at the beginning of this collection, H. H. Goldstine called this Hone of the most
important master"s theses ever written... a landmark in that it helped to change digital circuit
design from an art to a science. ""

The knowledgeable reader may notice that there is no mention of Shannon's switching
game in any of these papers. Apparently he did not publish an account of this game. However,
it is described in (BeCG821. Chap. 22: [Brua74]: [Edmo65): (HatnV881~ (Lehn1641: and
(Wels761, Chap. 19. The Pollak-Shannon strategy for drawing at the game of nine-in-a-row is
described in [BeCGR2J. p. 676.
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A Symbolic Analysis of Relay
and Switching Circuits'

Claude E. Shannon?

I. Introduction

In the control and protective circuits of complex electrical systems it is frequently necessary
to make intricate interconnections of relay contacts and switches. Examples of these circuits
occur in automatic telephone exchanges, industrial motor-control equipment, and in almost any
circuits designed to perform complex operations automatically. In this paper a mathematical
analysis of certain of the properties of such networks will be made. Particular attention will be
given to the problem of network synthesis. Given certain characteristics, it is required to find a
circuit incorporating these characteristics. The solution of this type of problem is not unique
and methods of finding those particular circuits requiring the least number of relay contacts and
switch blades will be studied. Methods will also be described for finding any number of
circuits equivalent to a given circuit in all operating characteristics. It will be shown that
several of the well-known theorems on impedance networks have roughly analogous theorems
in relay circuits. Notable among these are the delta-wye and star-mesh transformations, and the
duality theorem.

The method of attack on these problems may be described briefly as follows: any circuit is
represented by a set of equations, the terms of the equations corresponding to the various relays
and switches in the circuit. A calculus is developed for manipulating these equations by simple
mathematical processes, most of which are similar to ordinary algebraic algorisms. This
calculus is shown to be exactly analogous to the calculus of propositions used in the symbolic
study of logic. For the synthesis problem the desired characteristics are first written as a system
of equations, and the equations are then manipulated into the form representing the simplest
circuit. The circuit may then be immediately drawn from the equations. By this method it is
always possible to find the simplest circuit containing only series and parallel connections, and
in some cases the simplest circuit containing any type of connection.

Our notation is taken chiefly from symbolic logic. Of the many systems in common use we
have chosen the one which seems simplest and most suggestive for our interpretation. Some of
our phraseology, such as node, mesh, delta, wye, etc., is borrowed from ordinary network
theory for simple concepts in switching circuits.
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II. Series-Parallel Two-Terminal Circuits

Fundamental Definitions and Postulates

We shall limit our treatment of circuits containing only relay contacts and switches, and
therefore at any given time the circuit between any two terminals must be either open (infinite
impedance) or closed (zero impedance). Let us associate a symbol Xab or more simply X, with
the terminals a and b. This variable, a function of time, will be called the hindrance of the
two-terminal circuit a -b. The symbol 0 (zero) will be used to represent the hindrance of a
closed circuit, and the symbol I (unity) to represent the hindrance of an open circuit. Thus
when the circuit a - b is open Xab = I and when closed Xab = O. Two hindrances Xab and
X cd will be said to be equal if whenever the circuit a - b is open, the circuit c - d is open, and
whenever a - b is closed, c -d is closed. Now let the symbol + (plus) be defined to mean the
series connection of the two-terminal circuits whose hindrances are added together. Thus
Xab + X cd is the hindrance of the circuit a - d when band c are connected together. Similarly
the product of two hindrances Xab • Xcd or more briefly Xab Xcd will be defined to mean the
hindrance of the circuit formed by connecting the circuits a - band c - d in parallel. A relay
contact or switch will be represented in a circuit by the symbol in Figure 1, the letter being the
corresponding hindrance function. Figure 2 shows the interpretation of the plus sign and
Figure 3 the multiplication sign. This choice of symbols makes the manipulation of hindrances
very similar to ordinary numerical algebra.

Xab
a ----0 o--b

Figure 1 (left). Symbol for hindrance
function

--0 X 0--0 Y <>- = ""';+L

Figure 2 (right). Interpretation of addition

-{:J- =

Figure 3 (middle). Interpretation of multipli-
cation

It is evident that with the above definitions the following postulates will hold:

Postulates

1. a. O·0 = 0 A closed circuit in parallel with a closed circuit is a
closed circuit.

b. 1 + I = 1 An open circuit in series with an open circuit is an
open circuit.

2. a. 1 + 0 = 0 + 1 = An open circuit in series with a closed circuit in either
order (i.e., whether the open circuit is to the right or left
of the closed circuit) is an open circuit.

b. 0·1 = 1·0 = 0 A closed circuit in parallel with an open circuit in either
order is a closed circuit.

3. a. 0 + 0 = 0 A closed circuit in series with a closed circuit is a closed
circuit.

b. I . 1 = 1 An open circuit in parallel with an open circuit is an open
circuit.

4. At any given time either X = 0 or X = 1.
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These are sufficient to develop all the theorems which will be used in connection with
circuits containing only series and parallel connections. The postulates are arranged in pairs to
emphasize a duality relationship between the operations of addition and multiplication and the
quantities zero and one. Thus if in any of the a postulates the zero's are replaced by one's and
the multiplications by additions and vice versa, the corresponding b postulate will result. This
fact is of great importance. It gives each theorem a dual theorem, it being necessary to prove
only one to establish both. The only one of these postulates which differs from ordinary
algebra is 1b. However, this enables great simplifications in the manipulation of these
symbols.

Theorems

In this section a number of theorems governing the combination of hindrances will be
given. Inasmuch as any of the theorems may be proved by a very simple process, the proofs
will not be given except for an illustrative example. The method of proof is that of "perfect
induction," i.e., the verification of the theorem for all possible cases. Since by Postulate 4 each
variable is limited to the values 0 and 1, this is a simple matter. Some of the theorems may be
proved more elegantly by recourse to previous theorems, but the method of perfect induction is
so universal that it is probably to be preferred.

X+y=y+X, ( la)

XY = YX , (1b)

X + (Y + Z) = (X + Y) + Z , (2a)

X(YZ) = (XY)Z , (2b)

X(Y + Z) = XY + XZ , (3a)

X + YZ = (X + Y)(X + Z) , (3b)

l'X = X, (4a)

O+X=X, (4b)

I+X=l, (5a)

O'X = O. (5b)

For example, to prove Theorem 4a, note that X is either 0 or 1. If it is 0, the theorem
follows from Postulate 2b; if 1, it follows from Postulate 3b. Theorem 4b now follows by the
duality principle, replacing the 1 by 0 and the· by +.

Due to the associative laws (2a and 2b) parentheses may be omitted in a sum or product of
several terms without ambiguity. The rand n symbols will be used as in ordinary algebra.

The distributive law (3a) makes it possible to "multiply out" products and to factor sums.
The dual of this theorem, (3b), however, is not true in numerical algebra.

We shall now define a new operation to be called negation. The negative of a hindrance X
will be written X' and is defined to be a variable which is equal to I when X equals 0 and equal
to 0 when X equals 1. If X is the hindrance of the make contacts of a relay, then X' is the
hindrance of the break contacts of the same relay. The definition of the negative of a hindrance
gives the following theorems:

X + X' = 1 . (6a)
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xx' = 0,

0' ::: 1 ,

I' = 0 ,

(X')' = X .

C. E. Shannon

(6b)

(7a)

(7b)

(8)

Analogue With the Calculus of Propositions

We are now in a position to demonstrate the equivalence of this calculus with certain
elementary parts of the calculus of propositions. The algebra of logic 1-3, originated by George
Boole, is a symbolic method of investigating logical relationships. The symbols of Boolean

algebra admit of two logical interpretations. If interpreted in terms of classes, the variables are
not limited to the two possible values 0 and 1. This interpretation is known as the algebra of
classes. If, however, the terms are taken to represent propositions, we have the calculus of
propositions in which variables are limited to the values 0 and 1,* as are the hindrance
functions above. Usually the two subjects are developed simultaneously from the same set of
postulates, except for the addition in the case of the calculus of propositions of a postulate
equivalent to Postulate 4 above. E. V. Huntington" gives the following set of postulates for
symbolic logic:

I. The class K contains at least two distinct elements.

2. If a and b are in the class K then a + b is in the class K.

3. a + b = b + a.

4. (a + b) + c = a + (b + c).

5. a + a = a.

6. ab + ab' = a where ab is defined as (a' + b')' .

If we let the class K be the class consisting of the two elements 0 and 1, then these postulates
follow from those given in the first section. Also Postulates 1, 2, and 3 given there can be
deduced from Huntington's postulates. Adding 4 and restricting our discussion to the calculus
of propositions, it is evident that a perfect analogy exists between the calculus for switching
circuits and this branch of symbolic logic. ** The two interpretations of the symbols are shown
in Table I.

Due to this analogy any theorem of the calculus of propositions is also a true theorem if
interpreted in terms of relay circuits. The remaining theorems in this section are taken directly
from this field.

De Morgan's theorem:

(X+ Y+Z ... )' = X'·y'·Z' ... ,

(X·Y·Z ... )' = X' + y' + Z' + ....

(9a)

(9b)

This refers only to the classical theory of the calculus of propositions. Recently some work has been done with
logical systems in which propositions may have more than two' 'truth values. "

** This analogy may also be seen from a slightly different viewpoint. Instead of associating Xab directly with the
circuit a - b let Xab represent the proposition that the circuit a - b is open. Then all the symbols are directly
interpreted as propositions and the operations of addition and multiplication will be seen to represent series and
paraJlel connections.
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This theorem gives the negative of a sum or product in terms of the negatives of the summands
or factors. It may be easily verified for two terms by substituting all possible values and then
extended to any number n of variables by mathematical induction.

A function of certain variables Xl, X 2 .....X n is any expression formed from the variables
with the operations of addition, multiplication, and negation. The notation !(X 1 ,X2,······X n )

will be used to represent a function. Thus we might have t(X, Y,Z) = Xy + X' (y' + Z'). In
infinitesimal calculus it is shown that any function (providing it is continuous and all
derivatives are continuous) may be expanded in a Taylor series. A somewhat similar expansion
is possible in the calculus of propositions. To develop the series expansion of functions first

note the following equations:

!(X 1,X 2 , ••• X n ) = X 1·f(1,X 2 .••X,') +X;·!(0,X 2 ... Xn ) , (lOa)

These reduce to identities if we let X I equal either °or 1. In these equations the function 1 is
said to be expanded about X r- The coefficients of X 1 and X~ in lOa are functions of the (n - 1)
variables X2 ... X n and may thus be expanded about any of these variables in the same manner.
The additive terms in lOb also may be expanded in this manner. Expanding about X2 we have:

I(X1 .. ·Xn) = X 1X 2!(1,1,X 3···Xn ) +XIX~!(1,0,X3· ..Xn) +

X~X2[(0,J,X3",Xn) + X~X2/(O,O,X3 ...Xn)' (11a)

!(X1 .. ·X n ) = [Xl +X 2 +!(0,0,X3···X n)]·[X l +X; +f(O,l,X) ... X ll ) ] ·

[X; + X2 + f(I,0,X 3 ...X n)]·[X; + X; + f(I,I,X 3 ...X n ) ] . (l lb)

Continuing this process n times we will arrive at the complete series expansion having the
form:

!(XI ... X n ) = f(1,1,1 I)X 1X 2 ••• X n + I(O,1,1 ... 1)X~X2 ... Xn +... (12a)

+ [(0,0,0 O)X~X; ... X:, ,

!(X1···Xn ) = [Xl + X2 +···X" + 1(0,o,0 ...0)]·... (12b)

.[X~ + X;'" + X:, + f( 1,1 ... 1)] .

Table I. Analogue Between the Calculus of Propositions and the Symbolic Relay Analysis

Symbol

x
o
I
X+Y

XY

X'

Interpretation in Relay Circuits

The circuit X
The circuit is closed
The circuit is open
The series connection of circuits X and Y

The parallel connection of circuits X and Y

The circuit which is open when X is closed
and closed when X is open

The circuits open and close simultaneously

Interpretation in the Calculus of Propositions

The proposition X
The proposition is false
The proposition is true
The proposition which is true if either X or Y

is true
The proposition which is true if both X and Y

are true
The contradictory of proposition X

Each proposition implies the other
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By 12a, f is equal to the sum of the products formed by permuting primes on the terms of
X I X2"' X n in all possible ways and giving each product a coefficient equal to the value of the
function when that product is 1. Similarly for 12b.

As an application of the series expansion it should be noted that if we wish to find a circuit
representing any given function we can always expand the function by either lOa or lOb in such
a way that any given variable appears at most twice, once as a make contact and once as a break
contact. This is shown in Figure 4. Similarly by 11 any other variable need appear no more
than four times (two make and two break contacts), etc.

Figure 4. Expension about one variable

A generalization of De Morgan's theorem is represented symbolically in the following
equation:

(13)

By this we mean that the negative of any function may be obtained by replacing each variable
by its negative and interchanging the + and, symbols. Explicit and implicit parentheses will, of
course, remain in the same places. For example, the negative of X + y·(Z + WX') will be
X' [y' + Z' (W' + X)].

Some other theorems useful in simplifying expressions are given below:

X = X + X = X + X + X = etc. ,

X = X'X = X'X'X = etc. ,

X + XY = X ,

X(X + y) + X ,

Xy + X' Z = XY + X' Z + YZ ,

(X + Y)(X' + Z) = (X + Y)(X' + Z)(y + Z) ,

Xj(X,Y,Z, ... ) = Xf( 1,Y,Z, ... ) ,

X + f(X,Y,Z, ... ) = X + f(O,Y,Z, ... ) ,

X'!(X,Y,Z, ... ) = X'/(O,Y,Z, ... ) ,

X' + !(X,Y,Z, ... ) = X' + f( I ,Y,Z, ... ) .

(14a)

(14b)

(15a)

(I5b)

( 16a)

(16b)

( 17a)

( 17b)

( 18a)

(18b)

All of these theorems may be proved by the method of perfect induction.

Any expression formed with the operations of addition, multiplication, and negation
represents explicitly a circuit containing only series and parallel connections. Such a circuit
will be called a series-parallel circuit. Each letter in an expression of this sort represents a
make or break relay contact, or a switch blade and contact. To find the circuit requiring the
least number of contacts, it is therefore necessary to manipulate the expression into the form in
which the least number of letters appear. The theorems given above are always sufficient to do
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this. A little practice in the manipulation of these symbols is all that is required. Fortunately
most of the theorems are exactly the same as those of numerical algebra - the associative,
commutative, and distributive laws of algebra hold here. The writer has found Theorems 3, 6,
9,14,15, 16a, 17, and 18 to be especially useful in the simplification of complex expressions.

Frequently a function may be written in several ways, each requiring the same minimum
number of elements. In such a case the choice of circuit may be made arbitrarily from among
these, or from other considerations.

Figure 5. Circuit to be simpliRed

As an example of the simplification of expressions consider the circuit shown in Figure 5.
The hindrance function Xab for this circuit will be:

X ab == W + W' (X + Y) + (X + 2)(S + W' + 2)(2' + Y + S'V)

= w + X + Y + (X + 2)(S + 1 + 2)(2' + Y + S' V)

= W + X + Y + 2(2' + S' V) .

These reductions were made with 17b using first W, then X and Y as the "K" of 17b. Now
multiplying out:

X ab = W + X + Y + ZZ' + ZS' V

= W + X + Y + ZS' V .

The circuit corresponding to this expression is shown in Figure 6. Note the large reduction
in the number of elements.

Figure 6. Simplification of Figure 5

It is convenient in drawing circuits to label a relay with the same letter as the hindrance of
make contacts of the relay. Thus if a relay is connected to a source of voltage through a
network whose hindrance function is X, the relay and any make contacts on it would be labeled
X. Break contacts would be labeled X'. This assumes that the relay operates instantly and that
the make contacts close and the break contacts open simultaneously. Cases in which there is a
time delay will be treated later.

III. Multi-Terminal and Non-Series-Parallel Circuits

Equivalence of n-Terminal Networks

The usual relay control circuit will take the form of Figure 7, where Xl, X2 , ... Xn are relays
or other devices controlled by the circuit and N is a network of relay contacts and switches. It
is desirable to find transformations that may be applied to N which will keep the operation of
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all the relays X I , ... X n the same. So far we have only considered transformations which may
be applied to a two-terminal network keeping the operation of one relay in series with this
network the same. To this end we define equivalence of n-tenninal networks as follows.
Definition: Two n-tenninal networks M and N will be said to be equivalent with respect to these
n terminals if and only if Xj k = f j k ; j,k = 1,2,3 ... .n, where Xj k is the hindrance of N
(considered as a two-terminal network) between terminals j and k, and f j k is that for M between
the corresponding terminals. Under this definition the equivalences of the preceding sections
were with respect to two terminals.

Figure 7. Gene,al constant-yoltage relay
circuit

Star-Mesh and Delta-Wye Transformations

As in ordinary network theory there exist star-to-mesh and delta-to-wye transformations, In
impedance circuits these transformations, if they exist, are unique. In hindrance networks the
transformations always exist and are not unique. Those given here are the simplest in that they
require the least number of elements. The delta-to-wye transformation is shown in Figure 8.
These two networks are equivalent with respect to the three terminals a.b, and c, since by
distributive law Xab = R(S + T) = RS + RT and similarly for the other pairs of terminals
a -c and b -c.

Figure 8. Delta-wye transformation

The wye-to-delta transformation is shown in Figure 9. This follows from the fact that
Xab = R + S ::: (R + S)· (R + T + T + S), etc. An n-point star also has a mesh equivalent
with the central junction point eliminated. This is formed exactly as in the simple three-point
star, by connecting each pair of terminals of the mesh through a hindrance which is the sum of
the corresponding arms of the star. This may be proved by mathematical induction. We have
shown it to be true for n = 3. Now assuming it true for n - 1, we shall prove it for n.
Suppose we construct a mesh circuit from the given n-point star according to this method.
Each comer of the mesh will be an (n - 1)-point star and since we have assumed the theorem
true for n - 1 we may replace the nth comer by its mesh equivalent. If YOJ was the hindrance
of the original star from the central node 0 to the point i. then the reduced mesh will have the
hindrance (Y OS + Yor ) · (YOS + Yon + Y Or + YOn) connecting nodes rand s. But this reduces
to YOsYOr which is the correct value, since the original n-point star with the nth ann deleted
becomes an (n - 1)-point star and by our assumption may be replaced by a mesh having this
hindrance connecting nodes rand s. Therefore the two networks are equivalent with respect to
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the first n - 1 terminals. By eliminating other nodes than the nth, or by symmetry, the
equivalence with respect to all n terminals is demonstrated.

Figure 9. Wye-delta transform.tion

Hindrance Function of a Non-Series-Parallel Network

The methods of Part II were not sufficient to handle circuits which contained connections
other than those of a series-parallel type. The "bridge" of Figure 10, for example, is a non-
series-parallel network. These networks will be treated by first reducing to an equivalent
series-parallel circuit. Three methods have been developed for finding the equivalent of a
network such as the bridge.

a-<R~S>-~
<I>

d

Figure 10. Non-series-parallel circuit

The first is the obvious method of applying the transformations until the network is of the
series-parallel type and then writing the hindrance function by inspection. This process is
exactly the same as is used in simplifying the complex impedance networks. To apply this to
the circuit of Figure 10, first we may eliminate the node c, by applying the star-to-mesh
transformation to the star a - c, b - c, d - c. This gives the network of Figure 11. The
hindrance function may be written down from inspection for this network:

X ah = (R + S)[U(R + T) + V(T + S)] .

This may be written as

X ab == RU + SV + RTV + STU = R(U + 7V) + S(V + TV) .

a - .....----4..---0 l----......- .....-b

Figure 11. Hindrence function by means of
transformations

The second method of analysis is to draw all possible paths through the network between the
points under consideration. These paths are drawn along the lines representing the component
hindrance elements of the circuit. If anyone of these paths has zero hindrance, the required



480 c. E. Shannon

function must be zero. Hence if the result is written as a product, the hindrance of each path
will be a factor of this product. The required result may therefore be written as the product of
the hindrances of all possible paths between the two points. Paths which touch the same point
more than once need not be considered. In Figure 12 this method is applied to the bridge. The
paths are shown dotted. The function is therefore given by

X ab = (R + S)( U + V)(R + T + V)( U + T + S)

= RU + SV + R1V + UTS = R(U + 1V) + S(V + TV) .

The same result is thus obtained as with the first method.

figure 12. Hindrance function a•• product
of .um.

The third method is to draw all possible lines which would break the circuit between the
points under consideration, making the lines go through the hindrances of the circuit. The
result is written as a sum, each term corresponding to a certain line. These terms are the
products of all the hindrances on the line. The justification of the method is similar to that for
the second method. This method is applied to the bridge in Figure 13.

Figure 13. Hindrance function as a sum of
products

This again gives for the hindrance of the network:

Xab = RU + SV + RTV + STU = R(V + TV) + S(V + TV) .

The third method is usually the most convenient and rapid, for it gives the result directly as
a sum. It seems much easier to handle sums than products due, no doubt, to the fact that in
ordinary algebra we have the distributive law X(Y + Z) = XY + XZ, but not its dual
X + YZ = (X + y)(X + Z). It is, however, sometimes difficult to apply the third method to
nonplanar networks (networks which cannot be drawn on a plane without crossing lines) and in
this case one of the other two methods may be used.

Simultaneous Equations

In analyzing a given circuit it is convenient to divide the various variables into two classes.
Hindrance elements which are directly controlled by a source external to the circuit under
consideration will be called independent variables. These will include hand-operated switches,
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contacts on external relays, etc. Relays and other devices controlled by the network will be
called dependent variables. We shall, in genera), use the earlier letters of the alphabet to
represent independent variables and the later letters for dependent variables. In Figure 7 the
dependent variables are X I ,X 2 ...X It. Xk will evidently be operated if and only if XOk == 0,
where XOk is the hindrance function of N between terminals 0 and k. That is,

X k = X Ok' k = 1,2, ... n .

This is a system of equations which completely define the operation of the system. The right-
hand members will be known functions involving the various dependent and independent
variables and given the starting conditions and the values of the independent variables the
dependent variables may be computed.

A transformation will now be described for reducing the number of elements required to
realize a set of simultaneous equations. This transformation keeps XOk (k == 1,2 ... n) invariant,
but Xjk(j,k = 1,2 ... n) may be changed, so that the new network may not be equivalent in the
strict sense defined to the old one. The operation of all the relays will be the same, however,
This simplification is only applicable if the XOk functions are written as sums and certain terms
are common to two or more equations. For example, suppose the set of equations is as follows:

W = A + B + CW ,

X :: A + B + WX ,

Y == A + CY ,

Z :: EZ + F .

This may be realized with the circuit of Figure 14, using only one A element for the three
places where A occurs and only one B element for its two appearances. The justification is
quite obvious. This may be indicated symbolically by drawing a vertical line after the terms
common to the various equations, as shown below.

w= B + cw

x= A + wx

y = CY

Z = F + EZ

A

B{~
C

y

:~F
Z

Figure 14. Example of reduction of simul-
taneous equations
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It follows from the principle of duality that if we had defined multiplication to represent
series connection, and addition for parallel connection, exactly the same theorems of
manipulation would be obtained. There were two reasons for choosing the definitions given.
First, as has been mentioned, it is easier to manipulate sums than products and the
transformation just described can only be applied to sums (for constant-current relay circuits
this condition is exactly reversed), and second, this choice makes the hindrance functions
closely analogous to impedances. Under the alternative definitions they would be more similar
to admittances, which are less commonly used.

Sometimes the relation Xy' = 0 obtains between two relays X and Y. This is true if Yean
operate only if X is operated. This frequently occurs in what is known as a sequential system.
In a circuit of this type the relays can only operate in a certain order or sequence, the operation
of one relay in general "preparing" the circuit so that the next in order can operate. If X
precedes Y in the sequence and both are constrained to remain operated until the sequence is
finished then this condition will be fulfilled. In such a case the following equations hold and
may sometimes be used for simplification of expressions. If XY' = 0, then

X' y' = y' ,

Xy = X,

X' + Y = I ,

X' + r: = X' ,

X+Y=Y.

These may be proved by adding Xy' = 0 to the left-hand member or multiplying it by
X I + Y = 1, thus not changing the value. For example, to prove the first one, add Xy' to
X' y' and factor.

Special Types of Relays and Switches

In certain types of circuits it is necessary to preserve a definite sequential relation in the
operation of the contacts of a relay. This is done with make-before-break (or continuity) and
break-make (or transfer) contacts. In handling this type of circuit the simplest method seems to
be to assume in setting up the equations that the make and break contacts operate
simultaneously, and after all simplifications of the equations have been made and the resulting
circuit drawn, the required type of contact sequence is found from inspection.

Relays having a time delay in operating or deoperating may be treated similarly or by
shifting the time axis. Thus if a relay coil is connected to a battery through a hindrance X, and
the relay has a delay of p seconds in operating and releasing, then the hindrance function of the
contacts of the relay will also be X, but at a time p seconds later. This may be indicated by
writing X(t) for the hindrance in series with the relay, and X(t - p) for that of the relay
contacts.

There are many special types of relays and switches for particular purposes, such as the
stepping switches and selector switches of various sorts, multiwinding relays, cross-bar
switches, etc. The operation of all these types may be described with the words "or." Hand,"
"if," "operated," and "not operated." This is a sufficient condition that they may be
described in terms of hindrance functions with the operations of addition, multiplication,
negation, and equality. Thus a two-winding relay might be so constructed that it is operated if
the first or the second winding is operated (activated) and the first and the second windings are
not operated. If the first winding is X and the second Y, the hindrance function of make
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contacts on the relay will then be XY + X' r. Usually, however, these special relays occur
only at the end of a complex circuit and may be omitted entirely from the calculations to be
added after the rest of the circuit is designed.

Sometimes a relay X is to operate when a circuit R closes and to remain closed independent
of R until a circuit S opens. Such a circuit is known as a lock-in circuit. Its equation is:

x = RX + S .

Replacing X by X' gives:

x' = RX' + S

or

X = (R' + X)S' .

In this case X is opened when R closes and remains open until S opens.

IV. Synthesis of Networks

Some General Theorems on Networks and Functions

It has been shown that any function may be expanded in a series consisting of a sum of
products, each product being of the fonn X I X 2 ...X 11 with some permutation of primes on the
letters, and each product having the coefficient 0 or 1. Now since each of the n variables may
or may not have a prime, there is a total of 2 11 different products of this form. Similarly each
product may have the coefficient 0 or the coefficient 1 so there are 2

2n
possible sums of this

sort. Hence we have the theorem: The number of functions obtainable from n variables is 22n
.

Each of these sums will represent a different function, but some of the functions may
actually involve fewer than n variables (that is, they are of such a form that for one or more of
the n variables, say X k .. we have identically flx

A
=0 = flx

A
= I so that under no conditions does

the value of the function depend on the value Xk)' Thus for two variables, X and Y, among the
16 functions obtained will be X,Y,X' ,Y' ,0, and 1 which do not involve both X and Y. To find
the number of functions which actually involve all of the n variables we proceed as follows.
Let <t>(n) be the number. Then by the theorem just given:

22
" = 1: (~] q,(k) •

k=O

where (~] = n! / k! (11 - k) ! is the number of combinations of n things taken k at a time. That

is, the total number of functions obtainable from n variables is equal to the sum of the numbers
of those functions obtainable from each possible selection of variables from these n which
actually involve all the variables in the selection. Solving for <p(n) gives

n -1 ( ]
q,(n) = 22

" - It Zq,(k) .
k=O

By substituting for <t>(n - 1) on the right the similar expression found by replacing n by n - 1
in this equation, then similarly substituting for ~(n - 2) in the expression thus obtained, etc.,
an equation may be obtained involving only <t>(n). This equation may then be simplified to the
form

n (J l<t>(n) = It ~ 22 (- 1) n -k .

k=O
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As n increases this expression approaches its leading term 22n
asymptotically. The error in

using only this tenn for n = 5 is less than 0.01 percent.

We shall now determine those functions of n variables which require the most relay
contacts to realize, and find the number of contacts required. In order to do this, it is necessary
to define a function of two variables known as the sum modulo two or disjunct of the variables.
This function is written X 1~X 2 and is defined by the equation:

Xl~X2 = XIX; + X~X2 a

It is easy to show that the sum modulo two obeys the commutative, associative, and the
distributive law with respect to multiplication, that is,

X.ffiX 2 = X2ffiX. ,

(X.~X2)~X3 = Xl (f)(X 2 a1X3 ) ,

X I (X2~X 3) = X 1X2 (f)X I X3 .

Also

(X I~X2)' = X 1~X2 = XI ffiX 2 ,

X 1(£)0 = X I ,

Xl (f) 1 = X~ a

Since the sum modulo two obeys the associative law, we may omit parentheses in a sum of
several terms without ambiguity. The sum modulo two of the n variables X I ,X 2 .. aX n will for
convenience be written:

n

XlffiX2~X3·a.EfjXn

Theorenl:* The two functions of n variables which require the most elements (relay
n n

contacts) in a series-parallel realization are EX k and ('::X k )', each of which requires
] )

(3·2 n - 1 -2) elements.

This will be proved by mathematical induction. First note that it is true for n = 2. There
are ten functions involving two variables, namely, XY, X + Y, X' Y, X' + Y, Xy', X + y' ,
X' r, X' + r, Xy' + X' y, Xy + X' y'. All of these but the last two require two elements;
the last two require four elements and are X~y and (XE9Y)', respectively. Thus the theorem is
true for n = 2. Now assuming it true for n - 1, we shan prove it true for n and thus complete
the induction. Any function of n variables may be expanded about the nth variable as follows:

ja(x) ,X2a.aXn ) = f =Xn!(X J •• aX n-) ,1) + X~!(XJ ",X n- I ,0) . (19)

Now the terms j'(X I , •• X n- 1,1) and !(X I" aX,,_1 ,0) are functions of n - 1 variables and if
they individually require the most elements for n - 1 variables, then f will require the most
elements for n variables, providing there is no other method of writing f so that fewer elements
are required. We have assumed that the most elements for n - 1 variables are required by
n-l n-I

::: Xk and its negative. If we, therefore, substitute for I(X I .. aX n -I ,1) the function ::: X k and
I 1

n-)

for I(X ) ... X n _) ,0) the function ( ::: Xk)' we find
I

* See the Notes to this paper.
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n-l n-I n

f = Xn ::: Xk + X~ ( =: Xk )' = (=:X k )' .
I 1 1
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From the symmetry of this function there is no other way of expanding which will reduce the
number of elements. If the functions are substituted in the other order we get

n-I n-I n

f = X11 ( ::: Xk ) I + X~ ::: Xk = EXk .
1 1 1

This completes the proof that these functions require the most elements.

To show that each requires (3·2n - 1 - 2) elements, let the number of elements required be
denoted by 5 (n). Then from (19) we get the difference equation

s(n) = 2s(n - 1) + 2 ,

with 5(2) = 4. This is linear, with constant coefficients, and may be solved by the usual
methods. The solution is

5(n) = 3·2n
-

1
- 2,

as may easily be verified by substituting in the difference equation and boundary condition.

Note that the above only applies to a series-parallel realization. In a later section it will be
n

shown that the function :::Xk and its negative may be realized with 4 (11 - 1) elements using a
1

more general type of circuit. The function requiring the most elements using any type of circuit
has not as yet been determined,

Dual Networks

The negative of any network may be found by De Morgan's theorem, but the network must
first be transformed into an equivalent series-parallel circuit (unless it is already of this type).
A theorem will be developed with which the negative of any planar two-terminal circuit may be
found directly. As a corollary a method of finding a constant-current circuit equivalent to a
given constant-voltage circuit and vice versa will be given.

Let N represent a planar network of hindrances, with the function Xab between the terminals
a and b which are on the outer edge of the network. For definiteness consider the network of
Figure 15 (here the hindrances are shown merely as lines).

Now let M represent the dual of N as found by the following process; for each contour or
mesh of N assign a node or junction point of M. For each element of N, say Xk, separating the
contours rand s there corresponds an element X~ connecting the nodes rand 5 of M. The area
exterior to N is to be considered as two meshes, c and d, corresponding to nodes c and d of M.
Thus the dual of Figure 15 is the network of Figure 16.

Figure 15 (left). Planar network for illustra-
tion of duality theorem

a

MESH d

b

c

d

Figure 16 (right). Dual of Agur. 1 5
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Theorem: If M and N bear this duality relationship, then Xab = X;·d. To prove this, let the
network M be superimposed upon N, the nodes of M within the corresponding meshes of Nand
corresponding elements crossing. For the network of Figure 15, this is shown in Figure 17 with
N solid and M dotted. Incidentally, the easiest method of finding the dual of a network
(whether of this type or an impedance network) is to draw the required network superimposed
on the given network. Now, if Xab = 0, then there must be some path from a to h along the
lines of N such that every element on this path equals zero. But this path represents a path
across M dividing the circuit from c to d along which every element of M is one. Hence
Xcd = 1. Similarly, if X cd = 0, then Xab = 1, and it follows that X ab = X;·d.

Figure 17. Superposition ef a network and
its dual

a b

~~T_-<R U Y>-b
S V Z
~w

Figure 18. Nonplana, networle

It is evident from this theorem that a negative for any planar network may be realized with
the same number of elements as the given network. t

In a constant-voltage relay system all the relays are in parallel across the line. To open a
relay a series connection is opened. The general constant-voltage system is shown in
Figure 19. In a constant-current system the relays are all in series in the line. To de-operate a
relay it is short-circuited. The general constant-current circuit corresponding to Figure 19 is
shown in Figure 20. If the relay Yk of Figure 20 is to be operated whenever the relay X k of
Figure 19 is operated and not otherwise, then evidently the hindrance in parallel with Y k which
short-circuits it must be the negative of the hindrance in series with X k which connects it across
the voltage source. If this is true for all the relays, we shall say that the constant-current and
constant-voltage systems are equivalent. The above theorem may be used to find equivalent
circuits of this sort, for if we make the networks Nand M of Figures 19 and 20 duals in the
sense described, with Xk and Yk as corresponding elements, then the condition will be satisfied.
A simple example of this is shown in Figures 21 and 22.

E---...

Figure 19 (left). Gener.1 constant-yoltage
relay circuit

M

Figure 20 (,ight). Gener.1 constant-current
,elay circuit

t This is not in general true if the word "planar" is omitted. The nonplanar network Xab» of Figure 18, for example,

has no negative containing only eight elements.



A Symbolic Analysis of Relay and Switching Circuits

...---E---....

Figure 21 (left). Simple constant-voltage
system

Figure 22 (right). Constant-current system
equivalent to figure 21
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Synthesis of the General Symmetric Function

It has been shown that any function represents explicitly a series-parallel circuit. The
series-parallel realization may require more elements, however, than some other network
representing the same function. In this section a method will be given for finding a circuit
representing a certain type of function which in general is much more economical of elements
than the best series-parallel circuit. This type of function is known as a symmetric function and
appears frequently in relay circuits.

Definition: A function of the n variables X I ,X 2 ...X n is said to be symmetric in these
variables if any interchange of the variables leaves the function identically the same. Thus
Xy + XZ + YZ is symmetric in the variables X, Y, and Z. Since any permutation of variables
may be obtained by successive interchanges of two variables, a necessary and sufficient
condition that a function be symmetric is that any interchange of two variables leaves the
function unaltered.

By proper selection of the variables many apparently unsymmetric functions may be made
symmetric. For example, XY' Z + X' YZ + X' r:Z' although not symmetric in X, Y, and Z is
symmetric in X, Y, and Z'. It is also sometimes possible to write an unsymmetric function as a
symmetric function multiplied by a simple term or added to a simple term. In such a case the
symmetric part may be realized with the methods to be described, and the additional term
supplied as a series or parallel connection.

The following theorem forms the basis of the method of design which has been developed.

Theorem: A necessary and sufficient condition that a function be symmetric is that it may
be specified by stating a set of numbers a 1,02 ...ak such that if exactly aj(j = 1,2,3 ... ,) of
the variables are zero, then the function is zero and not otherwise. This follows easily from the
definition. The set of numbers a I, a 2 ... a k may be any set of numbers selected from the
numbers 0 to n inclusive, where n is the number of variables in the symmetric function. For
convenience, they will be called the a-numbers of the function. The symmetric function
XY + XZ + YZ has the a-numbers 2 and 3, since the function is zero if just two of the variables
are zero or if three are zero, but not if none or if one is zero. To find the a-numbers of a given
symmetric function it is merely necessary to evaluate the function with 0, 1... n of the variables
zero. Those numbers for which the result is zero are the a-numbers of the function.

Theorem: There are 2n + 1 symmetric functions of n variables. This follows from the fact
that there are n + 1 numbers, each of which may be taken or not in our selection of a-numbers.
Two of the functions are trivial, however, namely, those in which all and one of the numbers
are taken. These give the "functions" 0 and 1, respectively. The symmetric function of the n

variables X I ,X 2 ...X n with the a-numbers a I ,a2··· 0 k will be written Sala~ ... at

(X I ' X 2, ... , X fl)' Thus the example given would be S 2 3 (X, Y,Z). The circuit which has
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been developed for realizing the general symmetric function is based on the a-numbers of the
function and we shall now assume that they are known.

Theorem: The sum of two given symmetric functions of the same set of variables is a
symmetric function of these variables having for a-numbers those numbers common to the two
given functions. Thus S 1,2,3 (X 1 ...X6) +s2,3.5 (X I ...X6) =5 2 ,3 (X 1 ... X6).

Theorem: The product of two given symmetric functions of the same set of variables is a
symmetric function of these variables with all the numbers appearing in either or both of the

given functions for a-numbers. Thus S 1.2,3 (X I ...X 6) . S 2,3,5 (X I ...X 6) = S 1,2,3,5 (X I ...X6)'

To prove these theorems, note that a product is zero if either factor is zero, while a sum is
zero only if both terms are zero.

Theorem: The negative of a symmetric function of n variables is a symmetric function of
these variables having for a-numbers all the numbers from 0 to n inclusive which are not in the
a-numbers of the given function. Thus 5 2.3 ,5 (X 1 ... X6) =So,I ,4,6 (X I ...X 6 ).

Before considering the synthesis of the general symmetric function Sa,01 ...a,

(X 1 , X2, ... , Xn) a simple example will be given. Suppose the function S 2 (X 1 ,X 2 ,X 3 ) is to
be realized. This means that we must construct a circuit which will be closed when any two of
the variables X 1,X 2 ,X 3 are zero, but open if none, or one or three are zero. A circuit for this
purpose is shown in Figure 23. This circuit may be divided into three bays, one for each
variable, and four levels marked 0, 1, 2 and 3 at the right. The terminal b is connected to the
levels corresponding to the a-numbers of the required function, in this case to the level marked
2. The line coming in at a first encounters a pair of hindrances X 1 and X~. If X I = 0, the line
is switched up to the level marked 1, meaning that one of the variables is zero; if not it stays at
the same level. Next we come to hindrances X 2 and X2. If X 2 = 0, the line is switched up a
level; if not, it stays at the same level. X 3 has a similar effect. Finally reaching the right-hand
set of terminals, the line has been switched up to a level equal to the total number of variables
which are zero. Since terminal b is connected to the level marked 2, the circuit a - b will be
completed if and only if 2 of the variables are zero. If S 0,3 (X 1 , X 2 , X3) had been desired,
terminal b would be connected to both levels 0 and 3. In Figure 23 certain of the elements are
evidently superfluous. The circuit may be simplified to the form of Figure 24.

Figure 24. Simplification 01 figure 23

For the general function exactly the same method is followed. Using the general circuit for
n variables of Figure 25, the terminal b is connected to the levels corresponding to the a-
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TO a-
NUMBERS

Ab
Figure 25. Circuit for re.lizing the general
symmetric function Sain, •.. Itk(Xlt X2/ •••• Xn)

numbers of the desired symmetric function. In Figure 25 the hindrances are respected merely
by lines, and the letters are omitted from the circuit, but the hindrance of each line may easily
be seen by generalizing Figure 23. After terminal b is connected, all superfluous elements may
be deleted.

Figure 26. Circuitfor 50,3,6 (Xl . • . XfJ) using
the ..shifting downIt process

In certain cases it is possible to greatly simplify the circuit by shifting the levels down.
Suppose the function S0,3,6 (X I ...X6) is desired. Instead of continuing the circuit up to the
sixth level, we connect the second level back down to the zero level as shown in Figure 26.
The zero level then also becomes the third level and the sixth level. With terminal b connected
to this level, we have realized the function with a great savings of elements. Eliminating
unnecessary elements the circuit of Figure 27 is obtained. This device is especially useful if the
a-numbers form an arithmetic progression, although it can sometimes be applied in other cases.

a
XI X2 X3 X4 Xs X6

Figure 27. Simplification of figure 26

b

11 n

The functions 3X k and (2X k )' which were shown to require the most elements for a series
t t

parallel realization have very simple circuits when developed in this manner. It can be easily
n

shown that if 11 is even, then EX k is the symmetric function with all the even numbers for a-
t

11

numbers, if n is odd it has all the odd numbers for a-numbers. The function (E,Xk )' is, of
1

course, just the opposite. Using the shifting-down process the circuits are as shown in
Figures 28 and 29. These circuits each require 4(n - 1) elements. They will be recognized as
the familiar circuit for controlling a light from n points, using (n - 2) double-pole double-throw
switches and two single-pole double-throw switches. If at anyone of the points the position of
the switch is changed, the total number of variables which equal zero is changed by one, so that
if the light is on, it will be turned off and if already off, it will be turned on.
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n
Figure 28. :eXk for n odd}

1 even

More than one symmetric function of a certain set of variables may be realized with just one
circuit of the form of Figure 25, providing the different functions have no a-numbers in
common. If there are common a-numbers the levels may be shifted down, or an extra relay
may be added so that one circuit is still sufficient.

The general network of Figure 25 contains n(n + 1) elements. We will show that for any
given selection of a-numbers, at least n of the elements will be superfluous. Each number from
1 to n - 1 inclusive which is not in the set of a-numbers produces two unnecessary elements; 0
or n missing will produce one unnecessary element. However, if two of the a-numbers differ
by only one, then two elements will be superfluous. If more than two of the a-numbers are
adjacent, or if two or more adjacent numbers are missing, then more than one element apiece
will be superfluous. It is evident then that the worst case will be that in which the a-numbers
are all the odd numbers or all the even numbers from 0 to n. In each of these cases it is easily
seen that n of the elements will be superfluous. In these cases the shifting down process may be
used if n > 2 so that the maximum of n 2 elements will be needed only for the four particular
functions X, X' , XffiY, and (X<£> Y)'.

/'V'7------~

a ~------~ b
XI X2 X3······· Xn-I Xn

n n
Figure 29. (:eXt) for n evenJ (~Xk>' for n

1 odd 1

Equations From Given Operating Characteristics

In general, there is a certain set of independent variables A, B, C ... which may be switches,
externally operated or protective relays. There is also a set of dependent variables x, y, z...
which represent relays, motors or other devices to be controlJed by the circuit. It is required to
find a network which gives, for each possible combination of values of the independent
variables, the correct values for all the dependent variables. The following principles give the
general method of solution.

1. Additional dependent variables must be introduced for each added phase of operation of a
sequential system. Thus if it is desired to construct a system which operates in three steps, two
additional variables must be introduced to represent the beginning of the last two steps. These
additional variables may represent contacts on a stepping switch or relays which lock in
sequentially. Similarly each required time delay will require a new variable, representing a
time delay relay of some sort. Other forms of relays which may be necessary will usually be
obvious from the nature of the problem.

2. The hindrance equations for each of the dependent variables should now be written down.
These functions may involve any of the variables, dependent or independent, including the
variable whose function is being determined (as, for example, in a lock-in circuit). The
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Table II. Relation of Operating Characteristics and Equations

491

Symbol

x

x'

+
(- -)'

X(t - p)

In Terms of Operation

The switch or relay X is operated
If
The switch or relay X is not operated
Or
And
The circuit (- -) is not closed, or apply

De Morgan's theorem
X has been operated for at least p seconds

In Terms of Nonoperation

The switch or relay X is not operated
If
The switch or relay X is operated
And
Or
The circuit (- -) is closed, or apply

De Morgan's theorem
X has been open for at least p seconds

If the dependent variable appears in its own defining function (as in a lock-in circuit) strict adherence
to the above leads to confusing sentences. In such cases the following equivalents should be used.
X = RX + S X is operated when R is closed

(providing S is closed) and remains so
independent of R until S opens

x = (R' + X)S' X is opened when R is closed
(providing S is closed) and remains
so independent of R until S opens

In using this table it is usually best to write the function under consideration either as a sum of pure
products or as a product of pure sums. In the case of a sum of products the characteristics should be
defined in terms of nonoperation; for a product of sums in terms of operation. If this is not done it is
difficult to give implicit and explicit parentheses the proper significance.

conditions may be either conditions for operation or for nonoperation. Equations are written
from operating characteristics according to Table II. To illustrate the use of this table suppose a
relay U is to operate if x is operated and y or z is operated and v or w or z is not operated. The
expression for A will be

u = x + yz + v' w' z' .

Lock-in relay equations have already been discussed. It does not, of course, matter if the same
conditions are put in the expression more than once - all superfluous material will disappear in
the final simplification.

3. The expressions for the various dependent variables should next be simplified as much as
possible by means of the theorems on manipulation of these quantities. Just how much this can
be done depends somewhat on the ingenuity of the designer.

4. The resulting circuit should now be drawn. Any necessary additions dictated by practical
considerations such as current-carrying ability, sequence of contact operation, etc., should be
made.

V. Illustrative Examples

In this section several problems will be solved with the methods which have been
developed. The examples are intended more to illustrate the use of the calculus in actual
problems and to show the versatility of relay and switching circuits than to describe practical
devices.
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It is possible to perform complex mathematical operations by means of relay circuits.
Numbers may be represented by the positions of relays or stepping switches, and
interconnections between sets of relays can be made to represent various mathematical
operations. In fact, any operation that can be completely described in a finite number of steps
using the words "if," "or," "and," etc. (see Table II), can be done automatically with relays.
The last example is an illustration of a mathematical operation accomplished with relays.

A Selective Circuit

A relay U is to operate when anyone, any three or when all four of the relays w, X, Y and z
are operated but not when none or two are operated. The hindrance function for V will
evidently be:

U = wxyz + w'x'yz + w'xy'z + w'xyz' + wx'y'z + wx'yz' + WAY'Z' .

Reducing to the simplest series-parallel form:

U = w[x(yz + y' z') + x' (y' Z + yz')] + w' [x(y' z + yz") + x' yz] .

+...._--owo--_..-_-ow.o-'_.-.,,.., u

Figure 30. Serles-par.nel realization of
selective circuit

This circuit is shown in Figure 30. It requires 20 elements. However, using the symmetric-
function method, we may write for U:

V = SI,3,4(W,X,y,z) .

/07
/orr

+ --Lo o--I!o o--I!o 0-/'
w x y z u

Figure 31. Selective circuit from symmetric-
function method

This circuit (Figure 31) contains only 15 elements. A still further reduction may be made with
the following device. First write

V' = SO,2(l-'V,x,y,z) .

»:»:
rrr;/

+~~~o-o
w x y z

Figure 32. Negative of selective circuit from
symmetric-function method
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This has the circuit of Figure 32. What is required is the negative of this function. This is a
planar network and we may apply the theorem on the dual of a network, thus obtaining the
circuit shown in Figure 33. This contains 14 elements and is probably the most economical
circuit of any sort.

Figure 33. DUll of figure 32

Design of an Electric Combination Lock

An electric lock is to be constructed with the following characteristics. There are to be five
pushbutton switches available on the front of the lock. These will be labeled a, b, c, d, e. To
operate the lock the buttons must be pressed in the following order: c, b, a and c
simultaneously, d. When operated in this sequence the lock is to unlock, but if any button is
pressed incorrectly an alarm V is to operate. To relock the system a switch g must be operated.
To release the alarm once it has started a switch h must be operated. This being a sequential
system either a stepping switch or additional sequential relays are required. Using sequential
relays let them be denoted by w, x, y and z corresponding respectively to the correct sequence
of operating the push buttons. An additional time-delay relay is also required due to the third
step in the operation. Obviously, even in correct operation a and c cannot be pressed at exactly
the same time, but if only one is pressed and held down the alarm should operate. Therefore
assume an auxiliary time delay relay v which will operate if either a or C alone is pressed at the
end of step 2 and held down longer than time s, the delay of the relay.

+ ....... --ouo-- ---.

h'
o--.... -n e 0-------100-----....1 u

z'

w

x

z

a:r: a'
c c'

U AND U' MAKE BEFORE BREAK

W

......-"'<) Wo-o----c:
u'

u'0 0 g'-r;':__--o

Z AND z' MAKE BEFORE BREAK

Figure 34. Combination-lock circuit
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When z has operated the lock unlocks and at this point let all the other relays drop out of the
circuit. The equations of the system may be written down immediately:

w = cw + z' + V' ,

x = bx + )·v + z' + V' ,

Y = (a + c)y + x + z' + V' ,

z = zed + y) + e' + V' ,

v = x + ac + a' c' + z' + V' ,

U = e(l-v' + abd)(w + x' + ad)[x + y' + dvi t - s)][y + bv(t - s)] V + h' + z' .

These expressions can be simplified considerably, first by combining the second and third
factors in the first term of U, and then by factoring out the common terms of the several
functions. The final simplified form is as below: This corresponds to the circuit of Figure 34.

u=

w=

x = Z' +

y =

v =

v' +

h' + e[ad(b + w') + x'] .

(x + y' + dv)(y + vb)U
cw

bx + w

(a + c)y

x+

ac + a' c'

z = g' + (y + d)z + V'

Electric Adder to the Base Two

A circuit is to be designed that will automatically add two numbers, using only relays and
switches. Although any numbering base could be used the circuit is greatly simplified by using
the scale of two. Each digit is thus either 0 or 1; the number whose digits in order are

k

a k, a k - 1 , a k - 2 , ... a 2 , a I , a 0 has the value ~ a) 2J•
)=0

Let the two numbers which are to be added be represented by a series of switches:
a k » a k - J , ••• a ) , a 0 representing the various digits of one of the numbers and
b k' b k -1 , ... b I , bo the digits of the other number. The sum will be represented by the
positions of a set of relays S k + I , S k » S k _ I ... S I , so· A number which is carried to the jth
column from the (j-l )th column will be represented by a relay cJ. If the value of any digit is
zero, the corresponding relay or switch will be taken to be in the position of zero hindrance; if
one, in the position where the hindrance is one. The actual addition is shown below:
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Ck+l c , Cj+l Cj C2 C'

a k---a j+ I ar» 2 a I a 0

hk bj+,bj b2b}bo

Ck+1 Sk---Sj+}Sj ---S2,51 S0

or

5k+}

Carried numbers
First number
Second number

Sum

495

Starting from the right, So is one if ao is one and bo is zero or if ao is zero and b o one but not
otherwise. Hence

C J is one if both ao and bo are one but not otherwise:

CI = ao·b o .

S j is one if just one of aj' b i» C j is one, or if all three are one:

Sj = SI.3(aj,b j,cj) , J= 1,2, ... k.

Cj+ I is one if two or if three of these variables are one:

Cj+1 = S2,3(aj, hj , Cj), J = 1, 2, ... k .

Using the method of symmetric functions, and shifting down for Sj gives the circuits of
Figure 35. Eliminating superfluous elements we arrive at Figure 36.

Circuits for electric adder

+

j=I,2;" ·k

aj bj Cj

Figure 35.

CJ+I
j=O

80 bo

Cj+1

aj bj

Figure 36. Simplification 01 figure 35
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YlATHEMATICAL THEORY OF THE DIFFERENTIAL
ANALYZER

By CLAUDE E. SHANNON

Introduction

The Differential Analyzer is a machine developed at the Massachu-
setts Institute of Technology under the direction of Dr. V. Bush for the
purpose of obtaining numerical solutions to ordinary differential equa-
tions. The fundamental principles underlying the Differential Analyzer
were first conceived by Lord Kelvin, but at the time it was impossible,
due to mechanical difficulties, to construct a machine of the type he con-
templated. The same principles were discovered independently by Dr.
Bush and his associates, and the first Differential Analyzer was com-
pleted in 1931. The inherent mechanical difficulties were overcome by
means of several ingenious devices such as the torque amplifiers, and
backlash correcting units, and through improved machine working tech-
nique. Since that time, several other machines have been built in
various parts of the world, and have been used in solving many problems
arising in engineering, physics and other branches of science.

Detailed descriptions of the mechanical operation of the machine, and
methods of setting up problems have been given in several papers (1,3).
For our purposes we may briefly summarize the mode of operation as
follows. Each term or variable in the given equation or equations is
represented on the machine by a certain shaft. The value of the vari-
able at any instant is proportional to the number of revolutions of the
corresponding shaft from some fixed position. These shafts are inter-
connected by means of mechanical units which enforce certain mathe-
matical relations between the number of turns of the interconnected
shafts. The most important mechanical units are of four types:' gear
boxes, adders, integrators and input tables. With these units, each

1 Some other special units have heen developed. The Differential Analyzer
at M.l.T. has a multiplying table for obtaining the product of two terms, and
the one at Manchester has a unit useful in solving mixed difference differential
equations. These, however, are much less important than those mentioned
above; the multiplying table, in fact, can always be replaced by two integrators
and an adder as will be shown later.

Reprinted from JOURNAL OF MATHEMATICS AND PaTSICS

Vol. XX, No.4, December, 1941
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relation implied by the given equations is forced to hold between the
corresponding shafts. For example, if in the differential equation the
sum of two terms is equal to a third term, the corresponding shafts on
the Analyzer are connected by an adding unit. If the terms x, y and
dyjdx appear in the equation, the corresponding shafts would be inter-

connected through an integrator to enforce the relation y = f dyjdx dx,

etc. When the shaft representing the independent variable is turned,
all other shafts are therefore constrained to turn in accordance with the
equation. Thus, a numerical solution may be obtained by counting the
number of turns of the dependent variable shaft corresponding to equal
increments of the independent variable and plotting the result as a
curve, or the machine may be set up to plot its own curves automatically
by means of a special output table.

When the Differential Analyzer was first built it was thought that all
functional relationships between terms of the equation being solved
would have to be introduced into the machine by means of input tables.
However, in connection with a problem in ballistics in which the func-
tion x2 was desired, it was noted that by connecting an integrator to

perform the operation 2 {' x dx, the function could be obtained without

an input table. Soon it was found that practically all the important
simple functions could be "generated" using only integrators and adders.
This is done by setting up an auxiliary equation on the Analyzer whose
solution is the desired function. In a thesis written in 1932, J. Guer-
rieri (2) describes interconnections for generating most of the elementary
functions.

In this paper the mathematical aspects of the Differential Analyzer
will be considered. The most important results deal with conditions
under which functions of one or more variables can be generated, and
conditions under which ordinary differential equations can be solved.
Some attention \vill also lie given to approximation of functions (which
cannot be generated exactly), approximation of gear ratios, and auto-
matic speed control.

We shall assume throughout that all ordinary differential equations
considered have unique solutions and that formal processes of differen-
tiation, integration, etc. are valid in the region of interest. For total
differential equations it is not necessary that the equations be integrable
but we assume that a solution exists along any curve in the region. The
reason for this will appear later.



498 C. E. Shannon

The Differential Analyzer will be idealized by assuming that we have
available an unlimited number of each of the following perfect units.

1. Integrators. Given two shafts u and v, the integrator constrains

a third shaft w to rotate in accordance with w = 1- (u + a) dv, where
"0

a is an arbitrary constant, for all variations of u and v. In actual
integrators the maximum value of Iu + a Iis limited, but by changing
scale factors it can be made as great as desired so that except for
poles of u the integration can be performed. The constant a is the
initial setting of the integrator.

2. Adders. Given two shafts u and v, an adder constrains a third
shaft w to turn as (u + v), for all variations of u and v. Except for
backlash and tooth ripple, the actual differential adder units fulfill
these conditions. It is easily seen that any interconnection of adders

with free shafts Xl · · · Xn , Y, will enforce a relation Y = t a"X"
k-l

where the a's are real constants, and for convenience we will speak of
such an interconnection as an adder. By connecting simple adders

n

in series we can make all the a's unity and get Y = L X; .
k-l

3. Input Tables or Function Units. Given a shaft x, an input table
constrains a second shaft y to rotate as y = f(x), where f(x) is an
arbitrary given function with only a finite number 'of finite discon-
tinuities.

4. Gear Boxes. Given a shaft x, a gear box of ratio k forces a
second shaft to rotate as kx. Since by making the integrand u iden-
tically zero in the integrator we get w = av, the gear boxes are theo-
retically superfluous, being used for purposes of economy. Therefore,
we will not consider gear boxes, except to show that any ratio k may
be approximated using only two sizes of gear pairs.
Finally, we assume that each of the above elements is capable of

performing its particular constraint if and only if there is not more than
one source of drive to each shaft. By a source of drive is meant any
one of the following: the independent variable shaft, the w shaft of an
integrator, the w shaft of an adder (or Y in the general sense), the f(x)
shaft of an input table, or the kx shaft of a gear box. This condition is
extremely important in making Differential Analyzer setups. It places
a restriction on possible interconnections of units, and forms the basis
of the present analysis.

'Ve shall say that we can solve a system of ordinary differential equa-
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t;, us with independent variable x and dependent variables Yl . · . Y'I
if and only if a setup can be found using the above elements and satis-
fying the source of drive assumption, such that when the independent
variable shaft x is turned, shafts Yl · • · Yn are constrained to turn in
accordance with the equations for any given initial conditions. \\1"e
shall say a system of total differential equations can be solved if a set
of connections can be found such that when a set of independent variable
shafts Xl • • • X m are turned in any manner whatever, dependent variable
shafts YI · · · Yn are constrained to turn in accordance with the equations
for arbitrary given initial conditions. In most of the theorems we shall
consider setups containing only integrators and adders.

(1 ~\k = 2,3 ... n

Fundamental Solvability Condition

THEOREM I. A necessary and sufficient condition that a system of
ordinary differential equations can be solved using only integrators and
adders is that they can be written in the form

~'!L1c = i: aijlcY. dYj
dYl i.i-O dYl

where Yo = 1 (introduced to make notation compact), Yl is the inde
pendent variable, and Y2 · · · Yn are dependent variables, among whicJ
are the dependent variables of the original system.

Proof. The condition is necessary. Suppose the original system cal
be solved using only integrators and adders. The dependent variable
must appear either as the output of adders or integrators. They rna-
all be considered as the outputs of integrators by making those fron
adders the variables of integration of integrators with constant unii
integrand. Now let there be (n - 1) integrators and let the output-
be labeled Y2 • • • y". Each displacement (integrand) must be driven
by one of three possible sources: the independent variable Yl , the output
of ari integrator, or the output of an adder (general sense). An adder
must be driven by the sum of certain of the y's including possibly Yl .

N

These are all special cases of a source of drive of the form L bikYi for
i-I

the kth integrator, where the b's are constants. The b's can obviously
represent gear ratios or complex adder interconnections, or without loss
of generality we may take them equal to 0 or 1. The kth integrator
may have an initial displacement in addition to its source of drive value.
Let this be bOk • Then the kth integrator will have an integrand
"
~ biley, where for convenience we introduce Yo = 1. By exactly the
i-O
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same argument the variables of integration of the integrators will be of
n

the form L: C ikY i : The integrators place the following constraints on
i-I

the system:

= J~ bikYi~ cjkdYi
t 1

k = 2,3 ... n

k = 2,3 ... n

(2)

(3)

= Jr; aijkyidYi k = 2, 3 ... n (4)
'.1

where aiik = b;kCik. Now differentiating both sides with respect to YI :

dYk ~. dYi- = LJ ~ikYi - k = 2,3 ... n (1)
dYl i.i dYl

These are the equations (1).
"The condition is sufficient. This is true since the system (1) can be

integrated to the form (4) and these represent a setup using only inte-
grators and adders with not more than one source of drive to each shaft.

Generation of Functions

\\Te will say that a function of a single variable y = f(x) can be
generated if there is a setup using only integrators and adders such
that a shaft may be turned independently as x and a second shaft is
forced to turn as y. It follows from Theorem I that if f(x) can be
generated there must exist a set of equations (1) such that if Yl = x,
then Y2 (say) is equal to f(x). A function of n variables F(XI • • . Xn)
can be generated if there is a setup such that n shafts Xl • • • X n can be
turned independently and another will turn as F.

Functions of a single variable have been classified in the following
way. If there is a relation of the form:

y = ao + atX + a2x2 + ... amx
1n (5)

where m is a positive integer and the a's are real constants then y is
called a polynomial in x, or a rational integral function of x. If

F1(x)
Y = F2(~) (1)

where F I and F2 are polynomials in x, then we say y is a rational func-
tion of x. If \ve have:

Ro(x) + yR1(x) + y2R
2(x) + ... + ynRn(x) = 0 (7)
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where R1 • • • R; are rational functions of x, then y is said to be an
algebraic function of x, If there is no relation of this form then y is
called a transcendental function of z. Transcendental functions may
be divided into two classes. If there is a differential equation of the
form:

~ Aixni ynOi (y,)n 1i (y")ft 2i ... (y(m»""'i = 0
i

(8)

where yCk) = d"y/dx", the A's are constants, and the powers are integral,
(i.e., if a polynomial in z, y, y' • • • yCm) vanishes identically) then y is
said to be an algebraic transcendental function of z. If no relation of
this type exists the function is called hypertranscendental, or trans-

TABLE I
Punctione of One Variable

Transcendental

Hypertran- IAleebraie-transeendental Irrational Alaoebraicscendental e e

AI,ebraic

Rational

Gamma
function.

Zeta func-
tion.

Exponential and
logarithmic.

Trigonometric and
hyperbolic and
inverses.

Bessel functions.
Elliptic functions

and integrals.
Probability func ...

tion.

X"', m a rational
fraction.

Solutions of an al-
gebraic equation
in terms of a pa-
rameter.

Quotients
of poly-
nomials.

Integral
a, z, Xt etc.
poly-

nomials.

cendentally-transcendental. Obviously all algebraic functions are non-
hypertranscendental, since by multiplying (7) by all denominators and
differentiating we obtain an expression of the form (8). In fact only a
very few of the common analytic functions are hypertranscendental,
the best known being the Gamma function and Riemann's Zeta function.

(f(n)" = 1" xn-1e-z dx; Hs) = ~}.). The first was shown to be

hypertranscendental by Holden, and the last by Hilbert. The classifica-
tion of some of the common functions is given in Table I.

THEOREM II. A function of one variable can be generated if and only
if the function is not hypertranscendental.

Proof. First we will show that if a function can be ~enerated, it is not
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k = 2, 3, ... (m + 2)

hypertranscendental. Any function f(x) that can be generated must
satisfy a set of equations of the form (1), with Yl = x and y" = I(x).
If we differentiate (1) (n - 2) times we will have a total of (n - 1)2
equations, from which we may eliminate the n2

- 2n variables
, (n-I) '(n-1) '(,,-I)

Y3 , Y3 , · · · Y3 ; y. , Y. , · · · Y. ; • .. ; Yn , Yn , · · · y"

for example by Sylvester's method, involving only multiplication and
addition and therefore resulting in a relation of the form (8), with
x = Yl , Y = Y2 , and 1 = yo .

To prove that any non-hypertranscendental function can be gen-
erated, we will show that (8) can be written in the form (1). Let the
left member of (8) be 4>. Differentiating both sides with respect to z
we obtain:

ocjJ + oq, y' + ocjJ y" + ... + oc/J y(m+1) = 0
ox oy ay' ay(m)

And except for points where a~t) = 0 we have:

~~ + acjJ y' + ... +~ yCm)
(m+1) _ oX ay oy(m-I) _ P1(x, y, y' ... y(m,)

y - ------ ocjJ - P
2
(x, y, y' ••• y(m»

oy(m)

where PI and P2 are polynomials in x, Y, y', u" ... y(m>. Let Yl = X,

Y2 = Y, Y3 = u', ... Ym+3 = yCm+l). Then we have

dYk _
- - - Yk+1
dYI

with the addi tiona} condition that

P1(Yl, Y2 .. · Y(m+2,)
Y(m+3) =

P2(YI , y2 •• • Ym+2)

The problem now is to reduce this relation to the form of equations (1).
First consider the function PI' This is a sum of products of the vari-
ables Yl · · · Ym+3. (Since the powers are integral they may be con-
sidered as products of a repeated factor). Let the first term of the
numerator be UtU2 • •• Us , where the u's are certain of the y's. Now let
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so that Ym+4 = UIU2. Next let:

dYm+6 dYm+4 + dUa
-- = Ua -- Ym+4 -
dYl dYl dYl

Hence Ym+5 = Ym+4' Ua = UIU2Ua. Continuing in this manner we finally
get Ym+B+2 = UIU2 • • • u lJ • Each term in the numerator and denomi-
nator is treated in exactly the same way, continuing the series of equa-
tions until there is a y for each product of PI and P2. Let the y's
corresponding to the terms of PI be VI , V2 • • • Vr and those corresponding
to the terms of P2 be Wi , W2 • • • Wt. Then we have reduced the equa-
tion (12) to the condition that:

r t

Ym+3 = L Vt/L Wk •
1 1

Our final step is to reduce this relation to the form of the equations (1).
Suppose the last Y, Wt , was YD-I. Let:

dYD _ d L W
dY-l - - YD+l~

dYD+l _ 2 dYa
dYJ - YQ dYl

Consequently YfJ IlL w. Now by making:

dYm+3 = y d L v + L V dYI1
dYl fJ dYl dYl

we get Ym+3 = L vlL wand have reduced (8) to the form (1).
THEOREM III. If a function of one variable y = f(x) can be gen-

erated, then its derivative z = !,(x), its integral w = t' f(x) dx, and its
a

inverse x = r 1(y ) can be generated.
Proof. To prove the first part, take the derivative of (8). This

gives two equations between which \ve may eliminate y with processes
involving only multiplication and addition, thus resulting in a relation
of the form (8) with y missing. Replacing y' by z, y" by z' etc., shows
that z is non-hypertranscendental if y is.

To show the second part, merely replace y by ui', y' by w" etc. in (8),
thus obtaining another relation of this form. Therefore if Y is non-
hypertranscendental, then wis.

For the third part replace y' by l/x' (where x' = dx/dy)y" by
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-X"/(X,)3 etc. Since all the derivatives of y may be expressed as
quotients of polynomials in the derivatives of X, we may reduce the
resulting expression to the form (8) with X and y interchanged by multi-
plying by all denominators. That is, the inverse of a non-hypertrans-
cendental function is non-hypertranscendental.

THEOREM IV. If two functions f and g can both be generated, then
the functional product y = f(g(x)) can be generated.

Proof. This will be shown by writing two systems of equations, each
of the form (1) as a single larger system of the same form. Suppose g
satisfies a set of this type with Yl = x and Y2 = g, k running from 2 to n.
Now f also satisfies a system of this type and since the argument of f
is g we replace Yl in this system by Y2 and let the y subscripts in the f
system run from n + 1 to n + m (m being the number of equations in
the f systern.) Thus we have a group of equations of the form (1)
with Yl = x and Ym+2 = f(g(x)).

Although, as Theorem II shows, the only functions which can be
generated exactly are non-hypertranscendental, we can approximate a
much broader class of functions, using only integrators.

THEOREM V. Any function f(x), which is continuous in a closed
interval a ~ x ;i b, can be generated in this interval to within any
prescribed allowable error E > 0 using only a finite number of integrators.
That is, a setup can be found generating a function F(x) such that

I F(x) - f(x) I < E

for a ~ x ~ b.
Proof. We base our demonstration on Weierstrass' famous theorem

which states that any such function I(x) can be approximated by ~:

polynomial F(x) of degree n
n

F(x) = L ai X':
k....O

h:v taking n sufficiently large. N0\\' let:

du, _ ., +
d
- - QiJ· Yi+l

Yl

j = 2,3 ... u

ymTl = 0

Then this system, of the form (1), satisfies (19) if we let Yl = x and
Y2 = F(x). Moreover, this setup requires only integrators, the additive
constants being merely initial integrator settings. Hence the theorem.
If we allow stopping the machine and turning shafts ahead by hand, we
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can obviously broaden the conditions of Theorem V to all functions
continuous except for a finite number of finite discontinuities.

We now proceed to generalize some of these concepts and theorems
to functions of more than one variable.
ThEORE~1 VI. A function of m variables Ym+l = J(Yl • · · Ym) can

be generated if and only if it satisfies a set of total differential equations
of the form:

"
dYk = ~ ~ikYidYi

i.i-O
k = (m + 1), (m + 2) " (10)

where Yo = 1 and the a's are real constants.
The proof follows exactly the same plan as was used in proving

Theorem I, both for necessity and sufficiency. A solution of equations
(1) has been shown to be· a non-hypertranscendentaI function of one
variable. Now (21) can be considered as a generalization of (1), and
we will say that a function of m variables satisfying a set of equations
(1) is a non-hypertranscendental function of these m variables. With
this definition we have, as a generalization of Theorem II, the proposi-
tion that a function of m variables can be generated if and only if it is
not hypertranscendental in these variables. Obviously a necessary
condition for a function of m variables to be non-hypertranscendental
is that it be non-hypertranscendental in each single variable when all
the others are replaced by arbitrary constants. Thus x + r(y) is a
hypertranscendental function of x and y since replacing x by 0 gives the
hypertranscendental function of one variable f(y). Some functions of
more than one variable that are not-hypertranscendental are x + y,
x ·y, x", log, y, and combinations of these and non-hypertranscendentaI
functions of one variable.

As a generalization of Theorem IV we state the proposition:
THEOREM VII. If two functions of several variables, J(XI · · • xn )

and g(Yl .. · Ym) can both be generated, then it is possible to generate
any functional product, for example q,(X2 , X3 • • • Xn , Yl , Y2 • · • Ym) =
!(g, X2 , • • • x n ) .

This may be proved by the same method as Theorem IV, combining
the t\VO systems of equations into a single larger system of the type (10).

Theorem V may also be generalized for functions of more than one
variable, but integrators alone are no longer sufficient:

THEOREM VIII. Given any function of n variables f(Xl • . · xn ) ,

continuous in all variables in a closed region of n-space ak ~ Xk ~ bv ,
k = 1,2 · · · n, we can generate a function F(XI ... xn ) using only a finite
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number of integrators and adders such that within the region
ak ~ Xk ~ bk

IJ-FI<E

where E is an arbitrarily small prescribed positive number.
Proof. A generalization of \\reierstrass' theorem states that we may

approximate J in the manner described with a polynomial F in the
variables Xl , • • • Xn • Since a polynomial is a non-hypertranscendental
function according to our definition, it can be generated with integrators
and adders and hence we have the theorem.

The first part of Theorem III can be generalized for functions of more
than one variable as follows.

THEOREM IX. If a function of m variables f(XI · · • xn ) can be gen-
erated its partial derivative with respect to anyone variable, say Xl

can be generated.
Proof. From theorem VI, if a function can be generated it satisfies

a set of equations of the form
In In

dYl = L A.idxi + L BijdYi
i-I i-I

i = 1,2 ... s

where Xl • · · X m are the independent variables, Yl · · · y. are dependent
variables, the A's and B's are linear forms in the variables, and Yl
(say) is equal to f. Dividing these equations by dXI and setting
o = dX2 = dX3 = ... = dx.; we have:

i=1,2··.s

or

1, = 1,2 ... ~.

Solving for °Yl by Cramer's rule:
aXl

IAll B 12 • • • s;

I A21 B22 • • • B".
I .

CJYl = I A31 B32 B" _ PI
aXl IB j j - OiiI - P2
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(11)

where P, and P2 are polynomials in the variables. This equation may
be reduced to the form of equations (10) by exactly the same method
as was used in reducing equation (9) which was of the same form.

The last part of Theorem III can also be generalized as follows:
THEOREM X. If a function of n variables y = f(Xt • • • xn ) can be gen-

erated, its inverse with respect to anyone variable Xl = F(y, X2 • •• xn )

can be generated.
Proof. Taking the total differential of y we have:

•
dy = ~J;i dx«.

i-I

Hence:

Or:

Now since! could be generated the terms !~i (i = 1, 2, · · · n) can be
generated by the preceding theorem. Reciprocals and quotients are
not hypertranscendental and therefore the terms l/fzl and - f Z i/ f z1 can
be generated. It follows then that Xl can be obtained by generating
these integrands, integrating with respect to the proper variables and
adding the results.

Systems of Equations

\Ve are now in a position to prove the following general theorem on
the differential analyzer:

THEOREM XI. The most general system of ordinary differential
equations:
!k(X; Yl, Y: ... y~m); Y2, y; ... y~m) ... Yn, y~ ... y~n») = 0

k = 1,2, · · · n

of the mth order in n dependent variables can be solved on a differential
analyzer using only a finite number of integrators and adders providing
the functions fk are combinations of non-hypertranscendental functions
of the variables.

Before proving this it is necessary to demonstrate a preliminary
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lemma. The natural procedure would be to solve the equation
11 = 0 for y~"'>' /2 = 0 for y~"') etc:

(m) ( , 1ft , (n) , (1ft»
Yk = cPk X;Yl, Yl ... Yl iY2YI ... YI ... YnYn ... Yn ·

It may happen, however, that y~m) does not appear in!", but does appear
in some other of the functions. We will first show that by taking deriva-
tives of the equations (11) and rearranging the order, an equivalent
system can be found in which the highest ordered derivative of Yl ap-
pearing in the first equation is not exceeded in any of the other equations,
the highest ordered derivative of Y2 appearing in the second equation is
not exceeded in any of the others, etc.

First note that if fk be considered a function of the independent
variables (x, Yl , Y: , . · · y~m>, Y2 , y~ , · .• y~m), · · • Yn , Y~ , · · · Y':) then
taking the derivative of Jk .= 0 gives an equivalent equation (providing
the boundary conditions are adjusted in accord with the original equa-
tion) in which the highest ordered derivative of each variable appearing
has been increased by one. Also, if the original function jk involved
no hypertranscendental functions, then by Theorem IX the derived
function will not, and can be generated.

For our present purposes the essential part of equations (11) is the
set of values of the highest ordered derivatives of the different variables
appearing in these equations. These may be tabulated in a square
array as follows:

Yl Y2 Yn

11 au at2 aln

12 a21 a22 U2n

t. a31 a32 U3n

I

i~ I ., a n2 ann

where ajk is the order of the highest ordered derivative of Yk appearing
in function Ii. These a's are integers which may have values from 0
to m, or if the variable does not appear at all, we may give the a a special
symbol X, Taking the derivative of fk has the effect of adding unity
to each element of the kth row except for A's which remain the same.
Two rows of the array may be interchanged since this merely means
renumbering the functions. \\?e propose to show that by rearrangement
and taking derivatives we can always find a new system where an is
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not exceeded in the first column, a22 is not exceeded in the second
column, and in general akk is not exceeded in the kth column.

This will be shown by mathematical induction. We will first show
it to be true for n = 2. For two variables we have the array:

Yl Y2

II iau al~

12 I O:!l 022

If more than one of the letters is X the system is degenerate. If one of
the letters, say au is ~ we may interchange the rows and then differentiate
the second row until the new lL22 ~ at2. If none of the letters are ~

then either a22 = al2 or one is smaller. If they are equal the rows may
be interchanged if necessary to make au ~ a21. If one is smaller, let
this row be differentiated until they are equal and proceed as before.
Thus, the theorem is true for n = 2.

Now, assuming it true for n, we will show that it must then be true
for n + 1, and thus complete the induction. By hypothesis then,
given any (n + 1)2 array, we can find an equivalent system by dif-
ferentiating and rearranging the first n rows:

Yl Y2 Yn Yn+l

III all a12 al n aln+l

12 a2l Q22 a2n Q2n+l

In ani Q r\2 ann ann+l

In+l I an+u an+ 12 an+ln an+lan+l

such that akk ~ ajk, k, j = 1, 2 .. · n. We may also assume that
akk > akn+l for every k ~ n, since, if not, we can make it so by dif-
ferentiating all the first n functions simultaneously. Now two possi-
hili ties arise: (1) an+l. n+l ~ a1.n+l , j = 1, 2 · · · n. In this case the
system is satisfactory as it stands. (2) If this condition does not ob-
tain there must be some ajn+l > a n+ln+l. Suppose this is aln. Now
let the last row be differentiated until one of the following three possi-
bilities obtains: (1) a n+ln+l = aln+l. In this case the system is satis-
factory. (2) an+l,l = an. In this case interchange rows 1 and nand
the system is satisfactory. (3) an+h = a•• for one or more values of 8

between 1 and n + 1. In this case continue differentiating both equa-
tions sand n + 1 until one of the following three occurs: (1) an+ l, n+ l =
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aln+l or a n+l1 = au. Proceed as in (1) and (2) above. (2) ad = an
or a,n+l = aln+l. Interchange rows 8 and n + 1 and proceed as in (1).
(3) The maximum in some other column is reached by the corresponding
elements in the rows being differentiated. In this case annex this row
or rows to those already being differentiated and continue by the same
method. It is easy to see that the process must converge after a finite
number of steps since all the elements in the first and last columns ex-
cept an and aln+l cannot be A. This completes the induction.

It is now comparatively simple to prove Theorem XI. First find,
by the method just described, a system equivalent to (11) in which
the highest ordered derivative of Yk appearing in equation k is not ex-
ceeded in any of the other equations. Let this order be Pk. Now it
has been shown that any combinations of non-hypertranscendental
functions can be generated (Theorems IV and VII), and therefore the
functions fk can be generated. Hence by the theorem on inverse func-
tions: (Theorem X) we can generate the functions

y~Pk) = ..yk(X, Yl , y; • · • Y2 , Y~ · .. . .. Yn , Y: ... )

The variables yiv
) , v < Pk may be obtained by integration of ykP k

) and
it follows that the system may be solved using only integrators and
adders.

Approximation of Factors with Gear Ratios

In setting up problems on a Differential Analyzer it is frequently
necessary to introduce constant multiplying factors. This may be done
in several ways, As was pointed out, an integrator set with a constant

integrand k gives w = f k dv = kv. A second method is to get a rough

approximation to k by means of gears whose overall ratio is say k' .
•Another set of gears is used to get a rough approximation k" to (k - k')
and the variable k'x combined with k"x through an adder to give a
second order approximation to k. It is easy to show that proceeding
in this way we can obtain a ratio t such that I t - k I < E where E is an
arbitrarily small prescribed positive number, assuming only that we
have an unlimited number of adders and of one size of gear pairs with
ratio a ~ 0, 1. A third way to obtain the ratio k is by the use of gears
only . We will now show that any ratio can be approximated using
only a finite number of two sizes of gear pairs. More precisely we have

THEOREM XII. Given t\VO gear ratios a and b, neither of which is
zero or one, and such that b is not a rational power of a, we can find
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positive or negative integers u and v such that 0 ~ I aUb
v

- k I < E

where E is an arbitrarily small prescribed number.
Without loss of generality we take a > 1; for if not inverting the

direction of the gears gives a ratio l/a > 1. It will first be shown that
a ratio U may be obtained such that

l<CI<l+o

with 0 arbitrarily small. To do this integers x and y must be found
such that

1 < a%b" < 1 + 0

Since a > 1, we may take logarithms to the base a leaving the in-
equalities in the same direction.

o < x + y logo b < logo (1 + 0) = p,

Since logo b is irrational we can satisfy this by well known theorems in
diophantine approximation. Thus we can obtain the gear ratio U,
If U is connected in tandem with itself r times with r so chosen that

ir: < k s c:
then the difference between LTr and k will be less than ak and is therefore
arbitrarily small.

If b is a rational power of a, say am 1n = b where min is rational in
its lowest terms, then a necessary and sufficient condition that a ratio
be obtainable is that it be of the form akin where k is any integer. First
any ratio will be of the type a%b" = a(xn+ lI m) In which is of this form.
The sufficiency of the condition follows from the fact that the diophan-
tine equation xn + ym = k has a solution in integers for every integer
k, if nand m are relatively prime.

Automatic Speed Control

An important part of the Differential Analyzer control circuit is the
automatic speed control. The integrator outputs have a maximum
speed s, beyond which slippage or vibration is apt to occur. To prevent
exceeding this speed, the independent variable shaft might be turned
at such a speed that only when the integrators are at maximum displace-
ment is this speed attained. However, with such a system the solution
would take a longer time than necessary, for during most of the solution
none of the integrators would be at maximum displacement. The auto-
matic speed control is a device which makes the independent variable
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u

turn at such a speed that the integrator which is turning fastest is going
at the speed s. By the use of some rather broad assumptions it is pos-
sible to get a rough estimate of the time saved by this method. The
results of this theorem were compared with several experimental solu-
tions and the error was in all cases less than 7%.

THEOREM XIII. If the displacements of n integrators driven by the
independent variable with maximum speed s and integrating factor b
are assumed random with respect to the independent variable between
limits of -a and +a, and if the speed is limited only by these and the
independent variable x with a maximum speed of T, then the expected
average speed of the independent variable will be:

. 1
X=

[nab/x(n + 1)8J + [l/r(n + l)J.[(s/abr)nJ

Proof:

Where u is the maximum value of x and t the time. Now since
dx

dt = dx/dt we have:

X=
1" dt/dx.dx

If we let y be the displacement of the integrator with the largest dis-
placement, then the probability that this is between y and y + dy is:

n(y/a)n-l dy/a

The expected number of revolutions of x in this condition will then be:

dx = n(y/a)n-lu dyja

If y ~ slbr, the speed will be limited by the independent variable, and
dx/dt will be r. If y > sfbr the speed will be limited by the integrators
and dx/dt will be x/yb. For the first case:

dt = un/r(y/a)n-l dy/a.
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For the second case:

dt = yb/snu(y/a)n-l dy/a.

Therefore:

:t = ----------------

Or

x = ------------:--1

nab + 1 ( 8 )n
(n + 1)8 r(n + 1) abr

COROLLARY. If the maximum speed of the independent variable be
made infinite, the solution time will be reduced in the ratio of n/(n + 1)
to what it would be if x were given a fixed speed v = slab so that at
maximum displacement the integrators just reached the maximum
allowable speed.

This follows from the general expression by allowing r to approach
infinity.
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1. Introduction

This report deals with the general theory of machines constructed from the following five
types of mechanical elements.

(1) Integrators. An integrator has three emergent shafts w, x, and y and is so constructed
that if x and yare turned in any manner whatever, the w shaft turns according to

* Report to National Defense Research Council, January, 1942.
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x

l1' = A J(y+a)dx
o

or

dw- = A(v+a)dx .
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(I)

(2)

where a. is the displacement of the integrator at x = 0, and A is the "integrating factor" of the
integrator. We idealize the integrators by assuming that unlimited displacements are possible;
actually for (1) it is necessary that Iy I ~ R, the radius of the disk. We further only consider
machines in which all integrator disks tum at a constant speed, so that (1) reduces to

d
dt w' = P"" ::: Y +a. ,

in which p is the Heaviside operator, 1,2 and we have assumed without loss of generality that t is
measured in such units as to make the coefficient A unity. Another way of eliminating the
coefficient is to replace an integrator with the coefficient A by one with coefficient 1 (i.e.,
satisfying (2») having a gear of ratio A in the output. For our purposes, then, we can consider
an integrator as having two shafts, wand y; with y, except for a constant, the time derivative of
w. Integrators, as ordinarily constructed, cannot be operated backwards. If we attempt to tum
the w shaft arbitrarily, the integrator will slip or break down in some way, and y will not turn in
such a manner as to satisfy (2).

(2) Adders or differential gears. An adder has three shafts x, y, and z and enforces the
relation

x+y+z=O (3)

to obtain between the numbers of revolutions of the shafts from the starting positions. If n

adders are connected in series with (- 1) gears in between we have what may be called a
"compound" adder with n + 2 emergent shafts constrained by

X J + X2 + ... + X I1+2 = 0 .

The word "adder" alone always means a simple three-shaft adder.

(3) Gear boxes. A gear box has two emergent shafts related by

x == ky

(4)

(5)

with k real and non-vanishing. With ordinary gears k must of course be rational, but with rack
and pinion gears or lead screws, as are often used on the input to integrators, this is not
necessary; and for engineering purposes we waive this condition completely and assume any
real non-vanishing ratio is possible since any ratio can be approximated as closely as desired.

(4) Shaft Junctions. Junctions have three emergent shafts related by

X=),=z.

Compound junctions are also used, equating the positions of n shafts.

(,) For all numbered references see the Bibliography.

(6)
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(5) Shafts.

A machine hereafter means any interconnection of a finite number of the first four types of
elements by means of the fifth. Symbols for the different elements are shown in Figure 1.*

IJ -I w .l: 'I X

fz

y

lJ=pw
INTEGRATOR Z

X+Ij+Z=O X='f=z

K
AOOER JUNCTION

X ~ %3

Ij=l<x
Xn

GEAR. ~
~6

If
'1=~X{ x/ = 'X2 =~3 - ....

COMPOIINP COMPOUNP
SHAf'r AIJIJER JUNCTION

I'/G I 5YM80LS roe £L£M£NrS

We will consider the following basic problems in connection with these machines:

I. The problem of analysis. Given a certain machine, what are its characteristics? An
arbitrary interconnection of machine elements will not, in general, operate satisfactorily. We
shall classify the various types of "degeneracies" that can occur and find a method for
determining easily whether or not a given machine is degenerate. Any non-degenerate machine
is characterized by a set of transfer admittances and a method will be given for rapidly
determining these.

2. The problem of synthesis. Given a possible transfer admittance, methods will be
developed for designing machines which realize this function, and which require the minimum
number of elements.

3. General network theory. The basic mathematical properties of machines will be studied,
leading to a network theory not unlike some parts of electrical circuit theory. The two most
important results in this direction are the orientation theorem and the duality theorems
(Theorems V, XXII and XXIII).

Particular attention will be given to "two-shaft" machines, that is machines having one
input shaft e and one output shaft y, these being the only types of machines that have as yet
found much use.

* The adder, shaft and junction symbols are more or less standard in fire control work; the others are slight
modifications of a notation developed at the Massachusetts Institute of Technology for use with the differential
analyzer. 1
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In another paper" the writer has considered a more general problem of this type, namely
what can be done if the constant disk speed restriction is removed. The results obtained there,
however, were chiefly in the form of existence theorems, and throw no light on questions of the
most economical design. We may mention in passing that under the weaker conditions of the
former study, it was shown that any system of ordinary or total differential equations not
involving hypertranscendental functions can be realized.

Limiting our treatment to machines constructed of the five elements listed has much the
same effect as limiting electric circuit theory to inductance, resistance, and capacitance
networks and can be justified on the same grounds in the two cases. Only by such a limitation
is it possible to achieve anything like a complete mathematical treatment. If we allow the
integrator disks to be driven at variable rates (e.g., by the outputs of other integrators) or allow
the use of cams and non-circular gears, linearity disappears and we must be satisfied with little
more than existence theorems, or solutions in the neighborhood of a point. Furthermore,
machines actually in use usually satisfy our conditions, except for elements which may be
segregated from the remainder of the device and analyzed separately.

Machines of the type we are considering find constant application in fire control equipment
as rate finders, predictors, smoothers, etc., and are also used in other types of control systems
and calculating devices.

For precision of statement and easy reference, our results are given mainly in the form of
mathematical theorems. The proofs, however, have been placed in the appendix, except for a
few which contain methods of procedure essential for the use of the theorems. Examples are
given to illustrate almost all general results, and if these are carefully studied the significance
and application of the theorems should be clear.

2. Machines without Integrators

In this section we will study the properties of machines containing no integrators; and in the
next section apply this analysis to machines containing integrators, by separating the integrators
from the remainder of the machines. The reason behind this procedure is that the integrators
are essentially unilateral * - we cannot tum the output and expect the input to be its time
derivative, and this fact necessitates a special treatment.

A general machine without integrators is indicated in Fig. 2. On the left are P "driving" or
"power" shafts and on the right D "driven" shafts. The difference is so far purely subjective;
we are considering the possibilities of the machine, with the idea of turning X), X2, ... , X p

arbitrarily and determining if X P +H + I, ... , XP +H +D tum satisfactorily. Inside the machine let
us assume that there are A adders and J junctions and let there be H "internal" shafts (i.e.,
shafts not directly connected through gear boxes to the power or driven shafts), labeled XP + 1,

XP +2, ... , XP «n- The scheme of labeling is indicated in Fig. 3; if two shafts are connected by a
gear box of ratio K, they are assigned the same variable but one is K times the other, while all
shafts not connected by gears are assigned different variables, except that all power and driven
shafts are given different variables even if two are connected directly or through a gear box.
These variables represent the positions in revolutions or radians of the shafts as measured from
the starting position.

* In practice high ratios are also unilateral, but we idealize the situation here for mathematical reasons and assume all
gears to be bilateral.
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Flee

XPfl1-f1
A"oI-H'!'2
Xp;'}/+3

C. E. Shannon

(7)

Let us suppose that there are T "through" shafts, such as X 1 - X 7, X4 - X J J and X 12 - X 13

(Fig. 3) in the machine, connecting one external (power or driven) shaft to another without any
intermediate adders or junctions. Each of these places a linear constraint on two of the X's. We
may write the set of T constraints as follows:

P+H+D

~ aijXi=O j=1,2, ... ,T
i==1

where all the a ij in anyone equation (j fixed) vanish except two.

X,
AI

X,

X2 Xa

Xg
KJ

X3 ,(e X'O

X4 X,I

%,Z

r/J

rIG. .J

The adders furnish a set of A constraints
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P+H+D
~ 0ijX;=O j=T+l,T+2, ... ,T+A
i= I
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(8)

with all but at most three of the a ij in anyone equation (j fixed) vanishing (actually less than
three could be non-vanishing by having both ends of a single shaft connect to the same adder as
in Fig. 4g).

Finally each of the 1 junctions provides two constraints giving a set of 21 equations:

P+H+D
~ a ij X; = 0 j =T + A + 1, T +A + 2, ... , T + A + 21
;= I

(9)

with at most two coefficients in each equation different from zero. Thus we have a total of
T + A + 2J linear homogeneous equations relating the P + H + D variables X I , X2, ... , XP +H +D.

The homogeneity of the system of equations follows from the assumption that we measure
revolutions from the starting position. As these are the only constraints, the system of
equations

P+H+D
~ a ij X i = 0 j = 1, 2, ..., T + A + 2J
i= I

completely describes the machine.

For the machine of Fig. 3, the equations are as follows:

XI -X7 =0

T - K2X4 +XII =0eqns

X 12- X l 3 =0

A [ K} Xs + X6 +Xg =0
eqns

(11)

X2 - X5 =0

X2 - Xg =0
2J

eqns X3 - X6 ==0

X3
_ X IO =0

K3

I I I I

P=4 H=2 D=7
variables variables variables

(10)

Now suppose we try to operate the machine, i.e., to tum the P shafts arbitrarily and see if
the D shafts turn satisfactorily. A number of possibilities may arise.

1. It may not be possible to turn the P shafts arbitrarily, that is, the machine may enforce a
functional relation between these shafts. In this case we will say that the machine is "locked."
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2. The positions of the D shafts may not be uniquely determined by the positions of the P
shafts; one or more of them can be turned freely while the P shafts are held stationary. In this
case we will say that the machine has "free driven shafts. "

3. There may be internal shafts that can be turned freely while the P and D shafts are held
stationary. These win be called' 'free internal shafts. "

4. There may be shafts in the machine which are unnecessary in the sense that if broken the
two ends are constrained by the machine to turn at the same speed when the P and D shafts are
allowed to tum freely. Such a shaft will be called "redundant."

A machine with any of these four characteristics will be called' 'degenerate." Any of the
four degeneracies may occur separately and all combinations are possible in a machine. The
first two types of degeneracy are obviously unsatisfactory in a machine. The last two are
undesirable on economic grounds, for we will show that any machine containing free internal
shafts or redundant shafts has superfluous adders or junctions.

A number of examples of degenerate machines are shown in Fig. 4. The possible machine
degeneracies are of course closely connected with degeneracies in the system of linear
equations (10) describing the machine constraints; in locked machines the system (10) is

inconsistent for certain sets of values of Xl' ..., XP; in machines with redundant shafts, certain
of the equations are superfluous; and in machines with free shafts, certain of the variables
X p + 1 , ... , Xp +H +D are not uniquely determined by X I' ... , X», Using the notation MH +D for
the matrix of the coefficients of XP + 1, ... , XP +H +0; M P +H +0 for that of X I, ... , XP +H +D; and
RH + D' R p + If +D' for the ranks of these matrices, the following theorem can be easily proved.*

Theorem I. A necessary and sufficient condition for non-degeneracy in a machine is that
M H +D be square and non-singular, or that

R p + H +D = R H +O = H + D = T + A + 2 J , ( 12)

the first two equalities being necessary and sufficient for no locked power shafts and no free
shafts respectively; while if the first two are satisfied, the third equality is necessary and
sufficient for no redundant shafts.

For example, the machine (a), Fig. 4, has the system of equations

XI -X 3 =0

( 13)

so that

( 14)

which is not square, and the machine is degenerate. Also we note that

(15)

whose rank is 2 while R H +D = 1 so the machine is locked.

* See Appendix for proofs of this and succeeding theorems.
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FlG.4 DEGENERATE MACHINES

Theorem I is given more for mathematical background and for completeness than as a
practical test of degeneracy. Later we will develop a rapid and simple method for determining
whether or not a machine is degenerate.

The machine of Fig. 3 is easily seen to have the free driven shafts X 12 and X 13. If these
shafts are eliminated the machine is non-degenerate.

The first part of the following theorem is a simple consequence of Theorem I.

Theorem II. In a non-degenerate machine without integrators the driven and internal shafts are
uniquely determined as linear homogeneous functions of the power shafts:

p

Xi = ~ hij Xj i =P + I, ..., P +H +D (16)
j=1

with real coefficients b tt: Conversely, it is possible to construct a machine realizing any system
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of D equations defining the driven shafts
p

Xi = L bijXj i=P+H+l, ...,P+H+D
J=J

( 17)

as linear homogeneous functions of the power shafts with real coefficients.

This realization is, in fact, obtained with the network of Fig. 5, the long boxes being
compound adders with gear ratios bij at the inputs to the adders as indicated.

Theorem II is the important result of this section; it states that in a non-degenerate machine
the driven shafts are linear functions of the power shafts, and conversely given any set of such
functions we can design a machine in which the power and driven shafts are related by these
functions.

bh" .-- - 0,/r-

1-

bIJ.2

b,Z bl 2
1}

t
I
I

b13 b3Z bq3
I
t
I
I
I

~~

'-- - ....

x,

X3I
I
I
I
I
I,
I

Xp

FIG. 5

3. Machines with Integrators

Now consider a machine with just n integrators, an input shaft e and output y, and any
number of gears, adders and junctions. Separating the integrators from the remainder the
machine will be as in Fig. 6, the box containing all adders, junctions and gears. This part in the
box will be called the "Integratorless" part of the machine. We will say that the machine is
degenerate, contains redundant shafts, etc., if these statements are true of its integratorless part.
It is clear that the power shafts of Fig. 6 being locked is unsatisfactory; at worst the machine
would break down at some point (e.g., the integrators would be forced to slip), while at best (if
the integrators happen to tum at such speeds as to satisfy the locking constraint) at least one
integrator is superfluous. Similar considerations hold for the case of free driven shafts,
justifying this extended use of the word degenerate.

Since the integrator displacements are the time derivatives of the corresponding outputs,
and using the relations (16) we obtain for the equations of the system, assuming that at t =0 we
suddenly start turning the e shaft according to e(t):
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d
where ai= dt Xi

n

pX j = !,bijXj+bi,n+]e+fli1(t), i=1,2, ...,n,
j=l

n

y = !, b n+ l,j X j + b n+ 1, n+ Ie, (18)
i» 1

is the initial displacement of integrator i, I(t) is the Heaviside unit

1=0

function, and p =!!- is the Heaviside operator.
dt

Any non-degenerate machine with n integrators solves a system of equations of this type,
and any system of equations of this type can be realized in a machine with n integrators, that is,
given a set of equations of the form (18) we can design a machine placing these constraints and
these only on the variables X I, X2, ... , Xn' e, y. The system (18) can be written

(b II - P)X I + b 12 X 2 + + bIn X n + b I .n+ I e + Cl 1I = 0

b2IXl+(b22-P)X2 + + b2nXn+b2,n+le+Cl21=O

hnl X I + b n2 X 2 +

b n +),) X] + b n + 1,2 X 2 +

+ (bn,n -p)Xn + bn,n+ Ie + ani = 0

+ b n + l ,» X n + b n + I,n + ) e + 0 = y .

(19)

Hence, by Cramer's rule, splitting the numerator determinant into a sum

(b11-p) b l2 bin

b 2 t (b 22 -p) ... b 2n

b I,n+ I

b 2 ,n + I

e(t)+

bll-p bill

b 21 b 21l

1(1)

b ll-pb 12 "'b l ll

b21 h22 -p ... b2"

y(t)

b tl • 1

b" + 1.1 b ; + 1,2

... (h,,"-p) hn ,ll + I

b"+I.,, b n + I ,II + 1

... h"" -p all

b 11+'.1 ... b n + l .» 0
(20)

... b",,-p
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= y (p) e ( t) + L (p ) I ( t) . (21)

The term L(p) /(/) depends only on the initial conditions, i.e., the initial positions (Xi of the
integrators, not on e(t). We will call the machine "stable" if for any system of initial
conditions and with e(/)=O the y shaft approaches the zero position as t ~ 00. A sufficient
condition for stability is that the real parts of the roots PI, P2, ... , Pn of the denominator of
(20) be negative.* In a stable machine the solution y eventually approaches Y(p) e(t) no matter
what the initial settings of the integrators. By analogy with electric circuit theory we call
L(p)l(t) the transient, Y(p)e(t) the steady state and Y(p) the admittance. Since we are chiefly
concerned with stable machines in which the term L(p)l(t) eventually disappears, we hereafter
neglect this transient and consider only the function Y(p ) e(I). This is equivalent to assuming
that the machine starts with all integrators set at the center of the disk, a i =0 (i =1,2, ... , n),
for in that case the second terrn of (20) has a column of zeros and vanishes identically. In other
words, from now on we consider an integrator as placing the constraint

y =P l..V

17 I,!

Xf
r-4~

1
H~ ~4-

e

b,2 b,n "',11-1-1
I ~ I

1 b12 b~n b2,n~1
I I,..E ~ I

I I I I I , I

I I I I I I I

I I I I t t I

, I I I I I I

I I t I I I ,
I b/J,2 bnn bn,n+!

I ~ J

b/}.,.~ n
I ~.fl

b + b b

FIG. 7

* This is for practical purposes also a necessary condition. It only fails when parts of the machine are isolated in the

sense that they cannot affect the y shaft. Such an isolated part would be of no use and might well be eliminated.
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on its output wand input y. One design for realizing the admittance Y(p) is shown in Fig. 7.
This will be called the matrix design. The gear ratios come out directly as the elements of the
coefficient matrix of (19) and, as we have drawn the circuit, in the same geometric positions.
This design is chiefly of academic interest; it is not recommended for actual machines as it is
very uneconomical of adders and gear boxes.

If we expand the first term of (20) in power of p we obtain

A np" +An_1pn-1 + ... + Ao
Y(p) =---------

r" +Bn_1pn-1 + ... + Bo

This proves the first part of:

(22)

Theorem III. Any non-degenerate machine with n integrators has an admittance of the form

Anpn +An_1pn-l + ... + A o
Y(p) = n B 11-) B (23)

p + n-IP + ... + 0

with the A i and B i real. Conversely, any such admittance can be realized in a machine with n
integrators.

The final statement of this theorem can be demonstrated by actually exhibiting such a
machine. Figure 8, for example, realizes (23) with just n integrators. The compound adders
place the constraints

F/G.8
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(24)

on the machine. Eliminating z we obtain

A n A n-l AnP + n-IP + ... + 0
y= e

pn + Bn_1pn-1 + ... + Bo
(25)

with the A,. and B; arbitrary real numbers. If any of the A i or B i are zero the corresponding
shaft of the machine is eliminated. The design of Fig. 7 will be called the "polynomial
design" for the rational function (25). The design parameters, namely the gear ratios, come out
directly as the coefficients of the polynomials. This design also has other important properties.
It is evident from Theorem III that it minimizes the number of integrators required for the
general rational function (25). In addition it minimizes the number of adders, or separate gear
boxes, and even the number of shaft junctions. Such minimization is of course important not
only for reasons of economy but also for reasons of precision in operation.

Note from Theorem III that for a rational Y(p) to be realizable the degree of the numerator
must not exceed that of the denominator. This is a direct consequence of the unilateral property
of integrators. If mechanical time differentiators were available instead, we could obtain any
rational function with denominator degree not exceeding numerator degree, while if bilateral
integrator-differentiators were available any rational function could be realized.

If in place of one input shaft e in Fig. 6, there are I of them, e I , e2, ... , ef, and 0 output
shafts not driving integrators, y 1 , Y2, ... , Yo, we have:

Theorem IV. The inputs and outputs are related by
I

Yj = ~ Yij(p ) e i < j = 1, ..., 0
I> I

in an n integrator machine, with
n

1: Ai"kpk
k = 1 }rij =-----------

Pn+Bn_lp n- 1 + ... +Bo

(26)

(27)

where the A's and B's are real.

r ij is the "transfer admittance" from input i to outputj. The denominator in (27) is the
same as in (20),

where

~=lbij-pSijl, i,j=1,2, ...,n, (28)

Oij ::: 0, i *-t. O;i = 1 .

This will be called the "machine determinant." Stability is governed by the positions of its
roots.

4. Theory of Orientation

It is common when drawing machines of this sort to "orient" the shafts; that is, to draw an
arrow on each shaft called variously the direction of "drive," of "'power flow," or of
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, 'constraint. " It is sometimes assumed that a necessary and sufficient condition for satisfactory
operation of a machine is that such an orientation be possible. The rules for.drawing the arrows
are as follows:

1. The arrows on input shafts must point toward the machine.

2. The arrows on output shafts must point away from the machine.

3. Exactly two arrows on the three shafts of an adder must point toward the adder.

4. Exactly two arrows on the shafts of a junction must point away from the junction.

5. One arrow must point away from and one toward a gear box.

6. The arrow on the output shaft of an integrator must point away from the integrator; the
arrow on the input shaft, toward the integrator.

If it is possible to draw a set of arrows on the shafts of a machine satisfying these
requirements we will say that the machine is "orientable.' If this is possible in only one way
the machine is "uniquely orientable." Figures 9, 10 and 11, for example, are orientable,
the last two uniquely. Note that for a machine to be orientable it is necessary and
sufficient that the integratorless part be orientable, considering the outputs of
integrators as input shafts to the integratorless part, and the inputs to integrators as
outputs of the integratorless part (Fig. 6).

It is easy to determine whether or not a machine can be oriented. First orient all input,
output and integrator shafts. Next orient all shafts whose orientation is uniquely determined by
those already oriented, etc. If this process terminates without all shafts being oriented continue
by trial and error. For an ordinary machine this can be done in a few seconds.

FIG. 9

Xs

- ....-----------...- ....-- X,x,

X3 ----!~-..---------~~--- 1:9

FIG. 70
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Before studying the orientation problem mathematically, we will prove by examples some
purely negative statements.

I. If by "satisfactory" operation it is meant that a machine is not locked and gives unique
results on the output shafts, then orientability is neither necessary nor sufficient for satisfactory
operation. Figures 4g and 4h show two orientable machines which are nevertheless locked, and
Figs. 4e and 4f show two machines which are not orientable but are' 'satisfactory."

2. The direction of arrows in an orientable machine (even if uniquely orientable) do not
necessarily give the direction of power flow. Operators of input tables on the differential
analyzer have often found situations where the crank had to be held back; if left free it would
tum faster than the proper speed. This phenomenon will occur when two shafts turning in
opposite directions are feeding the same heavily loaded adder. If one of the shafts is turning
rapidly and the other slowly, the load on the adder causes a large torque on the slow shaft in
such a direction as to tend to increase its speed.

3. The direction of arrows can hardly be called the direction of constraint, since with
perfectly good machines the orientation may not be unique, as in Fig. 9, where there are two
possible orientations, the second one with the arrows reversed on the checked shafts.

In spite of these remarks, the question of orientability will be shown to be highly
significant. For the purposes of the next theorem we assume that, in setting up the system of
equations (10), if both ends of a single shaft enter the same adder or junction the two
coefficients are not added, but retained as a sum. Thus in the machine Fig. 4g, the equation of
the adder would be written

(29)

not as

(30)

Theorem V. Consider the matrix MH+D of the coefficients of the internal and driven shafts in
( 10). If this is not square the system is degenerate, and the machine cannot be oriented. If
square, let the determinant 1MH +D t be expanded in full. The number of different orientations
of the machine is exactly equal to the number of non-vanishing tenns in this expansion.

For example, the machine Fig. 4g has the equations

=0

(31)

X2 + (1 - 1)X3 = 0
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so that

-1 0 0

IMH+DI = I 0 -1 =- (-1)(-1)(1-1)

1 (I-I) 0

= -1 + 1

529

(32)

and the machine can be oriented in two different ways, one as indicated in Fig. 4g; the other is
obtained by reversing the arrow on the loop.

From this basic result the next four theorems are easily deduced.

Theorem VI. Any non-degenerate machine can be oriented.

Theorem VII. Any machine that can be oriented is non-degenerate or will become so if gears
are inserted in the proper places.

As an example of this we see that by changing the - I gear in Fig. 4g to any other value the
machine becomes non-degenerate. The same is true of Fig. 4h if a gear of any value :# 1 is
inserted in one of the internal shafts, as in Fig. 9.

Theorem VIII. If a machine is uniquely orientable M H +D is non-singular and can be made
triangular by a proper interchange of rows and columns. In this case, furthermore, the machine
is not degenerate.

Theorem IX. If M H +D is non-singular and can be made triangular by interchanges the
machine is not degenerate and is uniquely orientable.

The machine of Fig. 10 illustrates these last two theorems. It is uniquely orientable and its
equations can be arranged in the form

x, + X 6 + 2 X 5

XJ - X6

X J - X7

X 2 + X s + X 4

X3 - X4

X3 - X9

Displaying 1M H +D I as triangular and non-singular:

1 1 0 2 0 0

0 -1 0 0 0 0

IMH+DI =
0 0 -I 0 0 0 = + 1.
0 0 0 1 I 0

0 0 0 0 -1 0

0 0 0 0 0 -1

=0

=0

=0
(33)

=0

=0

=0

(34)
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Since almost all machines actually used are uniquely orientable, Theorem VIII furnishes a
useful proof of non-degeneracy.

The interconnection between orientability and degeneracy is now clear. If a machine
cannot be oriented, no matter what the gear ratios are, the machine is degenerate. On the other
hand, if it is orientable it mayor may not be degenerate, depending on the gear ratios. For most
ratios it is not degenerate, but for the special ones which made 1MH +D I = 0 it is. In the
particular case of unique orientability there are no such special ratios - the machine is never
degenerate. Theorems V to IX also explain the success of the orientation method of
determining whether machines are satisfactory; for apart from special gear ratios, orientability
is equivalent to non-degeneracy.

The following two theorems are of some theoretical interest in connection with orientation
theory. We define a directed path in an oriented machine as a path along shafts of the machine
with all the arrows pointing in the same direction. A directed circuit is a closed directed path.
Thus the checked shafts in Fig. 9 form a directed circuit.

Theorem X. Suppose a machine can be oriented in one way. This is a unique orientation if
and only if the integratorless part contains no directed circuits, that is, if and only if all directed
circuits pass through integrators.

In Figs. 4g and 9, directed circuits exist so the orientation is not unique. In Fig. 10 there are
no circuits, so the orientation must be unique.

A set of directed circuits will be called independent if no pair has any element in common.

Theorem XI. Two different orientations of the same machine differ only in the reversal of the
directions of arrows on a set of independent directed circuits in the integratorJess part; and
conversely any reversal of such circuits in an oriented machine gives a new orientation.

It is worth noting that in an orientable machine (and hence certainly in any non-degenerate
machine)

P+A=D+J (35)

the letters being the number of power shafts, adders, driven shafts and junctions respectively.
In particular in a two shaft orientable machine the number of adders equals the number of
junctions.

s. Sufficient Gearing for an Ungeared Machine

It sometimes happens that we have a design for a machine which does not include any
gears, and we wish to place gears in the shafts in such a way as to realize the full potentialities
of the design, i.e. in such a way that by proper assignment of the gear ratios any transfer
admittance realizable with the design can be obtained. For example, Fig. 11 is an ungeared
machine; we wish to place a sufficient number of arbitrary gears in the shafts to realize the full
generality of the design. This can be done, of course, by placing an arbitrary gear in each shaft;
but such a procedure would be inefficient, as a much smaller number will suffice. In this
section we state a theorem giving methods of finding a suitable set of shafts to choose for gears
so as to realize the maximum possible generality.

The network of interconnected Jines obtained from the drawing of a two-shaft machine by
connecting the input and output shafts together with a line, eliminating integrators and gears
(by drawing lines through them) and drawing junctions and adders both as junctions will be
called the network of the machine. Thus the network of Fig. 11 is Fig. 12a.
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o 0-
(C) (d)

(e) FIG. /2

In topology a set of lines S of a network N is called a fundamental system if when the lines
S are deleted from the network, all closed circuits in N are broken, while if any line of S is left
in N there is at least one circuit.

Theorem XII. If arbitrary gears are placed in the shafts of a fundamental system of a machine,
the full generality of the design is achieved. This requires A + 1 gears in a non-degenerate
machine, where A is the number of adders.

Figs. 12b-f show some fundamental systems for the network of Fig. 12a. If gears are placed
in the shafts of Fig. 11 corresponding to anyone of these the machine will be fully geared.
Fig. 11 contains 3 adders and 3 + 1=4 gears are sufficient. If the input-output line forms a part
of the fundamental system chosen, the gear may be placed either in the output or input shaft of
the machine. If an integrator appears in any of the corresponding shafts, the gear may be placed
either in its input or output.

To find a fundamental system of a given network N delete any line appearing in a closed
circuit of N. Then delete any line appearing in a circuit in the reduced network. Proceed in this
way until no circuits remain. The deleted lines form a fundamental system.

6. Integrators as Gears with Complex Ratio

We have up to now always described the motion of shafts in terms of their variation with
respect to time. That is, we associate with each shaft a function of time x(t) whose value at
t =t I is the position of the shaft at t J. We may also describe the motion of a shaft by giving the
Fourier transform of its position, a function of frequency. If we denote the time functions by
small letters and the corresponding frequency functions by capitals (e.g., the transform of x(t)

is X(jro» then it is easily shown that different machine elements place the following
constraints on the frequency functions:
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Machine Element

Integrator

Adder

Junction

Gear

Constraint on Time
Functions

d
y(t) = - w(t)

dt

x(t) + y(t) + z(t) = 0

x(t) = y(t) = z(t)

x(t) = K y(t)

c. E. Shannon

Constraint on
Frequency Functions

Y(jro) = jroW(jro)

X(jro) + Y(jro) + Z(jro) = 0

X(jro) = Y(jro) = Z(jro)

X(jro) = K Y(jro)

The only constraint which has a different form in terms of frequency functions is that of the
integrator, which acts like a gear, except that the ratio is complex, jt», and depends on
frequency. We can thus consider integrators and gears both as special instances of a
generalized kind of gear where complex ratios are admissible, in the same way that inductance,
capacitance and resistance are special cases of a complex impedance. A two-shaft machine
with admittance Y(p) places the constraint

x(t) = Y(p) e(t) (36)

on the input e and output x in terms of time functions, while the corresponding constraint in
terms of frequency functions is

X{jro) = Y(jro) E{jro) . (37)

Thus the machine is equivalent to a "complex gear" of ratio Y(jro).

Of course this interpretation, or something equivalent to it (e.g., Laplace transforms or the
indicial admittance), was implied in our algebraic manipulation of the Heaviside operator p.

7. Reversible Machines

It is possible to operate some non-degenerate two-shaft machines backwards - i.e., to tum
the output and have the input driven by the machine. If it is also non-degenerate in this
direction we will call the machine' 'reversible. "

Theorem XIII. A non-degenerate two-shaft machine with admittance Y(p) is reversible if and
only if Y(00) :I:- O. In this case the admittance of the reversed machine is [Y (p ) ] - 1•

The polynomial design, Fig. 8, is reversible if the gear A n is actually in the machine, since
Y(oo)=A n·

Theorem XIV. If there is exactly one directed path passing through no integrators from the e
to the y shaft of a non-degenerate machine it is reversible. At least one such path is necessary
for a machine to be reversible.

Note that an orientation for the reversed machine can be obtained by reversing the arrows
along such a path, leaving other arrows the same.

8. Interconnections of Two-Shaft Machines

If we have a pair of two-shaft machines with admittances Y I and Y2' we can, in general,
connect them together in four different ways to get a new satisfactory two-shaft machine.
These four ways are shown in Fig. 13. Figure 13a will be called the series connection of Y I

and Y2; Fig. 13b the parallel connection; Fig. 13c will be described as Y2 in skew parallel with
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y 1, and Fig. 13d is Y I in skew parallel with Y2. It is of interest to know the resultant
admittance Y of the machines constructed in these four ways from two given machines.

(a}

e

(b)

e !I

(c)
FIG. /3

(d)

Theorem XV. The series connection of two machines is non-degenerate if and only if both are
non-degenerate, and has the admittance

(38)

Theorem XVI. The parallel connection of two machines is non-degenerate if and only if both
are non-degenerate, and has the admittance

(39)

Theorem XVII. Y2 (p) in skew parallel with Y I (p) is non-degenerate if both are non-
degenerate and

(40)

and the admittance is then

(41)

The series, parallel and skew parallel connections play a part in this theory analogous to
series and parallel connections in electric circuit theory. They are sufficient to describe all
non-degenerate connections of four or fewer two-shaft machines. Five or more machines can
be connected in various types of bridge circuits.
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The easy realization of the basic mathematical operations, multiplication and addition by
series and parallel connections is remarkable and useful in the design of machines. The skew
parallel connection is also related to an important mathematical operation - continued fraction
expansion. In fact, representing the skew parallel connection by ~:

(42)

Y- I
- I

we easil y see that

(43)

I I I 1
- Y, 1 + Y2I + - Y3" I + Y4 I +

where the signs on the Yi I alternate except for Y~ I , which has the same sign as Y; ~ I .

It is interesting to note that for a single fixed frequency roo, the simple parallel connection
of Fig. 14 gives the most general complex admittance or gear ratio A +JB. Both A and Bean
assume positive or negative values.

FlO. /4

9. The Analysis Theorem

In this and the next section we will exploit the interconnection between orientation and
machine properties by giving a rapid method for evaluating transfer admittances, and testing for
stability and degeneracy. We must first define a few preliminary notions. Directed circuits and
paths have already been defined in Section 4. The value of a directed path or circuit will be
taken as the product of the values of elements along the path (or around the circuit) in the
direction of the arrows, giving elements the following values:

(1) gears have a value equal to their ratio in the direction of the arrow on the path or circuit
(not the arrow on the gear),

(2) adders have a value - 1,

(3) junctions have a value + 1,

(4) integrators have a value 1...
p
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In Fig. 15 the directed path from e I to Y I has a value

PI = (-l)(Kd[~][ ~J =

The circuit C 4 has a value (starting at the left-hand adder)

I 1 K 3
C 4 = (-1)- - (-I)K3(-t)(-I) = -.

K2 P K2P

The machine discriminant will be defined as the expression

D = 1 - r, C; + r, C; c, - r, C; c, c, +

535

(44)

(45)

(46)

the first sum I: C i being taken over all directed circuits in the machine, the second L C i C j

over all pairs of independent circuits, the third over all triplets of independent circuits, etc.

e,

FIG. 15

~------'fl

--......-- !lz

In Fig. 15 the circuits have values

-K) 1 K 3
C,= C2=- C3=-K3 , C4=--.P K 2 ' K 2P

Hence

K3 K)K3-----
K 2 K 2P

(47)
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In case the circuits can be divided into independent groups as in Fig. 15, where we have C I and
the independent group C 2, C 3 , C 4 the discriminant for each part may be found from (46)oy
summing only over the circuits in that part and the results multiplied, shortening the work
considerably. Thus in Fig. 15 we have:

D = (I-CI)(I-C2-C3-C4+C2C3)

(48)

(49)

The discriminant D i of a machine complementary to a path Pi is the expression (46) summed
over those circuits which do not touch the path Pi.

Theorem XVIII. In any non-degenerate machine

~ r.o,
y ..=---

I) D'

where the sum is taken over all paths Pk from input i to output j with complementary D k and D
is the discriminant for the entire machine.

In Fig. 15

Note that the D 1 cancels.

= (50)

Yl2 = ----- =

y 21 = 0 (no paths)

Here again the D I cancels. Hence

(p +K 1 ) [ (K 2 + K 2 K 3 - K 3 - 1) p - K j ]

(51)

Yl =

(52)
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It simplifies the expression if the direction of gears is taken in the direction of orientation
when assigning gears to a machine. The reader is urged to try this method on a few examples.
After a little practice it is possible to write down the admittances for ordinary machines almost
by inspection. We give another illustration in Fig. II.

We have

I
P2 =--

P

PI(1-C 2)+P2
y= -------

(1-C 1)(I-C2 )

[l+~l-~

[1+ ~r (p+l)2 .
(53)

10. Degeneracy Test and Evaluation of the Machine Determinant

We now give two theorems which are easy but useful corollaries of the analysis theorem
given in the last section.

Theorem XIX. A machine is non-degenerate if and only if

(1) it is orientable, and

(2) D * -:1= 0, where D * = D p =00 is the discriminant of circuits not touching integrators, i.e.,
the discriminant of the integratorless part of the machine.

In Fig. 4h the discriminant D * is

I - (- 1)( - 1) = 0

so the machine is degenerate. In Fig. 15 we have

D* = (l-C2)(I-C3) = [1- ;2 ](l+K 3 )

and the machine is degenerate if K 2 =1 or K 3 =- 1, or both, but not otherwise,

(54)

Theorem XX. In any oriented machine with n integrators the machine discriminant D and
determinant ~ are related by

(-p)"D = ~D* .

This theorem may be used to test for stability, since stability depends on the location of the
roots of~. In Fig. 15

(55)
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with roots

p = -K 1,

C.E.Shannon

and the machine is stable if these are both negative.

The methods of analysis given in the last three theorems are really no more than simple
methods of evaluation of the numerator and denominator determinants in (20). The rapidity of
the method is due to the fact that by a simple graphical device we can pick out the non-
vanishing terms of these determinants without even writing out the equations of the system.
Actually in almost all cases the majority of the terms of the determinants vanish, as may be
seen by an inspection of (11).

11. The Duality Theorems

Duality theorems are important in many branches of mathematics - projective geometry,
abstract algebra, electric circuit theory, etc. In this section we shall establish a duality relation
for linear differential equation machines leading to a number of results in the design and
philosophy of these devices.

We will define the dual of a given machine M as the machine M' constructed as follows:

1. Adders and junctions in M are interchanged.

2. The direction of each integrator in M is reversed.

3. The direction of each gear in M is reversed.

4. A reversing gear (ratio - 1) is placed in each internal and through shaft of M.

Thus, for example, the dual of Fig. 15 is Fig. 16. Although in topology only planar
networks have duals, every machine has a dual - we do not even limit ourselves to non-
degenerate machines. Clearly the dual of the dual of a machine M is M itself, (M')' =M.
There is an intimate relation between the properties of M and M' which may be stated as
follows.

Theorem XXI. If we can divide the external shafts of M into two groups e 1 , e2, ... , erand
Y1 , Y2, ... , Ys such that the e i can be turned arbitrarily and the Yi are uniquely determined,

r

Y i = ~ Yij ej i = 1, ... , s,
i- I

(56)

then in the dual machine with corresponding shafts e~ , e2' ... , e; and Y~ ,Y2' ... ,Y; the y; can
be turned arbitrarily and the e; are uniquely determined by

s

ej = - ~ Yij Y;
i=l

j= 1,2, ... , r . (57)

In other words replacing a machine by its dual interchanges output and input shafts,
transposes the admittance matrix II Yij II and changes the sign of each admittance. The class of
machines to which this theorem applies is very broad - the only cases excluded by the
conditions of the theorem are certain machines in which the outputs of the integrators are
locked, or the inputs of the integrators free.
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~;--....

,
e2----------

-1

FIG. If,

A two shaft machine has only one admittance

y = Y(p)e

so its dual gives

e' = - Y(p) y' .

,
r11
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(58)

(59)

Hence we have the

Corollary. If a ( - 1) gear is introduced in the output of the dual M' of a non-degenerate two-
shaft machine its admittance is the same as that of M, with input and output interchanged.

Thus given any machine realizing Y(p) we can construct another with the same admittance
which may be superior for mechanical reasons. For example, the dual of the polynomial design
(Fig. 8) is Fig. 17, which seems to offer some advantages from the backlash point of view. In
Fig. 8 the adders are in a series connection from input to output so that the backlash effects
during a reversal of the e shaft add together, while in Fig. 17 they are essentially in parallel and
the amount of backlash would be about that of one adder.

Most of the ( - 1) gears appearing in the dual of a machine can usually be eliminated by a
device explained in the proof of Theorem XII, without altering its external behavior. This was
done in Fig. 17.

Many machines are of such a nature that the dual machine is essentially the same as the
given machine (except for ( - 1) gears that can be eliminated); and such cases do not give an
essentially new design under the corollary. In particular we mention that the series, parallel,
and skew parallel connections are essentially self dual, and hence any machine containing only
these connections is self dual.

Theorem XXI can also be stated in geometrical terms, throwing the duality into a more
natural perspective. Any machine whatever with external shafts x I , X 2, ... , X n places on these
shafts a set of homogeneous linear constraints
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NOTE: SIGNS ON A"GEARS
ALTERNATE FROM An-I TO
At, Ao HAS SAME 5/GNAS
AI. SIMILARLY FOR "8"GEARS.

FIG. /7

n

~ Ai} Xi = 0
i=1

j= 1, ... , S (60)

when the A ij are functions of p. Thinking of p as a fixed number and the x i as coordinates of a
point in Euclidean Il-space, (60) represents a linear manifold R in this space, i.e., a region such
that if (a 1 , a 2, ... , an) and (b 1 , b 2, ... , b n ) are points in the region then

a(a I , ... , an) + ~(b I , ... , bn) = (a. a I + ~ b I , ... , a. an + ~ bn) (61)

is also in R for any real numbers (l, p. The orthogonal complement R' to such a region is the
linear manifold of all points (y J , Y2, ... , Yn ) such that the scalar product

(YI,Y2'···'YIl)(Xl,X2,···'Xn) =xIYI+x2Y2+ ... +xnYn=O (62)

for any x i in Rand Y i in R' .

Theorem XXII. The region R of a machine M and the region R' of its dual M' are orthogonal
complements.

A simple example is the machine M consisting of a single adder with gears a, b, c in its

shafts and its dual M', a single junction with gears.!, .!, .! in the corresponding shafts. For
abc
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M

ax + by + cz = 0 ,

the equation of a plane in three-space. For M'

~=L=~
abc
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(63)

(64)

the perpendicular straight line.

Another aspect of this duality relation is the existence of dual propositions. Many
statements have a dual statement which may be found by replacing each term by its dual.
Table I gives the most important dual terms and phrases.

Table I: Duality Table

Adder
Gear
Integrator
Gear of ratio K
Integrator input
Internal shaft
Ex ternal shaft
Power shaft
Input shaft
A particular machine M
Any machine

Degenerate
Locked power shaft
Redundant shaft

Orientable
Arrow toward

Circuit product C
Path product P
Machine discriminant D

To hold a set of external shafts
at zero

To be able to turn a set of
external shafts arbitrarily

To connect the ends of two
shafts together

To hold an internal shaft

The linear region R

Junction
Gear
Integrator
Gear of ratio 1/K
Integrator output
Internal shaft
External shaft
Driven shaft
Output shaft
The dual machine M'
Any machine

Degenerate
Free driven shaft
Free internal shaft

Orientable
Arrow away from

Circuit product C
Path product - P
Machine discriminant D

To allow a set of external shafts
to turn freely

For a set of external shafts to
be uniquely determined

To connect the ends of two-shafts
through a ( - 1) gear

To break an internal shaft

The orthogonal complement R'
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The logical terms of implication, class inclusion, negation, etc. are self duals. We may state
our third form of the duality relation as follows.

Theorem XXIII. If dual terms from the duality table are substituted in a true proposition, it
remains true.

The proposition in question may apply to a specific machine, a class of machines, or to all
machines. Some examples of dual propositions follow.

If there is a path in a machine
from one power shaft to
another passing through gears
and junctions only, the power
shafts are locked.

If an internal shaft is re-
dundant all elements that
can be reached from this
shaft passing through only
gears and adders may be
eliminated, the other shafts
of junctions so reached be-
ing connected together
(Fig. 18).

The machine of Fig. 4e is degen-
erate. It contains a free
internal shaft.

If there is a path in a machine
from one driven shaft to
another passing through gears
and adders only, the driven
shafts are free.

If an internal shaft is free
all elements that can be
reached from this shaft
passing through only gears
and junctions may be elimin-
ated, the other shafts of
adders so reached being con-
nected together with a ( - 1)
gear. (Fig. 19).

The dual machine (Fig. 4f ex-
cept for non-essential ( - I )
gears) is degenerate. It con-
tains a redundant shaft.

j

FIG. 18 5 REPUNOANT
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--,-'
FIG. 19 S FREE INTERNAL

12. Minimal Design Theory

We now consider the problem of minimal designs - how many elements are required for a
given admittance or class of admittances. We first state some results dealing with particular
elements. As a coroJlary to Theorem III we note that the admittance

Anpn + An_1pn-l + ... +A o
Y(p) = 1/ B 1/-1 B (65)

p + n-lP + ... + 0

can be realized with n integrators, and requires this many if the numerator and denominator
have no common roots. For gears we have:

Theorem XXIV. Almost all* admittances (65) require G gears if G of the (2n + 1) coefficients
An' ... , A0, B11- I , ... , B 0 are independent.

If all are independent, 2n + 1 gears are almost always necessary. If we consider the class of
functions with An = 0 and the others independent, 2n are almost always required, etc.

For adders it appears likely that for A adders to suffice for (65) it must be possible to write Y
using only rational operations with no more than A plus signs, but no proof has been found.

These results together with the polynomial design entail:

Theorem XXV. The function

requires

Y(p) =
Anp n + +A o
r" + +B o

(66)

* Precisely we mean that the set of points in the G space whose G coordinates are an independent set of the A, and B I

where fewer gears suffice is of measure zero.
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n

2n

2n

2n + 1

integrators,

adders,

junctions,

separate gears,

c. E. Shannon

for almost all sets of values of the coefficients. All such functions can be realized with this
amount of equipment.

Note that the number of integrators is the highest power of p, the number of adders is the
number of + signs and the number of gears is the number of arbitrary coefficients. If S of the
coefficients are zero we may reduce the requirements by S adders, S gears and S junctions. This
is obvious from Fig. 8.

13. Designs for the General Rational Function

We have seen that the rational function

Anpn + An_1pn-l + ... +A o
Y(p) = n n-l

p +Bn-1P + ... +8 0

(67)

requires in general n integrators, 2n adders, 211 junctions and 2n + 1 gears and we have given
two designs based on the polynomial representation for realizing Y(p) with this minimal
number of elements. These designs are shown in Figs. 8 and 17. A rational Y(p) can also be
written in three other standard forms and designs have been found based on these
representations. These other representations are:

(1) The partial fraction expansion

Y(p) = 1: Yi(p) (68)

where each Y i (p) is a rational function with real coefficients. To realize a general Y(p) we
may expand in partial fractions Yi (p) and design a machine for each of these by any method,
then connect the resulting machines in parallel. It is easily seen that the design is minimal on
all types of elements, if the Y; are minimal.

(2) In the factored from

n Pj(p)
Y(p) = Il Q;(p) = Il R;(p) , (69)

(70)

where the Pi and Qi are at most second degree polynomials with real coefficients and the R i

pair off the Pi and Q; into realizable admittances. Each R ; may be designed separately and the
resulting machines connected in series.

(3) In a continued fraction expansion. The function

An pn +A n- 1 pn-l + ... +A o
Y(p) = n n-l B

p+Bn-1P +···+0

can be expanded in numerous ways as a continued fraction. Four of these are fairly simple,
namely:

(a) Dividing the numerator of (70) by the denominator and inverting at each division
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where the (f) denotes the skew parallel connection. The network is shown in Fig. 20a.

(b) Dividing denominator by numerator and inverting at each division

Y( ) 1 1 1 1
P = PI I + P2 I p + P3 I + ~4 I p +

545

(71 )

(72)

This network is shown in Fig. 20b.

(c) Dividing at each stage until we obtain a proper rational function, starting with the
denominator into the numerator.

1 1
Y(p) = 'Yo + I --I---

Yl P +Y2 + y"] P +Y4 +
(73)

= - (-Yo) - [~ $ [ -Y2 - [~ $ [-Y4 ... ]]]] .

This is realized in Fig. 20c.

(d) The same process, but starting with the numerator into the denominator

1 1 I
Y(p) = --1- 1 --1---

01" + O2 P +0 3 + 04 +05 +
(74)

This connection is shown in Fig. 20d.

Using combinations of these basic designs many other minimal networks can be
constructed. For example we can combine some of the factors of the product design and realize
this part with a partial fraction design in series with the other factors, or we may stop the
continued fraction expansion at some realizable admittance and use the polynomial design or its
dual, etc. It may happen that in some such expansion one or more of the coefficients that
normally appears vanishes, and this allows us in general to reduce the adder, junction and gear
requirements.

One particular case of considerable practical importance is when a set of numerator
coefficients in (70) is proportional to a set of denominator coefficients, shifted over by a power
5 of p (5 may be positive or negative):
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(a)
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(c)
FIG. eo

An A~ Ay
--=--=--= ...
Ba.+s B~+s BY+ 5

(d)

(75)

(76)

The requirements of Theorem XXV can then be reduced by the number of these equalities.
This is accomplished by a continued fraction expansion. For example

y= 2p2+4p +3
p3+2p 2+p + l

1
=--

Y2p+ (-4)p-16+ L __l_
24 12

using only 4 adders, 4 junctions and 5 gears.

(77)
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(78)

14. General Design Method

The following general procedure is recommended for the design of smoothers, rate finders,
etc.

1. Determine as well as possible the form of the admittance function Y1(p) desired. If
expected power spectra of the true input ~(jro) and the error function ",(jro) can be obtained
the desired Y1(p) is (under a least square error assumptionj '

Y ( ) = Y ( '(0) = S(joo)~(jro)
1 p J J ep(joo)+'II(jro)

where S(joo) is the transform of the operation we wish to perform, e.g. for smoothing we take

S =1, for rate finding S =j 00, or for prediction by a time tp we take S = elW
! fl •

2. Approximate this admittance Y I by a rational function Y(p) having no poles in the
positive half plane and with degree of numerator not exceeding that of denominator. This can
be done by standard methods of filter design."

3. Construct a machine for this Y(p) by the methods given above. Various different
expansions should be tried to reduce if possible the number of elements, particularly if the
coefficients in Y(p) have simple relations to one another.

APPENDIX. PROOFS OF THEOREM AND ADDITIONAL REMARKS

SECTION 2

The method of setting up the equations (10) is of course, rather inefficient - a much smaller
number of variables would suffice, for example by assigning the same variable to all shafts
connected through junctions or gears. The method given, however, is uniform, and leads easily
to the results on orientation in Section 4. Since the equations (10) are not used for actual
computation, but only theoretical investigations this canonical system seems preferable.

The choice of the four characteristics listed as "degeneracies" may seem arbitrary. For
example in Fig. 4g if the ( - I) gear is changed to another value, the machine is not degenerate
by our definition, but contains unnecessary elements. The real reason for our definition is that
we wish to keep our results as general as possible, but must place enough restrictions on
machines to obtain the orientation and analysis theorems (V and XVIII).

Theorem I. It is known from the theory of linear homogeneous equations7 that a necessary
and sufficient condition that Xl, ... , X p in (10) may be ascribed arbitrary values is that

(80)

Otherwise there is a linear relation between Xl' ... , Xp and the machine is locked. Now if and
only if

RH + D < H+D, (81)

the existence of one solution for the variables Xp + 1 , .•. , Xp +H +D implies the existence of an
infinite number. But there is always one solution even if the power shafts are locked, namely
the initial solution. Hence (81) is a necessary and sufficient condition that there exist "free
shafts" in the machine, either internally or in the output. If there are more than H + D
equations in system (10), we may keep a set having this rank and reject the remainder as
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superfluous. The existence of superfluous equations in (10) always implies one or more
redundant shafts in the machine, assuming that

R p +H +D = R H +O = H +D . (82)

This condition makes through shafts from one power shaft to another impossible, for then the
machine would be locked; also through shafts from one driven shaft to another would be free.
Through shafts from a power shaft to a driven shaft clearly cannot yield a superfluous equation;
hence we consider only equations arising from adders and junctions. If an adder equation is
superfluous, one of the shafts leading to the adder can be broken thus removing this equation
from the system without affecting the other equations. This is a redundant shaft. If a junction
equation is redundant the shaft not appearing in the other junction equation of the pair can be
broken without affecting the other equations. Reversing this argument gives the converse, that
if RP+H +D =R H +D =H +D, the existence of a redundant shaft implies a superfluous equation in
(10).

Theorem II. MH+D being square and non-singular is sufficient for the solubility of (10). The
converse is proved by Fig. 5.

SECTION 3

The transfer admittance of the general n integrator two shaft machine can be written in
several other fOnTIS (besides (20) and (22». Adding and subtracting p from b n +), n +) the first
term of the numerator of (20) becomes the sum of two determinants:

b11-P b 12 bl,tl+l b11-p bin 0

b 21 b 22 -p b 2,n+ ) 0

+ (83)

s; b nn -p 0

s., 1,1 b ll + 1,2 (b n + ) .n +) - p) b ll + I , ) b l1 + l ,n P

The second tenn is p times the denominator of (20) so that in the steady state

b ll -P b J,n+ I

or

y=
bn+1,n+l -p

---------- + p e

h nn -P

(84)

(85)

where M /1 and Mn + I are coefficient matrices and J denotes a unit matrix. In terms of the latent
roots of M nand M n + I , say a I , ... , an; ~ ) , ... , J3 n + I :
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-p .
n

n+1

Il (p - P;)
I

Y(p) = ---

Il (p -a;)
I

Theorem III. Proved in text.

Theorem IV. This can be proved by a method identical with that used for Theorem III. The
coefficients A ijk here are not all independent, but sufficient conditions for a converse part of
this theorem have not been investigated.

SECTION 4

Theorem V. Theorem I shows that MH +D must be square for non-degeneracy. If a machine
can be oriented MH +D must be square. For the number of arrows pointing away from points
must equal the number of arrows pointing toward points (counting adders, junctions, and ends
of P and D shafts as "points"). Thus

2J + A + P = 2A + J + D (87)

or

A + 2J + T = Y2[3A +3J+P+D+2T] - P. (88)

The left member is the number of equations in (10), i.e. the number of rows in M H +D . If we
consider a through shaft as two shafts connected together, one for each of the two variables,
then the bracketed term counts the number of ends of shafts, three for each adder and junction,
one for each external end of a P or D shaft, and two for the connections of the through shafts.
Half this is the total number of variables P + H + D since each variable has one shaft with two
ends. Subtracting P, the left member is H + D, the number of columns of M H +D. Hence in an
orientable machine M H +D is square. Incidentally (87) entails equation (35) given later in the
section.

Now assuming M H + D square let the determinant 1M H + 0 Ibe expanded, and consider a
non-vanishing term. Such a term is a product of H + D non-vanishing elements of M H +D' one
from each row and column. Such a selection of elements describes an orientation of the
machine. Each column corresponds to an internal or a driven shaft and each row to a node
(junction, adder or center of through shaft) at one end of the shaft (namely the node which gave
rise to the row or equation MH + D). Draw the arrow on the shaft away from the associated
node. Draw arrows on the power shafts toward the machine. This constitutes a complete
orientation since all shafts are oriented and

1. the P and T shafts are obviously oriented correctly,

2. the D shafts connect only to nodes in the machine, hence their arrows point away from
the machine,

3. each adder corresponds to exactly one equation (or row in MH+D). Hence there is
exactly one arrow pointing away from each adder,

4. each junction corresponds to just two rows in M H+D so there are exactly two arrows
pointing away from each junction.

Furthermore, each different term in the expansion of 1M H +D Igives a different orientation,
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for consider two terms differing, say in the selection of an element from column one, the first
using a II, the second a 21' If row one is an adder equation, in the a )) case the arrow on shaft
one is away from the adder, in the a 2) case toward it. In case row one is a junction equation the
same holds unless both rows one and two represent the same junction. In this case we have a
situation as follows:

o alk 0

000

o o
o

and since there are at most two non-vanishing elements in each row, a I) must have a 2j in its
product and a 21 has a )k : Thus the two cases have different orientations as shown in Fig. 21. If
row one is a T equation any other selection is impossible since only one of the Hand D
variables appears here.

FIG cf

Conversely we can show that no orientation is possible which does not correspond to a
non-vanishing term in r MH +D r ' for assume we have an orientation. Throwing the previous
argument into reverse, this corresponds to an association of a different equation with each
different internal or driven variable. The adder equations are obvious, and it is not difficult to
see that the junction equations are fixed unambiguously. As the gear ratios are non-vanishing,
the corresponding term of the determinant expansion is also.

Theorem VI. This now follows immediately from the fact that for a machine to be non-
degenerate 1MH+D I ~ o.
Theorem VII. We note that in an orientable machine, at least one term of the determinant
expansion does not vanish. By proper choice of gear ratios we can clearly make this term
dominate the others, so that 1MH +D I :1= 0, and the machine is not degenerate.

Theorems VIII and IX. Unique orientation is equivalent to just one term of 1MH +D Inot
vanishing. But this is equivalent to M H + D being non-singular and triangulatable by row and
column interchanges.

Theorem X. A direct consequences of Theorem XI.

Theorem XI. Imagine the two orientations superimposed. The orientations can only differ on
internal shafts. Consider a shaft where they differ. This must end in an adder or junction and
clearly exactly one other shaft entering this adder or junction must differ in orientation.
Following along the path of different orientations we must eventualJy come back to the original
shaft since the path cannot end. Also it cannot branch out so the different circuits where the
orientations differ are independent. The converse is trivial.

SECTION 5

Theorem XII. The lines remaining after a fundamental system is deleted from a network is
called a 4'gerust. " It is easily shown 8 that the gerust of a connected network is a connected
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tree touching every node of the original network. Hence it contains as many lines as there are
nodes less one, or A +J - 1= 2A - 1 lines, using the last sentence in Section 4.

We will assume an arbitrary (but fixed) gear in each shaft of a given machine and show that
by transformations which keep the external behavior the same we can eliminate the gears on
any chosen gerust, that is, make them all + 1. The transformations are:

1. a gear may be moved from the input to the output of an integrator.

2. a gear may be moved from the e shaft to the y shaft of any machine.

3. we can insert gears of any ratio a ~ 0 in the three shafts of a node (either adder or
junction).

These transformations are shown in Fig. 22, and it is obvious that they leave external
behavior invariant. Due to the first we may omit integrators for present purposes, and due to
the second we connect output to input and consider only one gear in this shaft. The third
transformation contains the crux of the proof. Draw the network of the machine, Fig. 23 for
example, with the gerust in question heavy and the fundamental system dotted, and assume a
gear in each line. Start at the end of one branch (node 0) of the gerust and move along the
branch to the first node 1. Using the third transformation insert gears of proper ratio about
node 1 to make the resulting gear in the line just passed over unity. Now move along the gerust
to another node 2. Perform the same transformation making the gear in the line passed over
unity. Continue this process until a line is given unity gear ratio for each node of the gerust, i.e.
each node of the network. At each stage we go from a node already used to one not used along
a line of the gerust and adjust the line passed over. Each node can be reached since the gerust is
connected, and at no point is an already adjusted line altered, since the gerust is a tree. Gears
will be left only on the A + 1 lines of the fundamental system, proving the theorem.

FIG 22
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We can generalize this result for machines with more than one input and output shaft as
follows.

Theorem XIIA. Connecting the ends of all E external shafts to a common node, any
fundamental system of this network gives sufficient gearing for the machine. This requires
(E +A -1 ) gears.

The proof follows the same scheme, using a more general transformation which includes 1;
2, 3 above. Imagine a simple closed Jordan surface S in space cutting through the shafts of a
machine. Such a surface divides space into two parts, an inside and an outside. We can insert
gears into each shaft cut by the surface, all of the same arbitrary ratio K :I:- 0, and all pointing
from the inside to the outside, without affecting the behavior of the machine. This theorem,
whose proof is left to the reader, is useful in eliminating the ( - I ) gears resulting when we take
the dual of a machine (Section 1l ),

SECTION 7

Theorem XIII. Referring to Fig. 6, Y (00) = h n + l ,» + 1 is the admittance from e to y with
X I = X2 = ... =Xn =0 i.e. held stationary, and the pX i free to tum. This can be seen from
(19) and (20). If Y( 00) =0 the shaft y is held at 0 under these conditions for any e and the
reversed machine must be locked. If Y( 00) :1= 0, Y can assume any value with
X J =X 2 = ... =X Il =0 and the reversed machine is not locked. Also e is uniquely determined
by y and the X i so the machine does not have free driven shafts (the pX i are uniquely
determined by e and the Xi, hence by y and the Xi)' Finally the reversed machine contains no
internal degeneracies, since their definition does not differentiate power and driven shafts. The
reversed admittance must obviously be

[Y(p)] -I .

Theorem XIV. If there is no such path Y(p) == 0 by Theorem XVIII. If there is exactly one
path then reversing the arrows in this path orients the reversed machine and with this
orientation there can be no directed circuits touching the path. The result now foJlows easiJy
from Theorem XIX.

SECTION 8

Theorem XV. The degeneracy part is easiJy seen from the definitions of the various types of
degeneracy. Also, since y) = e2,

(89)

Theorem XVI. The degeneracy part is also obvious here and, since e =e I = e 2,
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Theorem XVII. Assuming that both machines are non-degenerate,

e = e I + Y2 = e 1 + Y2 (p ) e 2 = (1 +Y 1(p ) y 2 (p ) ) e 1 '

y = y 1 = Y 1(p) e 1 .

553

(90)

e is locked if and only if 1 + Y 1(00) y 2 (00) = 0 and if this is not true, by eliminating e 2 we get

Y = y-J Y e.
I + 2

(91)

The conditions of the theorem are also necessary for non-degeneracy with the trivial exception
that both machines can be degenerate if they are not degenerate in the reverse direction.

SECTION 9

Theorem XVIII. We will prove this theorem by an induction on the number of adders and
junctions in the machine. First the theorem is obvious for any machine with no adders or
junctions since in this case there are no circuits and each power shaft is connected to exactly
one driven shaft through only gears and integrators. D =1 and the single path product is the
transfer admittance. We will now make the theorem for any given machine M depend on the
truth of the theorem for a simpler machine M' with one fewer adder or junction. Since the
machine M is connected and contains at least one adder or junction it must be possible to reach
a junction or adder from one of the input shafts. In Fig. 24 suppose this is possible from eland
when we enter the machine at e 1 suppose the first node we reach is a junction (after possibly
passing over integrators and gears of admittance A(p)). Consider the reduced machine Fig. 25,
with one fewer junction. The orientation must be as shown. M' is not degenerate unless Mis,
for the only possibility is that Xl, X2 are locked, and in that case they are redundant in M.
Assuming the theorem for M' the transfer admittance from e 1 to Y 1 (say) in M is the sum of the
admittances in M' from x I and x 2 to Y I ,

1:APk o; + 1:AP~' Dk'
Y 12 = D '

where the p~ are the paths through the upper x 1 line and p~' those through the lower x 2 line.
But this is clearly the proper expression from the theorem for Y 12 since the complementary
discriminants must be the same (no circuits being introducing by the junction) and the APk
combined with the APk' give the path products in M. D of course is the same for M and M'.

In case the first node reached from e 1 is an adder the situation is as shown in Fig. 26.
Consider the reduced machine M' in Fig. 27. Again it is clear that M' is not degenerate unless
M is. We assume the theorem true for M' so that when e2 =e3 = ... =e n =0 then

Yl = Ylx,

Y 1 and Y2 being given by the theorem. In the machine M
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M
FIG. ee

M'
FIG 21

or
Ael + U + v = 0

el-X-Z=O.

Eliminating x and Z we obtain the admittance of M in terms of the admittances Y I and Y2 of
M':

Y1
Y - e
1- I +Y2 I·

(92)

We must show that Y I / ( 1+Y2) is the expression for Y 12 found by applying the theorem to M.
By an inspection of Figs. 26 and 27 we note the following facts.

1. The directed circuits in M can be divided into two groups, a set C; not passing through
the adder in question and a set C;' passing through the adder.

2. The circuits of M' are C;. Hence the discriminant of M', which we denote D', is given
by

D I = 1 - ~ C~ + ~ C~ C~ - ...
LJI kJlJ (93)

3. The circuits in M passing through the adder are the negatives of the path products P;' in
M' from x to z (note that the A's cancel). Let ej' range over circuits in M (or M') not
touching P;'. Then the discriminant for M may be written

D = 1 - ~ C~ + ~ C~ C~ - ...
~ I ~ 1.1

+ ~ r: - ~ p~'C~' + ~ P" C~' C~,' -
~ I ~ 1.1 ~ I .I II.

The tirst series is D' and the second is the numerator of Y 2 since we assume the theorem
for M'. Hence
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and using (92).

We have obtained the desired denominator D. Now we show that

555

(94)

(95)

(96)

where the sum is over paths P k in M from e I to Y I with complementary D k : These paths
in M are the same as those in M' from x to Y I (the - sign on the A corresponds to the
(- 1) introduced by the adder) and the complementary D k in M are also the same as the
D k in M'. Hence by our inductive assumption r Pk D k is equal to the numerator of Y I

and

proving the theorem for M.

SECTION 10

Theorem XIX. An immediate consequence of Theorem XX.

Theorem XX. By its definition D is a polynomial in negative powers of p with constant term
D*:

(97)

Hence p" D is a polynomial of degree n and must be a constant times the machine determinant
(the denominator of (27». As the coefficient of p" in (28) is ( - l )",

SECTION 11

D* ~ = (-p)flD. (98)

Theorem XXI. We can remove the internal degeneracies by the method of the second pair of
dual statements following Theorem XXIII. These are true since:

1. By definition a redundant shaft can be broken, without affecting external behavior.
Clearly each other shaft of an adder connected to such a broken shaft can also be broken,
etc. A junction with one shaft broken can be jumpered across.

2. By definition a free internal shaft can be held stationary without affecting external
behavior. Any shaft connected by junctions and gears to a stationary shaft is held
stationary, and if one shaft of an adder is held stationary the other two act as if connected
by a (- 1) gear. Note that these eliminations retain duality. We may eliminate the
degeneracies in our given machine M one by one, arriving at an undegenerate machine
M I and by performing the corresponding reductions on M' arrive at M~ .

Since M I is not degenerate it can be oriented, and reversing the arrows on corresponding
shafts orients M~. The directed circuit products in M I are the same as in M~ and the path
products change sign. For in the case of circuits the numerical value of a circuit in M~ is the
same as the corresponding circuit in M I and has a sign factor

( - 1 )J (- l)A (- 1).1 +A = + 1, (99)
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the first term for junctions that become adders, the second for adders that become junctions, and
the third for the ( - 1) gears in internal shafts. Similarly for paths where the third exponent is
J +A + 1. Consequently the discriminant of M~ is the same as that of M I, and M~ is not
degenerate. Using Theorem XVIII we see that in M~

s
e;=-~YijY;' j=1,2, ...,r,

i=1

(100)

proving the theorem.

It is well known9 that the matrices of the coefficients of (57) and (56) (after transposing to
the same member)

1 0 0 Y ll Ys 1

0 1 0
A= (101)

0 0 fIr Ysr

and

Y11 Y l r -1 0 0

o -1 0
B= (102)

Ys 1 Ysr 0 0 -I

are orthogonal, i.e. represent completely orthogonal regions in r + s space. * This gives a partial
proof of Theorem XXII, namely a proof for machines which satisfy the conditions stated in the
beginning of Theorem XXI. Theorem XXII is true, however, for any machine in the sense that
the equations of the machines place the stated constraints on the regions. We will sketch an
inductive proof of this.

Theorem XXII. Another definition of orthogonal complements 10 is that the dot product of any
vector in R with any vector in R' vanishes:

x . y = 0, X E R, Y E R' ,

and any vector Z is decomposable into a part in R and a part in R' .

Z=X+Y, XE R, Ye R'.

(103)

(104)

First we show that the theorem is true for any machine with no internal shafts, for example
Fig. 28, with the dual machine of Fig. 29. We verify easily that the theorem is true for any
single isolated part, such as the adder in Fig. 28. Now suppose it true for a machine with n

separate parts. Adding another part the theorem remains true, for suppose the enlarged machine
has coordinates

and the dual machine has coordinates

(y I , Y2, ... , y s , Ys + 1 , ... , Yf) ,

(lOS)

(106)

* For this it is necessary and sufficient that AB' ==0 and rank A + rank B =r +5, B' denoting the transpose of B. These
are easily verified for A, B above.
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the first s being present before the addition. Then the dot product of X and Y is

XIYl + X2Y2 + ... + XsYs + Xs+IYs+l + ... + x.», = 0 + 0,

since the first s terms vanish by the inductive hypothesis and the rest since we added a single
isolated part for which the theorem was verified. It is also evident that we can decompose any
vector since we can decompose the two groups of coordinates independently.

We now perform another induction, this time on the number of internal shafts. We will
show that the theorem is true for any machine with m internal shafts if it is true for any machine
with m - 1 internal shafts. In the given machine break one of the m internal shafts bringing the
ends out as external shafts. Suppose that after this breaking the machine is as shown in
Fig. 30a with dual 30b, and that the new external shafts of M are x 1 and X2' By assumption the
regions of M and M' are orthogonal complements. Reconnect XI to X2 and YI to Y2 with a
( - I ) gear, thus retaining duality and yielding the original machine and its dual. The external
shafts are x 3, ... , X nand Y3, ... , Y 11 and their dot product is

= XI Y I + X2Y2 + X3Y3 + ... + XnYn = 0

by assumption and since x I = X 2, Y I = - Y2. Also since we can decompose any

(aI, ... ,an ) = (XI' ... ,xn ) + (Yl' ···'YIl) '

( 107)

(108)

it is easy to show by decomposing (0,0, b 3 , ... , bn), (0, 1,0, ...,0), (1,0,0, ...,0) and
( 1, 1, 0, ... , 0) and taking a suitable linear combination that we can decompose

(109)

with

Theorem XXIII. The duality table is, of course, merely a mapping or isomorphism between
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--- M'
----

(b)

parts, properties, or operations of a machine and the corresponding parts, properties, or
operations in the dual machine. Most of these have already been proved in developing
Theorems XXI and XXII. The remainder follows easily from these results.

SECTION 12

Theorem XXIV. In (65) the Ai and B i are polynomials in the b i} and hence rational functions
of the a i} (the gear ratios) from their genesis in (20) and (10). If in a certain machine M there
are only G - 1 gears g I .. , g G _ I the G independent A; and B i are rational functions of these.
Hence it is known that a polynomial (not identically zero) in these A i and B i must vanish
identically in the g i' namely the eliminant of these G equations. Hence we can solve for one of
the A j or B i which appears in the polynomial and this coefficient can only assume a finite
number of values when the others are fixed. If only a bounded number of adders are used there
are only a finite number of different machines, so almost all sets of coefficients cannot be
realized. Although the last statement remains true even if the number of adders is unbounded,
we could then approximate to any set of coefficients, for an unlimited set of adders can
approximate an arbitrary gear ratio by expansion in the base two.

SECTION 13

Theorem XXV. n integrators and 2n + 1 gears are necessary as noted. Suppose 2n - 1 adders
were sufficient. Then by Theorem XII 2n gears are sufficient, a contradiction. Also the number
of junctions is equal to the number of adders by (35).
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THE NUMBER OF TWO-TEI~l\1INAL SERIES-PARALLEL NETWORI{S

By JOliN RIORDAN AND C. E. SUANNON

One of the first attempts to list all electrical networks meeting certain specified
conditions was made in 1892 by P. A. MacMahon! who investigated combina-
tions of resistances in series and in parallel, giving without proof a generating
function from which the number of such combinations could be determined and
a table of the numbers for combinations with 10 or less elements."

The series-parallel combinations do not exhaust the possible networks since
they exclude all bridge arrangements like the Wheatstone not," but they are an
important subclass because of their simplicity. When the number of elements
is less than 5, all networks are series-parallel; at 5 there is one bridge-type net-
work, the Wheatstone net; as the number of elements rises, bridge type networks
increase faster than series-parallel until at 0 e.g, bridge-type are about 40%
of the total. It appears from this (and it is known to be true) that for a large
number of clements, series parallel networks are a relatively small part of the
total; nevertheless the problem of enumerating all networks is so difficult that
an. extended study of the series-parallel networks is welcome on the principle
that a little light is better than none.

Apart from this, the series-parallel networks are interesting in themselves in
another setting, namely the design of switching circuits.' Here it becomes
important to know how many clements are required to realize any switching
function J(x! , · · · , x,,) of n variables-that is, a number N(n) such that every
one of the 22

" different functions I can be realized with N clements and at least
one with no less. An upper bound for the number of t\VO terminal networks
with B branches determines a lower bound for N since the number of different
networks we can construct with N branches, taking account of different assign-
ments of variables to the branches, can not be exceeded by 22

" ; there must be
enough networks to go around. This general fact is equally true if we limit the
networks to the series-parallel type, and since switching networks are particu-
larly easy to design in this form, the number of elements necessary for series-
parallel realization of a function is of immediate interest.

These considerations have led us to work out a proof of MacMahon's generat-
ing function, which is given in full below; to develop recurrences and schemes of
computation from this with which to extend Macl\1ahon's table; to investigate

1 "The Combination of Resistnnocs," The Electrician, April 8, 1892; cf. also Cayley,
Collected 'Yorks, III, 203, pp. 242-6 for development of the generating function in another
problem.

J It may be noted here that the number for 10 clements is given incorrectly as 4984; the
correct value, 4624, is shown in Table I below.

I Complete enumerations of all possible circuits of n elements wit.h n small classified in
various ways nrc given by R. M. Foster, "Tho Goomctricnl Circuits of Electrical Nct-
works," Trans. A. I. E. E., 61 (1932), pp. 300-317.

4 C. E. Shannon, "A Symbolic Analysis of Relay and Switching Circuits," Trans. A. I.
E. E., 67 (}938), pp, 713-723.

Reprinted from JOURNAL OF MATHEMATICS AND PHYSIC8

Vol. XXI, No.2, August, 1942
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the behavior of the series-parallel numbers when the number of clements is
large, and finally to make the application to switching functions mentioned
above. These subjects arc treated in separate sections.

For brevity in what follows we usc the initials s.p, for series-parallel, c.s. for
essentially series, and o.p, for essentially parallel."

1. Derivation of Generating Function

For a single clement, obviously only one network, the clement itself, is possible.
For 2, 3 and 4 clements, Fig. 1 shows all the s.p. networks obtainable divided
into o.s. and e.p, classes for reasons which will appear.

NUMBER OF ESSENTIALLY SERIES ESSENTIALLY PARALLEL NUMBEAOF
ELEMENTS CIRCUITS

2 0---0---<> ~ 2

o----o----ס---ס ~
3 .4

o----oe:> ~

-o----o--ס----ס ~

0 0 a::::::::::a:> ~
4
~ ~ 10

~ ~ - ~

= ~

FlO. 1

It will be observed that no networks equivalent under series or parallel inter-
changes are listed; this is because for electrical purposes position in series or
parallel is of no account.

6 The concept of series-pnrallel connection is so intuitivc that a formal definition seems
unneccssury. However, sincc no definition seems to have boon given in thc literature, t\VO
equivalent dcfinitions may he formulated as follows:

Definition 1-1\ network N is serics-parnllol with respect to two tcrmi nals a and b if
through each clement of LV there is at lonst one path Irom a to b not touching any junction
twicc, and no two of those paths pass through any clcment in opposit.o directions,

Definition Il-A network is aeries-parallel if it is either n series or a parallel connection
of two serics-pnrnllcl networks. A single clement is a series-pnrallel network.

Definition II is a~l inductive definition. Note that it serves to define equivalence under
sories-pnrullel interchanges directly; thus:

Two series-parallel networks arc tho same under series-parallel interchanges if they arc
series or pnrallol connections of the sumo t\VO networks.

Notc also tho Iollowing :
A network is essentially series (esscnl.ially parallel) if it is the series (parnllol) connec-

tion or two s.p. networks.
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(1)

The classification exhibits a duality: e.s, and e.p. networks are equinumerous
and in 1 - 1 correspondence. Tho rule of correspondence is that an e.s, net-
work becomes e.p. when the words series and parallel in the description of the
network are interchanged.

For onumcrativo purposes it is convenient to have a numerical representation
of the networks. This may be done by using the sign + to denote elements in
series, the dot or simple .adjunction to denote clementsin parallel, 1 to denote a
circuit clement, and abbreviating 1 + 1 + · · · + 1 (n clements in series)
to nand 1 · 1 · · · · 1 (n clements in parallel) to 1R; e.g, the symbol 21 repre-
sents a parallel connection of two clements in series and a single element.

Then the networks of Fig. 1 correspond in order to those in the following
table:

n E88entially Series Essentially Parallel No. Ct8.

2 2 12 2
3 3, 12 + 1 13,21 4
4 4, 12 + 2, 21 + 1 1\ 212

, (12 + 1) 1 10
1

3 + 1, 12 + 12 31,22

Fixing attention on the e.p. networks, it will be noticed that for n = 2 and 3,
the representations are the partitions of n, excluding n itself. If the partition
n itself is taken to mean the e.s. networks, then all s.p. networks are represented
by the partitions of n, for n < 4. For n = 4 a non-partition e.p, representation
(12 + 1) 1 appears. But 12 + 1 is one of the e.s. networks for n = 3. Hence
all networks are included in the partition notation if each part of a partition
is interpreted to mean the totality of the corresponding e,s. networks; e.g. the
partition 31 is interpreted as the networks 31 and (12 + 1) 1.

For enumerative purposes this means that each partition has a numerical
coefficient attached to it determined by the number of e.s. networks corre-
sponding to each of its component parts. If the number of e.s. networks for p
elements is denoted by ap , the coefficient for a partition (pqr · · · ) where no parts
are repeated is ap aq a, ... with at = a2 = 1, since each of the combinations
corresponding to a given part may be put in parallel with those corresponding
to the remaining parts. The coefficient for a repeated part, say p"', p repeated 1r

times, is the number of combinations 11'" at a time of ap things with unrestricted
repetition, which is the binomial coefficient:"

Hence the total number of s.p, networks 8" for n elements may be written as:

8 n = 2an = L (ap +~1 - 1) (aq + :: - 1) '"
G Netto, Lehrbucb der Combinatorik, Leipzig, 1001, p. 21 or Chrystal, Algebra II, London,

1026, p. 11.
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where the sum is over all integral non-negative p, q · •. , 7rt , 11"2 • • • such that

p7rt + q1r2 + r1ra + ... = n

and at = a2 = 1. That is, the sum is over all partitions of 11,.

Thus for n = 5 the partitions arc:

5, 41, 32, 312
, 221, 213

, IS;

and

or since 8" = 2a"

86 = 84 + 283 + (j = 24.

Similarly:

(
aa + 1)

86 = 86 + 284 + 2 2 + 283 + 8 = 66.

The generating function 7 given by MacMahon, namely:

~ ~

II (1 - x')-tJi = 1 + L 8" x"
1 1

(2)

where II signifies a product, may be derived from (1) by an argument not
essentially different from that used for the Euler generating-Junction" for the
partitions of n, which is

~

II (1 - x')-t
1

ee

= 1 + L p"X"
1

2. Numerical Calculation

Direct computation from the generating identity (2) or its equivalent, equa-
tion (1), becomes cumbersome for relatively small values of n, since the number
of terms is equal to the number of partitions. Moreover, the computation is
serial, each number depending on its predecessors, involving cumulation of
errors; hence independent schemes of computation are desirable.

The three schemes used in computing the series-parallel numbers shown in
Table 19 follow closely schemes for computing the number of partitions, namely
those due respectively to Euler and Gupta, and that implicit in the recurrence
formula.

7 It should he observed that this is not 0. generating function in the sense that the coeffi..
cients of the power series arc completely determined by expansion, but rather n.generating
identity determining coefficients by equating terms of like powers.

8 Cf'., for example, Hardy and Wright, "An Introduction to the Theory or Numbers,"
Oxford, 1038, p. 272.

, 'Vc arc indebted to our associate Miss J. D. Goeltz for the actual computation.
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TABLE I
Series-Parallel and Associated Numbers

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

1
2
4

10
24
66

180
522

1,532
4,624

14,136
43,930

137,908
437,502

1,399,068
4,507,352

14,611,576
47,633,486

156,047,204
513,477,502

1,696,305,720
5,623,993,944

18,706,733,128
62,408,176,762

208,769,240,140
700,129,713,630

2,353,386,723,912
7,927,504,004,640

26,757,247,573,360
90,479,177,302,242

1
1
1
3
5

17
41

127
365

1,119
3,413

10,685
33,561

106,827
342,129

1,104,347
3,584,649

11,701,369
38,374,065

126,395,259

The first depends essentially on the computation of an allied set of numbers
sn(k) defined by:

k ~

IT (1 - Xi)-tJ i = 1 + L s,,(k)x",
1 n-l

(3)

with 8" = s,,(N), N ~ n.
A recurrence formula for these numbers follows directly from the definition

and reads as follows:

() ~ (air + i-I) ( )8" k = L.J • S,,-ik Ie - 1 ,
i-O 1.

(4)
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(5)

with q the integral part of nile and so(le - 1) = 80(k) = 1. Clearly 8n ( l ) = 1,
8,,(2) = 1 + [!n], where the brackets indicate "integral part of."

Note that s,,(k) enumerates the number of e.p. (or e.s.) networks with n
elements that can be formed from parts no one of which contains more than k
elements: e.g., the c.p, networks enumerated by 84(2) arc 22,212

, and 1'4. This
remark, coupled with the interpretation of the binomial coefficients given in
Section 1, gives a ready network interpretation of the recurrence (4).

Although, as indicated, the numbers 8,,(lc) may be used directly for compu-
tation of 8" , they are more efficiently used in the following formula:

s" = 8,,-1 + 8,,-282 + ... + 8n- m-lSm +l + 2s,,(nt)

where 1n = [!n].

The network interpretation of this is seen more readily in the equivalent form:

S" = a" + a,,-tat + an- 282 + ... + an- m- lS m + l + Sn(nt) (5.1)

Thus the total number of networks with 11, clements is made up of e.s. networks
with n clements enumerated by an , plus o.p. networks formed by combining
all e.s. networks of n - i clements with all networks of i elements, i = 1 to the
smaller of n1, + 1 and n - m - 1, plus finally the networks enumerated by
8n (m) as described above.

This is essentially all that is used in what may be called the Euler computa-
tion.

The Gupta computation rests upon division of partitions into classes according
to size of the lowest part; e.g, if the partitions of n with lowest part k arc desig-
nated by P«. Ie, then the classes for n = 4 are:

P4,1 = (31,212
, 14

)

(22
)P4,2 =

P4.3 = None

P4.4 = (4)

Recurrence formulae for the corresponding network classes Sra, k are derived
by appropriate modification of a procedure givcn by Gupta; thus e.g. if a unit
is deleted from each of the partitions in P«. 1 , the result is exactly pn-l , hence:

Sn,l = 8,,-1.

Similarly:

= 8,,-2 - 8"-2, 1 = 8,,-2 - S"-3 •

In general:

~ (ale + i-I)
Sn,k = L..J • A"-ik.~ ,

i-1 t
(6)
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with

q = [nile]

Ao, Ie = 1,

A r , Ie = 0, r = 1,2 ... k,
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A r , k = Sr - 8 r , 1 - ••• - 8 r , It; , r > k.

(6.1)

Another form of (6), derived by iteration and simpler than (6) for small values
of k and large values of n, is as follows:

q (ak)
8n .1t; = E . A n-ik.k-l •

i-I ~

It should be noted that vacuous terms appear in the SUIll if q > ak •
The third scheme of computation consists in determining u third sot of num-

bers, (/" , defined by:
00

II (1 - x')tJ i = 1
1

(7)

Coupling this definition with the MacMahon generating identity, equation (2),
it follows that:

n

8" = L <1iSn-i,
i-I

with 80 taken by convention as unity.
The recurrence formula for these numbers is as follows:

"-,,,-1
(1,. = an - L O'ian-i + eT,.(,n)

i ....l

(8)

(9)

where, as above m = [!n] and (/,.(k) is defined in n manner similar to sn(k).
Note that (/1 = 0'2 = eTa = 1. These numbers are included in Table I (n < 20).

3. Asymptotic Behavior

The behavior of 8,. for large n is ideally specified by an exact formula or, failing
that, an asymptotic formula. It is a remarkable fact that the asymptotic
formula for the partition function is an "exact" formula, that is, can be used
to calculate values for large n with perfect accuracy. We have not been able
to find either for 8,. ; we give instead comparison functions bounding it from
above and below.

It is apparent, first of all, that 8,. ~ p,. for all values of n. This is very poor.
Somewhat better is

(10)

where 11",. = 2,.-1 is the number of compositions of n, that is, partitions of n
in which the order of occurrence of the parts is essential.
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This is proved as follows, From equation (5), 8" > qn if

567

n~4

The solution of thc last, taking q3 = 4, q4 = 8, is:

q" = 2,,-1 = 11"'"

More terms of equation (5) push the lower bound up but at a relatively
slow rate and the analysis incroases rapidly in difficulty; the best we have been
able to show in this way is:

8" ~ A3" (11)

with A a fixed constant.
An alternative, more intuitive, way, however, is much better. First, notice

that the networks for n clements arc certainly greater in number than those
obtained by connecting a single clement in series or in parallel with the networks
for n - 1 clements, a doubling operation; hence, 8" ~ 1r n where

1r" = 211""-1 = 22
1r ,,-2 = 2"-11r 1 = 2"-1,

which is the result reached above.
The networks of n elements with a single clement in series or in parallel 31-e

exactly those enumerated by 8n . l in the Gupta classification. Hence the
approximation may be bettered by considering more terms in the expansion:

m

8" = 2 L 8".i,
i-l

m = [in].

The term 8". i enumerates the e.s. networks in which the smallest e.p. part has
exactly i elements. If this part is removed Irom each of these networks, the
networks left are certainly not less than the e.s. networks with 11, - i clements
if i < m; that is

i < m

For n even, say 21n;

82m,m = (am: 1) = t(a~ + am)
for n odd;

82m+l. m

Hence:

1 ,"-1 1 2

82m ~ 2 8"-1 + 2~ 8;8"_; + 4 (8 m + 28m)

1 m

82m+! ~ 2 8"-1 + 2~ 8;8"-i

(12)
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Then, in general, 8" > T" if Tl = 1, r2 = 2 and

3 1 n-l

T.. = 2T..- 1 + 4~ TiT..-i,

Writing the generating function for the r; as:
GO

R(x) = I: Tn X" ,
1

n>2 (13)

the recurrence (13) together with the initial conditions entail:

[R(x)]2 - (4 - 6x)R(x) + 4x - x2 = 0;

that is:

R(x) = 2 - 3x - 2Vl - 4x + 2x2 (14)

The asymptotic behavior of the Tn may be determined from R(x) by the
method of Darboux" with the following result:

with A a fixed constant and ~ = 2 + V2 = 3.414 · ...
An upper bound follows by the same process on remarking that:

(15)

Hence, 8" S t" if tl = 1, it = 2 and
1 n-l

t .. = t..- 1 + 2~ tit..-i (16)

By the procedure followed above:
00

T(x) = L t"x" = 1 - x - VI - 4%
,,-0

and

i, = 4 (2n - 3) In> 1
nl(n-2)!

2 4,,-1 -3/2
f"'tt,j-- n

V1r

(17)

A comparison of r" , 8" and t; for n ~ 10, taking for convenience the integral
part only of rn (denoted by [r,,]) is as follows:

n 1 2 3 4 5 6 7 8 9 10

[r,,] 1 2 4 9 22 57 154 429 1225 3565
Spa 1 2 4 10 24 66 180 522 1532 4624
i. 1 2 4 10 28 84 264 858 2860 9724

10 Hilbert-Courant: Methodcn der Mathematischen Physik I, pp. 460-2 (Springer, 1931,
2nd ed.),
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E > 0

Note that the lower bound is closer to the true value for the larger values of 1t.

A third, semi-empirical, bound is worth noting. From table I note that for
n > 2, 40'" is approximately equal to 8". Taking this as an equality and using
equation (8) and the known values 0'1 = 0'2 = 1 the equation for the generating
function U(x) of the approximation u" turns out to be:

U(x) = ![5 - 3x - 2x
2

- .yO - 30x - l1x2 + 12x3 + 4x4} (18)

A comparison of 8" and the integral part of U" is shown in Table II for n ~ 20.
The approximation is remarkably close; the worst percentage difference is 10%
for n = 4, but from n = 7 to 20 the agreement is within 3%.

TABLE II
Approximation to Series-Parallel Numbers

-
n [Un] 8n

1 1 1
2 2 2
3 4 4
4 9 10
5 23 24
6 63 66
7 177 180
8 514 522
9 1,527 1,532

10 4,625 4,624
11 14,230 14,136
12 44,357 43,930
13 139,779 137,908
14 444,558 437,502
15 1,425,151 1,399,068
16 4,600,339 4,507,352
17 14,939,849 14,611,570
18 48,778,197 47,633,486
19 160,019,885 156,047,204
20 527,200,711 513,477,502

The asymptotic behavior of u" is found to be:

u" ,......, A~"1~-3/2

with A about 3/7, ~ about 3.56.

4. Series-Parallel Realization of Switching Functions

As an application of these results it will be shown now that almost all switch-
ing functions of n variables require at least

2"
(1 - E) 1-

Og2 n
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switching clements (make or break contacts) for their realization in an s.p.
network.

The number of functions that can be realized with h clements is certainly
less than the number of s.p, networks SA multiplied by the number of different
ways that the clements in each network may be labeled. This latter number
is (2n)" since each clement has a choice of 211, labels corresponding to each
variable and its negative. Hence, not more than

(2n)"sh ~ (2n)A4A = (8n)"

different functions can be realized with It elements. If

2n

h = 1-- (1 - E) E >,0
og2 n

the fraction of all 22
" functions of n variables that can be realised is less than.

23(1-f)2" JOg" 2+(I-f)2n

=
22

"

< 23.2" lo~.. 2-f .2"

and since this approaches zero as n --+ (X) for any positive E, the result is proved

DELL TELEPHONE LABORA'rORIES.



NETWORK RINGS*

Claude E. Shannon

1. INTRODUCTION

A method developed by a group of Chinese scientists 1.2,3,4 for finding the admittance
determinant IY i] Iof a linear electrical network proceeds as follows. Label each admittance of
the network with a different letter, say aI, a2' ... ,am. Choose a set of independent nodes or
junction points, i.e., a set of all but one from each separate part of the network. Form the
symbolic "sums" of the letters corresponding to the branches which are connected to each
selected node and "multiply" these "sums" out by the ordinary rules of algebra, simplifying
with the two additional rules

a+a=O,

a . a = 0 ,

(1)

(2)

where a is any letter or expression. The resulting polynomial is IYij Iwhen we substitute the
values of the admittances for the corresponding letters, and interpret addition and multiplication
in the ordinary arithmetic sense. For example, in Fig. 1 the expression is

(a + b + e)(a + b + d) = ad + bd + ae + be + cd ,

and if a, b, c , d are interpreted as the corresponding admittances we have the admittance
determinant.

c

b

d
Figure I

a

Similar methods give impedance determinants and the numerator determinants in the
fractions representing driving point and transfer admittances and impedances. These rules have
been treated only as short cut methods of obtaining these determinants. In a conversation with
the writer about these results R. M. Foster pointed out that the algebraic system suggested by
the two rules (I) and (2) might be worth studying for its own properties. The present paper is
an attempt to exploit this idea. This has led to a method of treating the topological properties of

* Bell Laboratories Memorandum, June 11, 1948.
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linear graphs algebraically, much as analytic geometry studies Euclidean geometry
algebraically. A linear graph is represented by an algebraic expression in a certain type of ring,
and topological properties of the graph correspond to algebraic properties of the expression.
The algebra as developed here is particularly adapted to the study of properties of networks of
importance in electrical work, since two network expressions are equal if and only if the
corresponding linear graphs are "two-isomorphic" in the sense of H. Whitney", Two graphs
are said to be two-isomorphic if one can be obtained from the other by a sequence of the
following operations: (I) separating two parts which are connected through a single junction,
(2) joining two separate parts at a single junction, (3) inverting a part connected at two
junctions only to a second part. This means that two-isomorphic networks have equivalent
electrical properties (self and transfer impedances, etc.) and conversely",

The correspondence between graphs and network expressions in the ring is not, however,
perfect. Every graph has a unique network expression (in the two-isomorphic sense) but there
are some network expressions which do not correspond to ordinary graphs. Restricting the
study to those expressions corresponding to graphs introduces very unnatural and artificial
restrictions. All basic theorems hold equally well for the more general class of expressions.
This suggests that we consider the set of graphs as a subclass of the general set of networks
defined abstractly by the algebraic methods. Many of the peculiarities of linear graph theory
then become more understandable. For example, duality theory becomes much more complete
- every network has a dual (not just planar networks) and the whole duality concept can be
defined and treated in a unified abstract manner.

The network expressions studied here are isomorphic to a subclass of the "rnatroids ' of H.
Whitney 7

, being in fact isomorphic to the set of matrices with integer elements reduced
modulo 2, when row addition is allowed as an equivalence operation. Many of the theorems in
the ring hold for the more general class of matroids, but the proofs given here are of a more
, 'algebraic' , character.

The terminology chosen is taken from linear graph theory 8 .

2. THE COVERING RING

Consider a finite commutative ring in which each element is nilpotent of index 2 for both
addition and multiplication. Let a I , ... , a n be a polynomial basis for the ring, i.e., every
element is a polynomial in the a i, but this property is lost if any a, is omitted from the set. The
ring will be called a network ring if there exists such a basis with a I a 2 ••• an "# O. Thinking
of a fixed basis, the elements of this basis will be called' 'branches". The number of branches
in the basis (which turns out to be independent of the basis chosen) will be called the order of
the ring. A polynomial in the basis ai'

P = a r •.• at + ... + a p ..• a q ,

will be called reduced if it contains no repeated a's in a term and no repeated terms,

Theorem 1. In a network ring there is a unique (apart from order of terms or of factors in a
term) reduced expression for each element X '# 0 in terms of a given basis a i » n a, t:- O.

By definition of the basis there must be one such expression. To prove uniqueness assume
two reduced representations of some element

Then
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and after P is reduced it still contains some terms since P 1 and P 2 were reduced and different.
Let a,. ... a ( be the term (or one of the terms) in P with the least number of factors. Multiply
by all a i not among a,., ... , a t- We obtain

al"'an=O,

since all other terms contain repeated factors, and this contradicts our hypothesis.

Theorem 2. The number of elements in a network ring of order n is 2(2" - I).

For we have 2n - 1 possible products of the a i without repeated factors, and may form

2(2
n

- I) different selections from these, all of which lead to different elements by Theorem 1.
The case where no products are taken corresponds to the element O.

Suppose now we have a second set of elements forming a basis b 1 , ••• , b m : Evidently

m ~ n since there are at most 2(2
m

- I) irreducible polynomials in the b i and there are 2(2" - I)

elements in the ring. If m > n then n b, = 0 since each b, is a polynomial in the ai' and each
term in the product contains at least one repeated a. But then there is a subset of at least 11 of
the b i with non-vanishing product, as we see by considering n a i * 0 with the a i expressed in
terms of the hi' This subset forms a basis and therefore the original hi did not. Hence m = 11,

and n b i * O. Conversely if we have n elements b i with Il b, ~ 0 they form a basis since the

2(2" - 1) polynomials in them are all different and must then be the same as the elements in the
ring. Thus we have:

Theorem 3. A necessary and sufficient condition that a set of hi be a basis for a network ring of
order n is that there be n of them and that n bi "* O.

We can now characterize any basis b , , ... , b n in terms of a given basis a I , ... , an' Since
the a i form a basis any set of elements can be written as polynomials in the a i:

hi =L, +(11,

b2 = L2 + (12,

(3)

where the L, are linear in the a i' while the (Xi contain no first degree terms, We have

n b i = n L i + [terms with more than 11 factors a i ]

= n L; + 0 ,

since all products of more than 11 a i contain repeated a's and vanish.

Theorem 4. A necessary and sufficient condition that b i (i = I, ... , 11) be a basis is that the
hi can be written in the form (3) in terms of a given basis with n L, *- O.

Theorem 5. For any 11, there exists a unique abstract network ring of order 11.

That two network rings of order 11 are isomorphic follows immediately from Theorem 1 on
setting the branches a" ... , a n of the one ring in correspondence with the branches
b I , ... , b n of the other, and corresponding polynomials in correspondence.
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We now prove by induction that a network ring exists for any n. For n = 1 we have the
network ring consisting of a single a with:

+ ° a

° ° a
a a 0

o a

000

a 0 0

Now suppose we have exhibited a network ring N n of order n. Consider the set of ordered
triplets

(<X, ~, y)

where <X and ~ are any elements of N nand 'Y is °or I. We define equality, addition and
multiplication by

(al'~I'YI) = (a2'~2'Y2) ifal = a2,fll = J32,YI = Y2,

(aI, ~I' YI) + (a2' ~2' Y2) = (ClI + Cl2, ~1 + ~2' YI + Y2)

(the y's are added mod 2),

(aJ,J31'YI)(Cl2'~2'Y2)= (al<X2,alJ32 +a2J3J +'Y2(l1 +YJ(l2,'YJ'Y2), (4)

where 1 a = a. These are clearly well defined and closed.

It is readily verified that these elements (a, ~,y) form a commutative ring with the desired
nilpotency properties, and that the elements

hi = (a;,O,O), i = 1,2, ... .n ,

bn + J = (0,0,1)

form a polynomial basis. Finally

n b, = (a I a2 a n ,0,0)(0,0, 1)

= (O,aJ an,O) *" °
and the definition is nonvacuous for every n.

If each term of a polynomial contains the same number of terms r we say it is homogeneous
of rank r.

</)
Theorem 6. There are 2 r homogeneous reduced expressions of rank r.

For the number of different products of r factor is (n), etc.r

3. NETWORKS

Thinking of a fixed basis we will define a network as an element that can be written as a
product of linear terms in the branches. Thus 0 = a . a, ab + ac + be = (a + b) (a + c),

etc., are networks; ab + cd is not.

The set of branches in any term of the polynomial of a network will be called a frame
("gerust") of the network. For example, the network ab + ae + be has three frames; the set
a, b, the set a, e and the set b, c.
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Theorem 7. Suppose aI' a 2, ... , a r is a frame of the network f We can write f as

f = (al + L t )(a 2 + L 2) ···(a r + L r ) ,

575

where L I , ... , L I" are linear terms not involving a I , ... , a 4' This representation is unique,
given the frame a I , ... , a 1". Finally, iff can be represented in this form, a I , ... , a r is a frame."

To prove this note that since f is a network we have

f = M t M 2 .•• M, ,

with the M's linear. a 1 must appear in one of these terms since otherwise it could not appear in
the polynomial expression for f Suppose it appears in M I' Using the fact that
Xy = Xy + YY = (X + Y) Y, add M I to aJl other M's in which a I appears, thus cancelling it.
Hence

where the N's do not involve a 1. Now a2 must appear in one of the N's since otherwise it
could not appear in a product with a 1 in the polynomial. Suppose it appears in N 2' Add N 2 to
all other terms in which a 2 appears (including possibly M I) thus cancelling it. Hence we get

f = M~ N 2 S 3 ... S,.

where now only M~ contains a I and only N 2 contains a 2' Continuing in this way we obtain
the desired expansion. Now assume the expansion is not unique:

f = (at +L 1) ···(a r + LI") = (al + M 1 ) "'(al" + M r ) ,

with L t "* MI' Suppose L I contains ap and M I not. Then the expansion of the left side
contains the tenn

and the right side does not. As this term could not be cancelled we have a contradiction. The
last part of the theorem is obvious on multiplying out the' 'frame expansion" off The frame
expansion is of fundamental importance in this theory.

Theorem 8. Given one factorization of a network

any other factorization may be obtained by a sequence of operations, each operation consisting
of adding one factor to another (as in the proof of Theorem 7).

The inverse operation is also of this type, e.g.,

L I L 2 ···LI" = (L I +L2)L 2 ···L,

has the inverse

Now by the proof of Theorem 7 we can go from any factorization of f to a given frame
expansion by a sequence of adding operations. Thus we go from anyone factorization
L 1 ••• L,. to a frame expansion MI· .. M,., and then to any other factorization N I ••• N,..

Theorem 9. If a network! = L I L 2 ..• L,. "* 0, the L; are linearly independent. Conversely, if
the L; are linearly independent.j" == L) ... L,. =t O.



576 C. E. Shannon

Suppose a relation L r + L s + ... + L t = O. Adding L s •.. L t to L r' this term then
vanishes. Hence! = 0, contradicting the hypothesis. Now assume no relation. We may apply
the frame expansion method and never arrive at a 0, since if we did the series of adding
operations would define a linear relation. The frame expansion does not vanish since it
contains a frame term on multiplying out.

Any factor of a network f t:. 0 will be called a cut set off. The network 0 is considered to
be of rank 0 and to have no cut sets.

Theorem 10. A necessary and sufficient condition that L ~ 0 be a cut set off 7; 0 is that

Lf = 0 .

If L is a cut set of f then j' = Lg, hence Lf = LLg = O. If Lf = 0, f 7; 0, there is a
relation among the factors off and L, actually involving L, so that L is a sum of certain factors
of f, hence a cut set off.

Theorem 11. Let f = L I L 2 ••• L,. be any factorization of f ~ O. Then any cut set M can be
written as a linear combination of the Lr, and conversely any linear combination of the L; not
identically 0 is a cut set off.

This is obvious from Theorems 9 and 10. Thus one set of factors of a network f forms a
basis for cut sets - any may be expressed as linear combinations of these factors. There are
2" - I linear combinations of r factors. These must all be different since equality of two would
imply a relation among the L i : Hence:

Theorem 12. A network! ~ 0 of rank r has 2" - 1 different cut sets.

Theorem 13. Any network of rank r can be factored in exactly

r!

1'-1

n (2" - 2P )
p=o

N(r) = different ways .

From the (2" - 1) factors of f we may choose the first in (2" - I) ways, the second in
(2" - 2) ways since it must be different from the first; the third in (2 r

- 4) since it must be
independent of the first 2, the pth in (2" - 2P - J). As we want combinations, not permutations,
we divide by r!'

Theorem 14. There are exactly

networks of rank r with n branches.

There are 211
- 1 linear expressions in the a i : We may choose the first in 2" - I ways; the

kth in 2" - 2k
- J ways to be independent of the first k - 1. Thus we can get

..l rill (2n _ 2*)
r! k=O

1 r-I

combinations of factors. Since each network can be factored in ;T k~O (2 r
- 2*) ways the

result follows.
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Theorem 15. If a homogeneous f can be factored, a set of factors is given by the following
processes. Pick a frame, say aI, a 2 ' ... , a,.. The factoring is

g = (al +L 1)( a 2 +L 2) "'(a r +L r ) ,

where L i is the sum of the other branches in all frames contammg branches
ai, ... , a; _1 , a; + I , ••• , a r : To determine if the expression f can be factored construct g and
multiply out. If g = f, g is a factoring off, if not f is not a network.

If f can be factored it can be factored uniquely about the frame a I, ... .o». Suppose this
factoring is

Then M I = L I , since on multiplying out we get terms

M I a2 ... a,

which cannot be cancelled, and appear in the polynomial expansion. Also these are clearly the
only terms of this type. The rest of the theorem is obvious.

4. DUALITY

We now define the dual f I of a network f as follows. Let f be written in its polynomial
expansion. Then f I is the sum of products of branches not appearing in the terms of f. Thus
with branches a, b, c and d, the dual of ab + ac is cd + bd.

Theorem J6. Iff is a network thenf I is a network. If a frame expansion off is

f = (al + L t ) ( a 2 + L 2) ... (a,. + L r )

then a frame expansion off I is

g = I' = (b , + M I)(b 2 + M 2 ) ••• (b ; + M n )

where hi, ... , b n are the branches not appearing among a I , ... , a ,., and M j is the sum of the
a i of the factors off in which b j appears in the L part.

Thus the dual off = (Q + a) (£ + a) with a, b, c , d the branches is

I' = (~ + c) (~ + b + c)

where we have underlined the frame terms in I and r'. Let us construct the g of Theorem 16. If
we multiply f out we get a sum of terms each consisting partly of a's from the frame part off
and partly of b's from the L i • Those terms containing two equal b's necessarily vanish. All
others correspond to a dual term in the expansion of a g found by taking the b's in g factors
which do not appear among the b' s of the f term in question and a's from the M i corresponding
to the b's which were taken in theftenn. These a's actually are available in the proper M; due
to the method of constructing f Conversely each term of g corresponds to a term off and hence
they are duals in our sense.

The rank off I will be called the "nullity" off, the cut sets off I are "circuits" off and the
frames of f I are "fundamental systems" of f These are examples of dual concepts. In
general, the dual of any operation on, or concept associated with, a network f is the same
operation on, or concept associated with,r. Any theorem we may derive concerning networks
has a dual theorem which may be found by replacing "network" by "dual of network" and
simplifying through the use of the dual definitions - e.g., "rank of the network" becomes
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"rank of the dual of the network" and hence' 'nullity of the network. " The dual theorem must
be true since "networks" and the "duals of networks" are two descriptions of the same class.

A networkfwill be called inseparable if it cannot be written as a product

! = g I 82

with g I , g 2 involving mutually exclusive sets of branches. Otherwisef is separable.

Theorem J7. Any networkf can be written uniquely apart from order of factors as

!=glg2···gs,

where the g; are inseparable and involve mutually exclusive sets of branches.

The g; together with the branches not appearing in f will be called the inseparable
components of f. Obviously there exists at least one such resolution. To prove uniqueness
suppose we have two resolutions

Choose a frame off and expand each side about this frame, using the method used in proving
Theorem 7. This will clearly not disturb the separation. Suppose the frame terms in g I are
as~ ... .o; These frame terms on the h side must appear in the same hi for, if not, gl is
separable. Conversely all terms appearing in this hi appear in g J otherwise this hi is separable.
Continuing this method with g 2 , g 3 ... we obtain the theorem. Incidentally we also obtain:

Theorem 18. To resolve a network into separable components, factorf about a frame:

f = (al + L 1)(a 2 + L 2) ... (a, + L r ) .

To the term (a I + L I) annex all terms containing branches appearing in L J' say
(a 2 + L 2) ..• (a s + L s)' also all terms containing branches appearing in L 2 •.. L s' etc.
When this process terminates we have grouped the factors of an inseparable component. If any
factors of I remain, use the same process on these, abstracting components until all factors ofI
are used.

If a branch a does not appear in the polynomial expansion of a network/we will say that a
is a circuit of f. If a appears in every term off, a is an open branch off. It is easily seen that
these are dual concepts. If neither of these obtains a is essentially involved inf.

We now define an operation on networks which will be called extraction. If f is of rank
greater than one and a is not a circuit, we can write f = a g + h with h possibly O. We define
Ea f = g. In case f is of rank 1 and a not a circuit we define Ea f = O. Eaf is not defined
when a is a circuit off.

Theorem 19. Ealis a network if/is a network. Also

Ea(f + g) = Eaf + Eag ,

E; Ebl = Eb Eaf (we write this as Eabl) ,

Ea (f g) = f Ea g + g E af , rank of f, g > 1 ,

whenever an expressions have a meaning.

Note the similarity of Ea with aaa. Indeed if f is expressed in polynomial form and is of
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rank> 1 , and if + and, be interpreted arithmetically then

a
Eaf = a;; f .

579

The inverse of this operation is not unique. We will call the inverse operation insertion, and
denote it by Ja' Jag exists only for networks g not involving a.

Theorem 20. The most general/such that

Ea / = g ,

g being a given network with a as a circuit, is

/ = Jag = (a + L) g

when g ~ 0, and I a g when g = 0, where L is an arbitrary linear expression in the branches
other than a.

An operation similar to Ea/is (Eaf')'. It is defined only in casef' involves a. We may
denote this operation by Ea ' and it obeys the same laws as Ea. Its general inverse is (g must be
~ times a network)

Ja' g = [(a + L) g']' .

Theorem 21.

t = a Eat + fla=o .

These last three theorems follow easily from the definitions, as does the next one.

Theorem 22. If a 1 ••• a,. is a frame off then

Further if this equation is meaningful and true then a 1 '" a r is a frame off

Two elements a and b will be said to be in parallel in/if E a / = E b / . They will be said to
be in series if E a ' f = E b ' f·

We define a "simple" cut set as one such that no proper subset of its branches is also a cut
set. A simple circuit is defined similarly.

Theorem 23. Any factor of a frame expansion is a simple cut set. Conversely any simple cut
set is a factor in some frame expansion. Furthermore, any branch in the simple cut set may be
used as the frame term in the factor.

To prove the first part assume in contradiction that

l > ;«, +A+B)(a2+ L2}"'(a r + Lr )

is a frame expansion with B a cut set. Obviously if a I + A is the part of the first term which is
a cut set then B also is, for B = (a I + A + B) + (a I + A) and the sum of two cut sets is a cut
set. Then by Theorem 13, B is a linear combination of the other terms

B = (af' + Lp ) + (a q + L q ) + 000 ,

which is manifestly impossible since the frame terms a p , a q , ... do not appear in B and could
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not cancel out. The second part may be proved as follows. Let

!==L tL 2"'L r ,

L I being the given simple cut set. Choose any branch in L I , say a I , and add Lito other L's in
which a I appears, as in the regular frame expansion:

t >t», +M I)M2···M r •

We continue as in the proof of Theorem 9 but choose from M 2 a letter not appearing in MI.
This is possible, for otherwise a subset of M I is a cut set. Continue with the expansion, always
choosing for the next frame term a letter not appearing in M I. We need never then add any
terms to the first one, which is left intact.

Thus we see that the set of simple cut sets is identical with the set of frame cut sets and we
may construct the former in this way. We may also use these results to determine if a given cut
set is simple.

s. RELATION TO LINEAR GRAPHS AND ELECTRICAL NETWORK THEORY

We will say that a network is real if it can be factored in such a way that no branch appears
in more than two factors, otherwise it is ideal. Thus (a + b) (a + c) is real and

(a + d + e + g)(b + d + f + g)(c + e + f + g)

is ideal. This last is true since adding any two terms leaves the distribution of appearances of
branches the same, a branch in each term, in each pair of terms and in all three terms. As any
factoring can be reached by a sequence of such additions, any factoring has a letter appearing in
three terms.

We will now set up a correspondence between real networks and linear graphs. Let any real
network! be factored in such a way that no branch appears in more than two factors.
Associate a junction point with each factor and add one additional junction point. To each
branch appearing in two factors we make correspond a branch of the graph connecting the
corresponding junctions. For each branch appearing in one factor only we draw a branch
connecting the associated junction with the additional junction. For each branch appearing in
no factors we draw a closed loop. It is easily seen that the original factors form a cut set basis
for the graph. Furthermore, the cut sets of our network are cut sets of the graph since they are
linear combinations of the basis cut sets modulo 2. Two graphs corresponding to the same
network are two-isomorphic since they have the same cut sets and it has been shown by
Whitney that these properties are equivalent. With this as a basis it is not difficult to show that
the other terms we have defined correspond in the case of real networks to similarly named
concepts in graph theory. Hence there is a one-to-one correspondence between real networks
and the linear graphs under two-isomorphism that can be constructed from a set of labeled
branches.

Ignoring interchanges of letters, the possible graphs with three branches9 are shown in
Fig. 2, together with the corresponding network expressions in the network ring of order three.

It is known that the network admittance discriminant (Yi] [of an electrical network is equal
to a sum of products, each product having for factors admittances making up a frame. Hence
we have the Wang result that the admittance discriminant

D I = f Yij ( = II a, :: Y,

by which we mean that f (written as a polynomial) is evaluated as though + and, were the
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arithmetic operations, the admittances of branches being substituted for the branches. Similarly
the impedance determinant is given by

D 2 = t Z ij , = /'fa, = Z, .

Also the driving point admittances Y 11 looking across branch a I is

Dy
Yl t =--

aD)' .

aft

Hence for f not of rank I,

r ,1 = / ,
E f a, =)',

Q 1

a

<) ~ a
a eb b -==-<) -8 b

c

c c c
<) -8 -8

0 a a+b a+b+c

~
RANK 0 RANK I

Figure 2

• a • • a • • a •
• b • b n • h •-==- cc c
<) • c •

ab a(b +c) (a +b)(a +c) abc

RANK 2

6. SOLUTION OF CAMPBELL'S PROBLEM

RANK 3

A problem proposed by G. A. Campbell is that of determining whether or not a given
homogeneous expression in certain admittances (or impedances) is the determinant of an
electrical network, and if so to find the network. Theorem 15 solves half of this problem, for it
gives a method of determining whether the given expression represents a network - we must
now find a method for determining whether a network is real or ideal. Theoretically,
Theorem 8 is a solution of this, for we may use it to factor a network in all possible ways, and
inspect the various factorings to determine if any occur in which all branches appear at most
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twice. However, this process is very long and impractical even for quite simple networks. We
will now describe a very rapid method of determining whether a given network is real. It is
based on the dual of Theorem 23: all circuits of a fundamental system expansion of fare
simple. Let us expandf about a fundamental system:

f = [(aJ + L,)(a2 + L 2 ) .,. (an + L Il ) ] ' •

Each of these factors is a simple circuit of the network f If f is a graph and we omit
aI, ... , an' leaving the sets L 1 , L 2 " ••• , L n » we have a tree. We proceed step-by-step to
construct this tree, using the sets L I , L 2 , .•. sequentially. The process is best described by an
example. Suppose

A L} =a+b+c+d

B L2 =a + b

C L 3 = b + c + d

D L 4 = a + b + C

E Ls = b + d

I b/ ,
a + b + c + d "'; + d

3a 3b

a b

3c

(c + d) a b

3d

c d

Figure 3

where A, B, ... , E are the corresponding fundamental system branches. The first term L J tells
us that a, b, C, d occur in a sequence, since adding one more branch completes a simple circuit.
The first approximation to the tree is shown in Fig. 3a. The + sign between the letters indicates
commutativity - nothing is yet known of the order of these branches in the sequence. Now
consider L 2 = a + b. a and b must be adjacent, hence the second approximation to the tree is
given in Fig. 3b. The arrows on C + d indicate that c and d can be distributed in any way on the
tails of the tree, both at one or the other end in any order, or one at each end. Now consider
L 3 = b + C + d. c and d must be in sequence with b, hence we get the third approximation of
Fig. 3c. L 4 = a + b + c gives Fig. 3d, and L 5 = b + d is impossible so the network is ideal.
The dual of this network is real, however. The dual has

a: L 1 =A+B+D

b: L 2 = A + B + C + D + E

c: L 3 = A + C + D

d: L4 = A + C + E .

The successive approximations are shown in Fig. 4 with the network shown in Fig. 4e. This
method is very rapid - with a little practice it is possible to construct a network of rank 20 or 30
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in a few minutes, starting with a frame or fundamental system expansion. It is usually best,
however, to take the L; in such an order that each one taken involves as many letters previously
written down as possible and to start with a large L. With these precautions the process
described will converge rapidly to the proper solution for any ordinary network.

C

(A +8 +D)

4a

(A +D) B E C

(A +8 +D)

4b

A D B

4c 4d

b

Figure 4

d c

4e
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A THEOREM ON COLORING THE LINES OF A NETWORK

By CLAUDI: E. SHANNON

A topological coloring problem has been suggested in connection with the
color coding of wires in electrical units such as relay panels. In these units there
are a number of relays, switches, and other devices A, B, · .. , E to be inter-
connected. The connecting wires are first fonned in a cable with the wires to
be connected to A coming out at one point, those to B at another, etc., and it is
necessary, in order to distinguish the differentwires, that all those coming out of
the cable at the same point be differently colored. There may be any number
of wires joining the same two points but no wire joins more than two points.
Assuming that not more than m wires end at anyone point, the question arises
as to the least number of different color codings that is sufficient for any network.

Theorem: The lines of any network can be colored so that no two lines with a
common junction have the same color using at most [1m] colors, where m is the
maximum number of lines touching one junction. This number of colors is
necessary for some networks. .

Simple networks requiring [1m] colors can be constructed as follows. For
m = 2n, let each pair of the three junctions A, B, C be connected with n lines.
Since all the lines must obviously be different, 3n = [1m] colors are necessary.
For m = 2n + 1, connect AB with n lines, Be with n lines and AC with n + 1
lines. Here again all lines must be different and there are 3n + 1 = [1(2n +
1)] = [1m] lines. Another example for m = 3 is furnished by the cross connec-
tion of two pentagons abcde and ABCDE by lines aA, bl), cB, dE, eC.

For the sufficiency proof let us first suppose m even. Now if N is our given
network it is well known that we may add lines and junction points to get a
regular network N' of degree m, i.e., one in which exactly m lines end at each
junction point. If we can color N' we can surely color N. A theorem due to
Peterson states that any regular network of even degree m = 2n can be factored
into n regular second degree graphs. In our case let the factors of N' be N, ,
N2 , ••• , N A • Each of these is merely a collection of polygons which do not
touch each other, and each N" therefore, can be colored with at most three
colors. This gives a total of 3n = 1m colors.*

Peterson has conjectured that any regular bridgeless network of odd degree
2n + 1 can be factored into one first and n second degree graphs, and if this is
true the theorem follows easily in the odd case. However this conjecture has
never been proved for m > 3 and we will use a different attack.

The theorem will be proved by induction, making the coloring of N depend on
coloring a network with one less junction point. Let us eliminate from None
junction point P and the m = 2n + 1 lines coming to it and assume the remain-
ing network to be satisfactorily colored with 3n + 1 colors. Let the junctions
that were connected to P in the original network be numbered 1, 2, · .. , 8, and

• This proof for m even was suggested by R. M. Foster.
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suppose there were PI parallel lines in the first group G1 connecting P to junction
1, etc. N ow after coloring the reduced network we have left available at junc-
tion 1 at least [(3n + 1) - (2n + I - PI») = n + PI colors, at junction 2, at
least (n + 112) colors, etc. By choosing properly from these available colors and
by suitable interchanges of certain colors in the part of the network already
colored we will show that the lines from P can be satisfactorily colored.

Let us arrange the data in a table as follows.

Colors

123 ·
1 1 1 0 1
2 1 0 1 0 ·

lines

(2n + 1) ·

(3n + 1)

FIG. 1

In this array the 2n + 1 lines from P are listed vertically, the an + 1 colors
horizontally. If a certain color is available for a certain line a 1 is placed at the
intersection of the corresponding row and column, otherwise a o. In a row
corresponding to a line in Gi there will be (n + Pi) 1'8. By the use of three
operations on this array we will arrange to obtain a series of 1'8 along the main
diagonal and this will represent a coloring scheme for the network. These
operations are:

1. Interchange of columns. This corresponds to merely renumbering the
colors.

2. Interchange of rows. This corresponds to renumbering the lines from P.
3. Interchange of colors in a chain of two colors. Two junctions will be said

to be chained together for two colors if we can go from one junction to the other
along lines which alternate these colors. If we have a satisfactorily colored net-
work and interchange the two colors in a chain of that network over its entire
length (note that in a correctly colored network a chain cannot branch out) then
it is clear that the network will still be satisfactorily colored. We will also use
the fact that if only one of the two colors in question appears at each of three
distinct junctions then only one pair of the junctions (at most) can be chained
together for these two colors, since a chain can only have two ends. Now con-
sider the array of Fig. 1. Suppose that in the first row there is a 0 in one column
and a 1 in another. Interchanging these two colors in the chain starting from
the junction that line one is connected to will be seen to be equivalent to inter-
changing these two columns for this row and all other rows that are chained to it.

Let us suppose that we have arranged to get 1'8 on the main diagonal D down
to a certain point. We will show that we can get another 1 on the diagonal.
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(2n + 1)
lines

1
1

(3n + 1) Colors

1----0---

1-1--0---

1

·1· ·X---
I I
S R T

Flo. 2

C.E.Shannon

Referring to Fig. 2, if there are any 1's in the next line a, on or to the right of T,
one of these may be brought by an interchange of columns, to position X.
Assuming this is not true there will be n + Pi 1's to the left of column T in a
(assuming a is in Gi ) . Hence there are n + p, rows above a having a 1 in D in
the same column as a 1 in a. At least n + 1 of these rows are not in Gi , since
G, has Pi members and we have accounted for one already, namely «. Let {j be
one of these, belonging, say, to Gt • If ~ has a 1 on or to the right of T, by an
interchange first of columns, then of a and {J this may be moved to X without
affecting the 1's along D. Assuming this is not true, there are n + Pi 1'8 on {j
to the left of T and hence n + Pi rows above a have a 1 in D in the same column
as a 1 in {j, and of these at least n do not belong to G; (as it only has Pi members).
Now there are not more than 2n rows above a and therefore the n rows we have
associated with ~ and the n + 1 we have associated with a must have at least
one in common, i.e., there exists a row not belonging to G. or Gi and having a 1
in D in the same column that Q and {3 also have a 1. Call this row v, and suppose
it belongs to G". If 'Y has a 1 on or to the right of T it may be moved to X by
first interchanging columns and then rows a and 'Y 8S before. Assuming this is
not true, there are O's and l's at the intersections of a, {j, 1', and T, S, as shown
in Fig. 2 and X is o. Hence at least one of a, P, 'Y is not chained to either of the
others by the t\VO colors of T and S. If it is a, interchange the chain starting at
i and the 1 at the as intersection moves to X without affecting D. If it is p,
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interchange the chain starting at j and then rows a and s. This moves the 1 at
the {jS intersection to X and its place is taken by the 1 at as. If it is 'Y, inter..
change the chain starting at k and then the rows a and "I so that the 1 at "IS moves
to X and the 1 at aR takes its place.

BELL TELEPHONE LABORATORIES, INC., NEW YORK CITY.

(Received September 14. 1948)



The Synthesis of Two-Terminal Switching Circuits

By CLAUDE.E.SHANNON

PART I: GENERAL TI-IEORY

1. INTRODUCTION

T I-IE theory of switching circuits may be divided into two major divi-
sions, analysis and synthesis. The problem of analysis, determining

the manner of operation of a given switching circuit, is comparatively
simple, The inverse problem of finding a circuit satisfying certain given
operating conditions, and in particular the best circuit is, in general, more
difficult and more important from the practical standpoint. A basic part
of the general synthesis problem is the design of a two-terminal network
with given operating characteristics, and we shall consider some aspects of
this problem.

Switching circuits can be studied by means of Boolean algebra.'>! This
is a branch of mathematics that was first investigated by George Doole ill
connection with the study of logic, and has since been applied in various
other fields, such as an axiomatic formulation of biology.i thc study of neural
networks in the nervous system," the analysis of insurance policies.! prob-
ability and set theory, etc.

Perhaps the simplest interpretation of Boolean Algebra and the one
closest to the application to switching circuits is in terms of propositions.
A letter X, say, in the algebra corresponds to a logical proposition. The
sum of t\VO letters X + Y represents the proposition "X or F" and the
product XV represents the proposition "X and Y". The symbol X' is used
to represent the negation of proposition X, i.e. the proposition "not X".
The constants 1 and 0 represent truth and falsity respectively. Thus
X + Y = 1 means X or }7 is true, while X + l'Z' = 0 means X· or (Y and
the con tradiction of Z) is false.

The interpretation of Boolean Algebra in terms of switching circuits6 •R, 9 , 10

is very similar. The symbol X in the algebra is interpreted to mean a make
(front) contact on a relay or switch. The negation of X, written X',
represents a break (back) contact on the relay or switch, The constants 0
and 1 represent closed and open circuits respeclively and the combining
operations of addition and multiplication correspond to series and parallel
connections of the switching elements involved. These conventions are
shown in Fig. 1. With this idcntification it is possible to write an algebraic

588



The Synthesis of Two-Terminal Switching Circuits 589

NETWORK HINDRANCE FUNCTION

• 0 (PERMANENTLY CLOSED CIRCUIT)

• • I (PERMANENTLY OPEN CIRCUIT)

X (MAKE CONTACT ON RELAY x)

X' (BREAK CONTACT ON RELAY X)

x + Y (SERIES CONNECTION)

xY (PARALLEL CONt~ECT'ON)

W [X+Y(Z+ X')]

Fig. l-IIindrancc functions for simple circuits.

expression corresponding to a two-terminal network. This expression will
involve the various relays whose contacts appear in the network and will be
called the hindrance or hindrance function of the network. The last net-
work in Fig. I is a simple example.

Boolean expressions can be manipulated in a manner very sitnilar to
ordinary algebraic expressions. Terms can be rearranged, multiplied out,
factored and combined according to all the standard rules of numerical
algebra. 'Ve have, for example, in Boolean algebra the following identities:

o+x=x
O·X = 0

I·X = X

X+l'=l"+X

Xl' = I'X

x + (Y + Z) = (X + I') + Z

X{l'Z) = {XI')Z

}[(IT + Z) = XIT + XZ

The interpretation of some of these in terms of switching circuits is shown
in Fig. 2.

There are a number of further rules in Boolean Algcbra which allow
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•.....-----e---OO)(0-----4

0+)( x

•...--0)(00-- --00y~ = ---.0V o-oxo--e

x ...y = v + x

x (yZ) = (xv) z == XY2

x (V-4-Z) xv .. xz
Fig. 2-Interprctation of some algebraic identities.

simplifications of expressions that arc not possible in ordinary algebra.
The 1110re important of these arc:

X = X + X = X + X + X = etc.

X = X-X = x-x·x = etc.

X + 1 = t

X + l'Z = (X + l')(X + Z)

X + X' = 1

X·X' = 0

(X + 1')' = X'Y'

(.t'\]')' = X' + 1"

The circuit interpretation of some of these is shown in Fig. 3. These rules
make the manipulation of Boolean expressions considerably simpler than
ordinary algebra. There is 110 need, for example, for numerical coefficients
or for exponents, since 1lX = X» = X.

By means of Boolean Algebra it is possible to find many circuits equivalent
in operating characteristics to a given circuit. The hindrance of the given
circuit is written down and manipulated according to the rules. Each
different resulting expression represents a new circuit equivalent to the given
one. In particular, expressions may be manipulated to eliminate elements
which are unnecessary, resulting in simple circuits.

Any expression involving a number of variables Xl, X 2 , ••• , X; is
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called e function of these variables and written in ordinary function notation,
I(X) ,X2 , ••• ,X,.). Thus we might have f(}{, Y,Z) = x+ Y'Z+ XZ'.
In Boolean Algebra there arc a number of important general theorems which
110Jd for any function. It is possible to expanda function about one or more
of its arguments as fOlJO\V3:

I(XI , X 2 , ••• , X,.) = Xlf(l, X 2 , ••• , X,.) + X'f(O, X 2 , ••• , X,.)

This is an expansion about X«, The termf(l, X 2 , ••• ,XII) is the function

)( x + x x + )( + x

• • •
x + ,

)( + yz (x + v) (x + z)

•= ...----...

x}t' 0

Fig. 3-lnterpretation of some special Boolean identities.

f(X., XI, ... ,XII) with 1 substituted for X, and 0 for X', and conversely
for the term/CO, X 2 , • •• ,Xn). An expansion about X, and X 2 is:

{(XI, X 2 , ••• ,X,,) = XIX!f(l, 1, X«, ... ,XII) + XIX~f(l, 0, X«, .•. J X,,)

+ X~Xtf(O, 1, X«, ... , X,,) + X:X~f(l, 1, X 3 , ••• , X,,)

This may be continued to give expansions about any number of variables.
When carried out for all 11 variables, f is written as a SUlll of 2" products
each with a coefficient which does not depend on any of the variables.
Each coefficicn t is therefore a constan t, cither 0 or 1.

There is a similar expansion wherebyJ is expanded as a product:

f(X 1 , X 2 , ••• , X 2)

= [Xl + f(O, X 2 , ••• , X,,)] [X~ + f(l, X:!, ••• ,X,.)]

= (Xl + X 2 +f(O, 0, ,X,.)](Xl+X~+f(O,l, ... ,Xn»)

[X~ + X 2 + j(l, 0, , X,,)] IX: + x; + j(l, 1, ... ~ X,,)]
= etc.
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The following are some further identities for general functions:

X + f(X, V, Z, ) = X + l(O, IT, Z, )

X' + tcx, 1/, Z, ) = X' +1(1, 1T, Z, )

Xf(X, 1/, Z, · · .) = Xf(l, F, Z, · · .)

X'j(X, IT, Z, · · .) = X 'j(O, V, z, ·· ·)

T
x-C:::2r

z v W'
0-0 0-0

f(x, r, z,w)

x + f(O,V, z,w)

wx,~
z '7 W'
0-0 ()-oO

Xf(I,Y,Z,W) ... X'f(O,Y,Z,W)

X'

:: X V f(1, ,,v, Z) + x V' f (',0, v, z) + X' Y f (0, It v,z) + x' v' -(0,0, V,Z)

Fig. 4-Exanlples of some functional identities.

The network interpretations of S0111C of these identities are shown in Fig.
4. A little thought will show that they are true, in general, for switching
circuits.

The hindrance function associated with a two-terminal network describes
the network completely from the external point of view. We can determine
from it whether the circuit will be open or closed for any particular position
of the relays. This is done by giving the variables corresponding to operated
relays the value 0 (since the make contacts of these are then closed and the
break contacts open) and unoperated relays the value 1. For example, with
the function! = W[X + Y(Z + X')] suppose relays X and lT operated and
Z and W not operated. Thenf = I{O + 0(1 + I)} = 0 and in this condition
the circuit is closed.
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A hindrance function corresponds explicitly to a series-parallel type of
circuit, i.e, a circuit containing only series and parallel connections. This
is because the expression is made up of sum and product operations. There
is however, a hindrance function representing thc operating characteristics
(conditions for open or closed circuits between the t\VO terminals) for any
network, series-parallel or 110t. The hindrance for non-series-parallel net-
works can be found by several methods of which one is indicated in Fig. 5
for a simple bridge circuit. The hindrance is written as the product of a
set of factors. Each factor is the series hindrance of a possible path between
the two terminals. Further details concerning the Boolean method for
switching circuits may be found in the references cited above.

This paper is concerned with the problem of synthesizing a two-terminal
circuit which represents a given hindrance Iunction j'(Xi , ... ,Xn ) . Since
any given function f can be realized in an unlimited number of different

f =(w+x)(z+s)(w+Y+s)(z+v+x)

Fig. 5-1Iindrance of a bridge circuit.

ways, the particular design chosen must depend upon other considerations.
The most common of these determining criteria is that of economy of ele-
ments, which may be of several types, for example:

(1) We may wish to realize our function with the least total number of
switching clements, regardless of which variables they represent.

(2) We may wish to find the circuit using the least total number of relay
springs. This requirement sometimes leads to a solution different
from (1), since contiguous make and break clements may be combined
into transfer clements so that circuits which tend to group make and
break contacts on the same relay into pairs will be advantageous
for (2) but not necessarily for (1).

(3) We may wish to distribute the spring loading on all the relays or 011

some subset of the relays as evenly as possible. Thus, we might try
to find the circuit in which the most heavily loaded relay was as
lightly loaded as possible. More generally, we might desire a circuit

in which the loading on the relays is of some specified sort, or as ncar
as possible to this given distribution. For example, if the relay Xl
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must operate very quickly, while X 2 and Xa have no essential time
limitations but arc ordinary U..type relays, and X. is a multicontact
relay on which many contacts are available, \ve would probably try
to design a circuit for !(X 1 , Xs , Xa , X c) in such a way as, first of all,
to minimize the loading on Xl, next to equalize the loading on X 2

and Xa keeping it at the same time as low as possible, and finally
not to load X 4 any more than necessary. Problems of this sort may
be called problems in spring..load distribution.

Although all equivalent circuits representing a given function f which
contain only series and parallel connections can be found with the aid of
Boolean Algebra, the most economical circuit in any of the above senses will
often not be of this type. The problem of synthesizing non-series-parallel
circuits is exceedingly difficult. It is even more difficult to show that a
circuit found in some way is the most economical one to realize a given
function. The difficulty springs from the large number of essentially
different networks available and more particularly Irom the lack of a
simple mathematical idiom for representing these circuits.

We will describe a new design method whereby any function I(X 1 , X2, • • • ,

X fa) may be realized, and frequently with a considerable saving of clements
over other methods, particularly when the number of variables ,I, is large.
'rite circuits obtained by this method will not, in general, be of the series-
parallel type, and, in fact, they will usually not even be planar. This
method is of interest theoretically as well as for practical design purposes,
for it allows us to set new upper limits for certain numerical functions asso-
ciated with relay circuits. Let us make the following definitions:

~(1t) is defined as the least number such that any function of It variables
can be realized with not more than A(n) elements.* 'rhus, any function of
n variables can be realized with A(U) clements and at least one function with
no less.

P.(If,) is defined as the least number such that given any function f of It

variables, there is a two-terminal network having the hindrance f and using
not more than P.(''') elements on the most heavily loaded relay.

The first part of this paper deals with the general design method and the
behaviour of ~(lt). The second part is concerned with the possibility of
various types of spring load distribution, and in the third part we will study
certain classes of functions that are especially easy to synthesize, and give
some miscellaneous theorems on switching networks and functions.

2. I;uNDAMENTAL DESIGN TIIEOREAI

The method of design referred to above is based on a simple theorem deal-
ing with the interconnection of two switching networks. \Ve shall first

• An ele,,,e,,t means a make or break contact on one relay. A transfe» elemen: means
a make-and-break with a common spring, and contains two elements.
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state and prove this theorem, Suppose that M and N (Fig. 6) are two
(" + 1) terminal networks, M having the hindrance functions U Ie (k ==
1, 2, · .. 1~) between terminals a and k, and N having the functions VII
between band k. Further, let M be such that U i " = lU, k = 1,2, ... ,n).
We will say, in this case, that M is a disjunctioe network. Under these con-
ditions we shall prove the following:

Theorem 1: If the corresponding terminals 1, 2, · .. , It of M and N are
connected together, then

"u; = II tu, + 1',,)
1e-1

(1)

1.vhcre Uab is tltchindrance [rom terminal a to terminal b.

bNM

L
I

1 I I

2 I 2

3 I 3
I I I

! I :
I I ;
: I :
: I I
n I n

L

Fig. 6-Network for general design theorem.

a

Proof: It is known that the hindrance Uab may be found by taking the
product of the hindrances of all possible paths from a to balong the elements
of the network." We may divide these paths into those which cross the line
L once, those which cross it three times, those which cross it five times, etc.
Let the product of the hindrances in the first class be fJ'l , in the second
class .,V3 , etc. Thus

(2)

Now clearly

"
lV1 = II su. + 1',,)

1

and also

fVa = JV& = ... = 1

since each term in any of these must contain a summand of the type Ujle

which we have assumed to be 1. Substituting in (2) we have the desired
result.

The method of using this theorem to synthesize networks may be roughly
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described as follows: The function to be realized is written in the form of a
product of the type (1) in such a way that the functions U Iearc the same for a
large class of functions, the V, determining the particular one under consider-
ation. A basic disjunctive network M is constructed having the functions
U Ie between terminals a and k. A network N for obtaining the functions
Vi is then found by inspection or according to certain general rules. We
will now consider just how this can be done in various cases.

3. DESIGN OF NETWORKS FOR GENERAL FUNCTIONS-BEHAVIOR OF ~(11).

a. Functions of One, Two and Three Variables:

Functions of one or t\VQ variables may be dismissed easily since the
number of such functions is so small. Thus, with one variable X, the
possible functions are only:

0,1, X, X'

and obviously ~(1) = 1, #l(l) = 1.
With two variables X and ]T there arc 16 possible functions:

OXy Xl'" X'y X'}"' Xl?' + X'Y

1 X' Y' X + y X + y' X' + Y X' + 1T
' XII" + X'y'

so that X(2) = 4, p(2) = 2.
We will next show that any function of three variables leX, 11", Z) can be

realized with not more than eight elements and with not more than four
from anyone relay. Any function of three variables can be expanded in a
product as follows:

leX, Y, Z) = [X + 1" + /(0,0, Z)][X + 1'" + /(0, 1, Z)]

[X' + Y + /(1,0, Z)] [X' + y ' + f(l, 1, Z)].

In the terminology of Theorem 1 we let

U t = X + l'

U2 = X + y'

Ua = X' + ]'
U. = X' + y'

so that

VI = /(0, 0, Z)

V2 = /(0, 1, Z)

Va = /(1, 0, Z)

V. = J(I, 1, Z)

4

c: = leX, r, Z) = IT tu, + I',,)
Ie-I

The above U" functions are realized with the network M of Fig. 7 and it is
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easily seen that V j " = 1 (j, k = 1,2,3,4). The problem now is to construct
a second network lV having the V" functions Vl , V2 , VI, V.. Each of
these is a function of the one variable Z and must, therefore, be one of the
four possible functions of one variable:

0,1, Z, Z'.

Consider the network J\T of Fig. 8. If any of the V's arc equal to 0, connect
the corresponding terminals of M to the terminal of N marked 0; if any are
equal to Z, connect these terminals of M to the terminal of N marked Z,
etc. Those which arc 1 arc, of course, not connected to anything. It is
clear from Theorem 1 that the network thus obtained will realize the function
(X, V, Z). In many cases some of the elements will be superfluous, e.g.,
if one of the Vi is equal to 1, the element of M connected to terminal i can

Fig. 7-Disjunctive tree with two bays.

be eliminated. At worst M contains six clements and N contains two.
The variable X appears twice, IT four times and Z twice. Of course, it is
completely arbitrary which variables we call X, F, and Z. We have thus
proved somewhat more than \ve stated above, namely,

Theorem 2: A tty [unction oj three variables 1nay be realized using not 1110re

than 2, 2, and 4 elements 1r0111 lite three variables i,l, auy desired order. Thus
X(3) :::; 8, J.L(3) S 4. Further, since make and break C1C111Cllls appcar in
adjacent pairs we can obtain lite distribution 1, 1, 2, ill Icr111S of transfer ele-
11ZCIl/S.

Th~ theorem gives only upper limits for X(3) and p(3). The question
immediately arises as to whether by some other design method these limits
could be lowered, i.e., can the ~ signs be replaced by < signs. It can be
shown by a study of special cases that X(3) = 8, the function

X (f) Y ~ Z = X(l'Z + l"Z') + X' (YZ' + V'Z)

requiring eight elements in its most economical realization. 1-&(3), however,
is actually 3.
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It seems probable that, in general, the function

Xl (!) X2 (f) ••• (f) X,.

requires 4(" - 1) elements, but no proof has been found. Proving that a
certain function cannot be realized with a small number of elements is
somewhat like proving a number transcendental; we will show later that
almost all" functions require a large number of elements, but it is difficult
to show that a particular one docs.

z
Z .....--.no~

Z'
Z' .....----no 0---....---- b

0--------
Fig. 8-Network giving all functions of one variable.

v0----- '

~X~V:--2
w/ .-..,x~v0----- J

--< y,o..-.--. •

yo----- .s

W/,<X~V,o--. 6

x,~Y~7

v,o-..-.-.8
Fig. 9-Disjunctive tree with three hays.

b. Functions of Four Variables:

In synthesizing functions of four variables by the same method, two
courses are open. First, \VC may expand the function as follows:

(W, X, Y, Z) = [IV + X + Y + VJ(Z»)·[JV + X + V' + V2(Z)].

[J-V + X' + Y + Va(Z)]· [JV + X' + y' + V4(Z)].

[IV' + X + IT + V,,(Z)]·[lV' + X + y' + V,.(Z)].

[JV' + X' + y + V;(Z)]· [IV' + X' + y' + V8(Z)].

By this expansion we would let U i = IV+ X + Y, U2 = lV+ X + V', ... ,
a. = W' + X' + Y' and construct the M network in Fig. 9. N would

• \Vc use the expression "almost nil" in the arithmetic sense: c.g., a property is true
o( almost all (unctions of n variables if the fraction of all functions of " variables for which
it is not true -+ 0 as n -+ co.
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•

again be as in Fig. 8, and by the same type of reasoning it can be seen that
~(4) s 16.

Using a slightly more complicated method, however, it is possible to
reduce this limit. Let the function be expanded in the following way:

f(W, X, IT, Z) = [IV + X + V1(IT, Z)]·[W + X' + V2(Y, Z)]

[lV' + X + V3(Y, Z)]·[~V' + X' + V.(Y, Z)].

\Ve may use a network of the type of Fig. 7 for M. The V functions are
now functions of t\VO variables }T and Z and may be any of the 16 functions:

A fO l' fl'Z fIT + Z E!lT'Z + ]TZ'

II 1'" ]T'Z tV + Z' ]TZ + Y'Z'
B Z C

lYZ
, D l"+Z

Z' l"Z' I"~ + Z'

We have divided the functions into five groups, A, B, C, D and E for later
reference. We are going to show that any function of four variables can

.>.--< >-b
<:>

Fig. to-Simplifying network.

be realized with not more than 14 elements. This means that we must
construct a network N using not more than eight elements (since there are
six in the M network) for any selection of four functions from those listed
above. To prove this, a number of special cases must be considered and
dealt with separately:

(1) If all four functions are from the groups, A, B, C, and D, N will
certainly not contain more than eight elements, since eight letters at most
can appear in the four functions.

(2) We assume now that just one of the functions is from group E;
without loss of generality we may take it to be YZ' + y'Z, for it is the other,
replacing Y by l'" transforms it into this. If one or more of the remaining
functions are from groups A or B the situation is satisfactory, for this func-
tion need require no elements. Obviously 0 and 1 require no elements and
Y, 1", Z or Z' may be "tapped ofT"from the circuit for YZ' + Y'Z by writing
it as (1' + Z)(l" + Z'). For example, ]" may be obtained with the circuit
of Fig. 10. This leaves four elements, certainly a sufficient. number for
any two functions from A, B, C, or D.
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(3) Now, still assuming \ve have one function, ITZ' + y'Z, from E,
suppose at least two of the remaining are from D. Using a similar "tapping
off" process we can save an element on each of these. For instance, if the
functions are Y + Z and Y' + Z' the circuit would be as shown in Fig. 11.

(4) Under the same assumption, then, our worst case is when t\VO of the
functions are from C and one from D, or all three from C. This latter case
is satisfactory since, then, at least one of the three must be a term of
YZ' + y'Z and can be "tapped ofT." The former case is bad only when
the t \VO Iunctions from C are It'Z and Y'Z'. It may be seen that the only

Fig. II-Simplifying network,

b

Fig. 12-Simplifying network.

essentially different choices for the function from Dare ]-'+ Z and Y' + z.
That the lour types of functions! resulting may be realized with 14 elements
can be shown by writing out typical functions and reducing by Boolean
Algebra.

(5) We now consider the cases where two of the functions are from E.
Using the circuit of Fig. 12, we can tap off functions or parts of functions
from A, B or D, and it will be seen that the only difficult cases are the fol-
lowing: (a) Two functions from C.· In this case either the function f is
symmetric in Y and Z or else both of the two functions may be obtained
from the circuits for the E functions of Fig. 12. The symmetric case is
handled in a later section. (b) One is from C, the other from D. There
is only one unsymmetric case. We assume the four functions are Y (f) Z,
Y (f) Z', YZ and Y + Z'. This gives rise to four types of functions I,
which can all be reduced by algebraic methods. This completes the proof.
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Theorem 3: AllY function oj four variables cat.. be realized with 1101 more
than 14 elements.

c. Functions of More Than Four Variables:

Any function of five variables may be written

(Xl, ... J Xli) = [X. + !1(XI , ••• , X4)]·[X~ + !2(XI , ••• , X 4) ]

and since, as we have just shown, the two functions of four variables can
be realized with 14 elements each, /(X1 , •• • Xs) can be realized with 30

0
x. oX

x'. x'0

v, oy

v'. v'0

X'y..-----.
x..y ...---0X&--.----.

x'+v'..--oy'

x' y'..------.
X+y'~Xo- ---.

x'+V.--.-oy

xv'. 5lcx' x

'XY1+x/Y-[
. y y'

xv. 5lcx' x

Xy+x'Y'-[y' y

Fig. 13-Network giving all functions of two variables.

Now consider a function !(XI , X 2 , • • • , X n) of 1t variables. For
5 < 1J,~ 13 we get the bestlimit by expanding about all but two variables.

j(X1 , X 2 J ••• J X,,) = (Xl + X" + ... + X"-2 + VI(X n- l , X n) ]

· ... · [X~ -+- X~ + ... + X:-2 + V8(Xn- 1 , Vn)] (4)

The V's are all functions of the variables X ,,-1 , X" and may be obtained
from the general N network of Fig. 13, in which every function of two
variables appears. This network contains 20 clements which are grouped
into five transfer elements for one variable and five for the other." The
M network for (4), shown in Fig. 14, requires in general 2,,-1 - 2 elements.
Thus we have:

• Several other networks with the same property as Fig. 13 ha.ve been found, but they
all require 20 elements.
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Theorem 4. >..(11)::;; 2"-1+ 18

d. Upper Limits for ~(Il) with Large II.

Of course, it is not often necessary to synthesize a function of more than
say 10 variables, but it is of considerable theoretical interest to determine
as closely as possible the behavior of X(n) for large 11,.

Fig. 14-Disjunctive tree with (II - 2) bays.

• 9,
f, 'C",.,., • 92
f 2 ::::::==- 93

~'cn+\ :, ,
N' ,

t I
I I
, I
I ,
• I
, t

• f 2m I
2 .922 m+,

Fig. IS-Network giving all functions of (In + 1) variables constructed Irom one giving
all functions of "' variables.

We will first prove a theorem placing limits on the number of clements
required in a network analogous to Fig. 13 bu t generalized for Ill, variables.

Theorem 5. A 1-" N netuork realizing all 22
'" junctions of 11t variables can

be constructed using nOII1tOre than 2.22
'" elements, i.e., 1I0t "lore than ttoo ele-

ments per junction. A"y network willt litis property uses at least (~ - E)
elements per[unction for any E > 0 witll It sufficiently large.

The first part will be proved by induction. We have seen it to be true
for 11' = 1, 2. Suppose it is true for some m with the network J\T of Fig. 15.
Any function of III, + 1 variables can be written
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where/a andf" involve only In variables. By connecting from g to the cor-
responding ftJ and j" terminals of the smaller network, as shown typically
for ga , we see from Theorem 1 that all the g functions can be obtained.
Among these will be the 22

'" f functions and these can be obtained simply
by connecting across to the f functions in question without any additional
elements. Thus the entire network uses less than

(22,"+ 1 _ 22"')2 + 2.22 '"

elements, since the N network by assumption uses less than 2· 2'1.'" and the
first term in this expression is the number of added elements,

The second statement of Theorem 7 can be proved as follows. Suppose
\VC have a network, Fig. 16, with the required property. The terminals
can be divided into three classes, those that have one or less clements di-

f 2 2 rn

Fig. 16-Nctwork giving all functions of '" variables.

rcctly connected, those with two, and those with three or more, The first
set consists of the functions 0 and 1 and functions of the type

(X + f) = X + f x-o

where X is some variable or primed variable. The number of such functions
is not greater than 211J· 22

". - 1 for there are 211J ways of selecting an "X"
and then 22

... -
1

different functions /x-o of the remaining lit - 1 variables.
Hence the terminals in this class as a fraction of the total e-s 0 as lIt --+ 00.

Functions of the second class have the Iorrn

In case X ~ II" this may be written

XY + XY'gx-l,v-O + X'lJ'gx_O.V_l + X'Y'gx_o,v_o

and there are not more than (2,11)(2,n - 2)(2
2M-'r' such functions, again a

vanishingly small fraction. In case X = I"~ we have the situation shown
in Fig. 17 and the XX' connection can never carry ground to another
terminal since it is always open as a series combination, The inner ends
of these clements can therefore be removed and connected to terminals
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corresponding to functions of less than tn variables according to the equation

g == (X + (l)(X' + /2) == (X + !l:r-n)(X' + l2:C-l)

if they are not already so connected. This means that all terminals of the
second class are then connected to a vanishingly small fraction of the total
terminals. We can then attribute two elements each to these terminals
and at least one and one-half each to the terminals of the third group. As
these two groups exhaust the terminals except for a fraction which ~ 0
as n --. co, the theorem follows.

If, in synthesizing a function of 11 variables, we break off the tree at the
(n - fn)th bay, the tree will contain 2,,-rntl - 2 elements, and we can find
an N network with not more than 22

"' . 2 elements exhibiting every function
of the remaining 11~ variables. Hence

X(II) ~ 2,,-m+l - 2 + 2 22
'" < 2,,-m+l + 2 22'"

I
X I

~x' t
I
I,,,
I,
I,

Fig. 17-PossilJlc situation in Fig. 16.

for every integer Ill. We wish to find the integer M = M(II) minimizing
this upper bound.

Considering m as a continuous variable and 11 fixed, the function

1(11') = 2,,-m+l + 22
"' . 2

clearly has just one minimum. This minimum must therefore lie between
nIl and I1tl + 1, where

i.e.,

or

/(l1tl) = /(l1tl + 1)

2"-"'1+1 + 22"".2 = 2,,-ml + 22"'1+
1.2

2" = 2mt+J(22"'a+l _ 22"")

Now "'1 cannot be an integer since the right-hand side is a power of two
and the second term is less than half the first. It follows that to find the
integer M making f(M) a minimum \ve must take for !at the least integer
satisfying
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Thus M satisfies:

M + 1 + 2M
+

1
~ 11 > M + 2

M (5)

This gives:

,1, ~ 11
11<1tS20
20 < n S 37
37 < n S 70
70 < It ~ 135
etc.

M==2
M = 3
M = 4
M = 5
Al = 6

fI

,,

10986 7
LOG2 n

Fig. 18-Behaviour of g(n).

53

t
St-~-...-;.....r~--I-~-~IJ-4+---,M-\----'Ml---~t--~~---t

~

Our upper bound for >tCtz) behaves something like 2
n

+l with a superimposed
It

saw-tooth oscillation as n varies between powers of t\VO, due to the fact that
lIt must be an integer. If we define g(It) by

M being determined to minimize the function (i.e., M satisfying (5)), then
g(n) varies somewhat as shown in Fig. 18 when plotted against IOg2 11,. The
maxima occur just beyond powers of two, and closer and closer to them
as It~ 00. Also, the saw-tooth shape becomes more and more exact. The
sudden drops occur just after we change from one value of M to the next.
These facts lead to the following:

Tlteorent 6. (a) For all n

2,,+1
~(n) < - .

n

(b) For almost all n

r ~,

X(n) <
n
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(c) There is an infinite sequence of n, for which

2"+1
~(1ti) < - (1 + E)

It

C. E. Shannon

E > O.

These results can be proved rigorously without much difficulty.

e. A Lower Limit for ~(n) with Large 11.

Up to now most of our work has been toward the determination of upper
limits for ~(Il). \Ve have seen that for all n

2"
~(",) < B - .

n

"'c nov' ask whether this function B 2" is anywhere ncar the true value
It

of X(n), or may X(1t) be perhaps dominated by a smaller order of infinity,
e.g., 111'. It was thought for a time, in fact, that ~(n) might be limited by
",2 for all u, arguing Irorn the first few values: 1, 4, 8, 14. \Ve will show that

this is far from the truth, for actually 2
n

is the correct order of magni-
11

tude of ~(1t):

2" 2ft

A - < ~(n) < B-
11 It

for all n, A closely associated question to which a partial answer will be
given is the following: Suppose we define the "complexity" of a given func-
tion f of 11, variables as the ratio of the number of elements in the most
economical realization of j to X(n). Then any function has a complexity
lying between 0 and 1. Are 1110st functions simple or complex?

Theorem 7: For all sufficiently large It, all[unctions of n variables excepting

a fraction ~ require at least. (1 - E) ~ elements, where Eand ~ are arbitrarily
1,·

small positive numbers. II encefor large 11

2"
X(n) > (1 - E) -

n

and almost all [unctions havea cOlltplexity > 1(1 - E). For a certain sequence
n, almost all [unctions havea complexity > ! (1 - E).

The proof of this theorem is rather interesting, for it is a pure existence
proof. We do not show that any particular function or set of functions

requires (1 - E) 2
n

elements, but rather that it is impossible for all functions
11
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to require less. This will be done by showing that there are not enough

networks with less than (1 - E) 2" branches to go around, i.e., to represent
n

all the 22
" functions of 1Jvariables, taking account, of course, of the different

assignments of the variables to the branches of each network. This is only
possible due to the extremely rapid increase of the function 22

" . We require
the following:

Lemma: The number of luio-lerminal netioorks with K or less branches is
less titan (6K) IC.

Any two-terminal network with K or less branches can be constructed
as follows: First line up the K branches as below with the two terminals
a and b.

a.

b.

1-1'
2-2'
3-3'
4-4'

K-K'

We first connect the terminals a, b, 1, 2, · .. ,K together in the desired way.
The number of differenl ways we can do this is certainly limited by the num-
ber of partitions of K + 2 which, in turn, is less than

2K+1

for this is the number of ways we can put one or more division marks between
the symbols a, 1, · .. , K, b. Now, assuming a, 1, 2, · · · , K, b, intercon-
nected in the desired manner, we can connect l' either to one of these ter-
minals or to an additional junction point, i.e., I' has a choice of at most

K+3

terminals, 2' has a choice of at most K + 4, etc. Hence the number of
networks is certainly less than

2"+1([( + 3) (K + 4) (I( 1- 5) ... (2K + 3)

< (6K)1C: K ~ 3

and the theorem is readily verified for K = 1, 2.
We now return to the proof of Theorem 7. The number of functions of n

· hI 1 b 1- d - 1 (1 - E) 2n I · · I I hvana cs t tat can e rea ize with e ements IS certain y css t an
n

the number of networks we can construct with this many branches multi-
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plied by the number of assignments of the variables to the branches, i.e.,
it is less than

[
2"JU- t)(2"''')H = (2n)(1--)(2"''') 6(1 - e) -
It

Hence

2" 2" 2"
logs II = (1 - E) - log 2n + (1 - E) - log (1 - E) - • 6

11, It ",

= (1 - E) 2" + terms dominated by this term for large ft.

By choosing 11so large that i2" dominates the other terms of log II we

arrive at the inequality

log, II < (1 - El) 2"

II < 2(1-f1) 2"

But there are S = 22
" functions of It variables and

Hence almost all functions require more than (1 - El)2"clements.
Now, since Cor an II > N there is at least one function requiring more than

1 2"
(say) - - elements and since X(u) > 0 for 1J > 0, \ve can say that for all n,

2 1t

2"
X(lI) > A -

n

for some constant A > 0, for we need only choose A to be the minimum
number in the finite set:

1
2'

Thus A(Il) is of the order of magnitude of 2" . The other parts of Theorem
11

8 follow easily from what we have already shown,
The writer is of the opinion that almost all functions have a complexity

nearly 1, i.e., > 1 - E. This could be shown at least for an infinite sequence
IIi if the Lemma could be improved to show that the number of networks is
less than (6I{)K/2 for large K. Although several methods have been used
in counting the networks with K branches they all give the result (6/() If .
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It may be of interest to show that for large K the number of networks is
greater than

(6K)JC/4

This may be done by an inversion of the above argument, Letf{[() be the
number of networks with K branches. Now, since there are 22

" functions ~~

11variables and each can be realized with (1 + E) 2n+~ elements (tt sufficiently
1t

large),

f (1 + E) 2::') (2tl)(I+<)(2,,+2/nl > r
1\/4for It large. But assuming f(J() < (6I() reverses the inequality, as

is readily verified. Also, for an infinite sequence of K,

f{K) > (6K)K/2

Since there is no obvious reason why f(K) should be connected with powers
of 2 it seems likely that this is true for all large K.

We may summarize what we have proved concerning the behavior of
2n+1

~(1t) for large 1t as follows. ~(1t) varies somewhat as ._- ; if we let
1t

then, for large It, A" lies between ! - Eand (2 + E), while. for an infinite
sequence of It, ! - E < A" < 1 + E.

We have proved, incidentally, that the new design method cannot, in a
sense, be improved very much. With series-parallel circuits the best known
limit" for X(n) is

A(ll) < 3.2n
-

1 + 2

2"
and almost all functions require (1 - e) 1---- elements.' vVe have lowered

Og2 1l

'It
the order of infinity, dividing by at least 1---- and possibly by It. The

Og2 1t

best that can be done now is to divide by a constant factor =:; 4, and for
some n, S 2. The possibility of a design method which does this seems,
however, quite unlikely. Of course, these remarks apply only to a perfectly
general design method, i.e., one applicable to allY function. Many special
classes of functions can be realized by special methods with a great saving.

* Mr. J. Riordan has pointed out an error in my reasoning in (6) leading to the statement
that this limit is actually reached by the Iunct ion X I E9 X2 EB ... ® X n, and has shown that
this function and its negative can he realized with about 11_2 elements, The error occurs
in Part IV after equation 19 and lies in the assumption that the factorization given is
the best.
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PART II: CONTACT LOAD DISTRIBUTION

appear

times, respectively.

4. FUNDAMENTAL PRINCIPLES

We now consider the question of distributing the spring load on the relays
as evenly as possible or, more generally, according to some preassigned
scherne. It might be thought that an attempt to do this would usually
result in an increase in the total number of elements over the most economi-
cal circuit. This is by no means true; we will show that in many cases (ill
fact, for almost all functions) a great many load distributions may be ob...
tained (including a nearly uniform distribution) while keeping the total
number of elements at the same minimum value. Incidentally this result
has a bearing 011 the behavior of p(l1,), for we may combine this result with

Fig. 19-Disjunctive tree with the contact distribution 1, 3, 3.

2"+1
preceding theorems to show that !-J(II) is of the order of magnitude of -2 as

1J.

11~ 00 and also to get a good evaluation of p(n) for small n,
The problem is rather interesting mathematically, for it involves additive

number theory, a subject with few if any previous applications. Let us
first consider a Iew simple cases. Suppose we are realizing a function with
the tree of Fig. 9. The three variables appear as follows:

IV, X, Y

2,4,8

or) in terms of transfer elements*

1, 2, 4.
Now, W, X, and IT may be interchanged in any way without altering the
operation of the tree. Also we can interchange X and lr in the lower branch
of the tree only without altering its operation. This would give the dis-
tribu tion (Fig. 19)

1, 3, 3

• In this section we shall always speak in terms of transfer elements.
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A tree with four bays can be constructed with any of the following dis-
tributions

\V X Y Z
1, 2, 4, 8 1, 2, 4, + 1, 2, 4
1, 2, 5, 7 1, 2, 4 + 1, 3, 3
1, 2, 6, 6 1, 2, 4 + 1, 4, 2
1, 3, 3, 8 1, 2, 4 + 2, 1, 4
1, 3, 4, 7 1, 3, 3 + 2, 1, 4
1, 3, 5, 6 1, 4, 2 + 2, 1, 4
1, 4, 4, 6 1, 3, 3 + 3, 1, 3
1, 4, 5, 5 1, 4, 2 + 3, 1, 3

and the variables may be interchanged in any manner. The "sums" on the
right show how these distributions are obtained. The first set of numbers
represents the upper half of the tree and the second set the lower half. They
are all reduced to the sum of sets 1, 2, 4 or 1, 3, 3 in some order, and these
sets are obtainable for trees with 3 bays as we already noted. In general it is
clear that if we can obtain the distributions

ai, a2 , a3 , · •• , an

for a tree with It bays then we can obtain the distribution

for a tree with 11, + 1 bays.
Now note that all the distributions shown have the following property:

anyone may be obtained from the first, 1, 2, 4, 8, by moving one or more
units from a larger number to a smaller number, or by a succession of such
operations, without moving any units to the number 1. Thus 1, 3, 3, 8 is
obtained by moving a unit from 4 to 2. The set 1, 4, 5, 5 is obtained by
first moving t\VQ units from the 8 to the 2, then one unit to the 4. Further-
more, every set that may be obtained Irom the set 1, 2, 4, 8 by this process
appears as a possible distribution. This operation is somewhat analogous
to heat flow-heat can only flow from a hotter body to a cooler one just as
units can only be transferred from higher numbers to lower ones in the above.

These considerations suggest that a disjunctive tree with n bays can be
constructed with any load distribution obtained by such a flow from the
initial distribution

1, 2, 4, 8, ... , 2n- 1

We will now show that this is actually the casco
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(6)

First let us make the following definition: The symbol (at, a2 , • • • , an)
represents any set of numbers hi , h2 , • •• , h" that may be obtained from
the set at , a:! , • •• , an by the following operations:

1. Interchange of letters.
2. A flow from a larger number to a smaller one, no flow, however, being

allowed to the number 1. Thus we would write

1, 2, 4, 8 = (1, 2, 4, 8)

4,4, 1,6 = (I, 2,4,8)

1, 3, 10, 3, 10 = (1, 2, 4, 8, 12)

but 2, 2 ¢ (1, 3). It is possible to put the conditions that

b1 , b2 , • •• , bra = (a1 , a2 , ••• , an)

into a more mathematical form. Let the a, and the hi be arranged as non..
decreasing sequences. Then a necessary and sufficient condition for the
relation (6) is that

(1)

(2)

. ,
L: b, ~ L: a, S = 1, 2, · · · , n,
i-I 1

n n

L bi = L a«, and
1 1

(3) There are the same number of 1's among the ai as among the bi •

The necessity of (2) and (3) is obvious. (1) follows from the fact that if
a, is non-decreasing, flow can only occur toward the left in the sequence

ai, a2 , 03 , · .. , a"
•

and the sum L: at can only increase. Also it is easy to see the sufficiency of
1

the condition, for if bl , b2 , • • • , bra satisfies (I), (2), and (3) we can get the
hi by first bringing a. up to hi by a flow from the a, as close as possible to
a. (keeping the "entropy" low by a flow between elements of nearly the
same value), then bringing a2 up to b2 (if necessary) etc. The details
are fairly obvious.

Additive number theory, Of the problem of decomposing a number into the
sum of numbers satisfying certain conditions, (in our case this definition is
generalized to "sets of numbers") enters through the following lemma:

Lemma: If at ,a2 , · · · ,a" = (2,4,8, · .. ,2")
then we can decompose the a, into the sum of two sets

a, = b, + ct

such that

bt btl ••• b = (I 2 4 ... 2,,-1), ., '" '" ,
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and
'1 c· ... c == (1 2 4 ... 2,,-1), 6' ,,, '" ,
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A

We may assume the a, arranged in a non-decreasing sequence, al S at S
aa ~ ... :s; a". In case at == 2 the proof is easy. We have

1, 2, 4, · .. , 2,,-1 B
1, 2, 4, · .. , 2,,-1 C

2,4,8, ... J 2"

and a flow has occurred in the set

4, 8, 16, ... , 2"

to give a2 , a3 , · .. , an. Now any permissible flow in C corresponds to a
permissible flow in either A or n since if

'i = ai + b, > C, = a. + bi

then either ai > a, or b, > b,

Thus at each flow in the sum we can make a corresponding flow in one or the
other of the summands to keep the addition true.

Now suppose al > 2. Since the a, are non-decreasing

(1t - 1) a2 ~ (2,,+1 - 2) - 0.1 ~ 2"+1 - 2 - 3

Hence
2,,+1 - 5

0.2 - 1 < - 1 S 2,,-1
- It - 1

the last inequality being obvious for It ~ 5 and readily verified for It <. 5.
This shows that (0.1 - 1) and (0.2 ~ 1) lie between some powers of two in the
set

1, 2, 4, · · · , 2,,-1
Suppose

2~1 < (al - 1) ~ 20

2P-l < (a2 - 1) ~ a" q ~ p ~ (n - 1).

Allow a flow between 241 and 2,-1 until one of them reaches (0.1 - 1), the
other (say) R; similarly for (a2 - 1) the other reaching S. As the start
toward our decomposition, then, we have the sets (after interchanges)

L
(al - 1) 1 2 4··· 2,-2 R 20+1 ••• 2,,-1 2" 2,,+1 ... 2"-1,
1 a2 - 1 2 4··. 2f1-

2 2,-1 20 ... 2P- 2 S 2P+1 ••• 2,,-1,

al a2 I

L
4,8 ... 29

-
1 2" ...2 • • • 2"



614 C. E. Shannon

We must now adjust the values to the right of L - L to the values
aa , a. , · · · , an. Let us denote the sequence

4 8 ... 2q- 1 (2q-l + R) J·2 q 3·2q+1 ••• (2" + S) 2P+2 ••• 2"" " ", ",
by PI , J.t2, • • • , J.l.n-2. Now since all the rows in the above addition are
non-decreasing to the right of L - L, and no 1's appear, we will have proved
the lemma if we can show that

i = 1 2 ... (n - 2)" ,

since we have shown this to be a sufficient condition that

and the decomposition proof we used for the first part will work. For
i S q - 2, i.e., before the term (2 0- 1 + R)

i

LlJ.i = 4(2
i

- 1)
i-I

and
'+3
" >. > '2P

-
1 > '20

-
1L..J ai _ 'fa2 _ f, _ f,

3

since

Hence

i~q-2

Next, for (q - 1) S {~ (p - 3), i.e., before the term (2P + S)
,

L: Jli = 4(2'-1 - 1) + R + 3·2f(2 i
-

q
f-l - 1)

1

since

R < 2'

also again
,+3
~ a' > i2 P

-
1

.t..", .-
3

so that in this interval we also have the desired inequality. Finally for the
last interval,
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,
~ 2,-1 < 2'+3 2£.J Ili = - aJ - 02 _ - at - 02 -

1

and

since

615

(2 4 8 ... 2"), " ,
This proves the lemma.

5. TIlE DISJUNCTIVE TREE

It is now easy to prove the following:
Theorem 8: A disjunctive free of It bays can be constructed with QlIY dis-

tribution

a a · · · a - (1 2 4 ... 2,,-1)1, 2, ,,, - ", , •

We may prove this by induction. \Ve have seen it to be true for u =
2, 3, 4. Assuming it for 11, it must be true for n + 1 since the lemma shows
that any

al , a2 , · .. , a" = (2, 4, 8, · .. , 2")

can be decomposed into a sum which, by assumption, can be realized for the
t\VO branches of the tree.

It is clear that among the possible distributions

(1, 2, 4, · · · , 2,,-1)

for the tree, an "almost uniform" one can be found for all the variables but
one. That is, we can distribute the load on (", - 1) of them uniformly
except at worst for one element. We get, in fact, for

fI, = 1 1
11, = 2 1,2
11, = 3 1,3,3
11, = 4 1, 4, 5, 5,
11, = 5 1, 7, 7, 8,8,
n = 6 1, 12, 12, 12, 13, 13
It = 7 1, 21, 21, 21, 21, 21, 21
etc.

as nearly uniform distributions.

6. OTIIER DISTRIBUTION PRODLEMS

Now let us consider the problem of load distribution in series-parallel
circuits. \Vc shall prove the following:
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Theorem 9: A Ity function I(X1, X 2, ••• , X n) may be realized with a
series...parallel circuit with the following distribution:

(1, 2, 4, · .. , 2"-2), 2n- 2

itl terms of transfer elements.
This we prove by induction. It is true for 11, = 3, since any function of

three variables can be realized as follows:

f(X, 1', Z) = [X + /1 (V, Z)][X' + /2 (1", Z)]

and /1(17
, Z) and 12(Y, Z) can each be realized with one transfer on Yand

one on Z. Thus I(X, I', Z) can be realized with the distribution 1, 2, 2.
Now assuming the theorem true for (It - 1) we have

(Xl, .t'\2, ••• ,Xn ) = [Xn + 11 (Xl, X" ... , X n- I ) ]

[X: + j2(Xt , X 2 , ••• , X n - 1) ]

and

2, 4, 8, · · · , 2n-3

2, 4, 8, · .. , 2n--3

4, 8, 16, · .. , 2n- 2

A simple application of the lemma thus gives the desired result. Many
distributions beside those given by Theorem 9 arc possible but no simple
criterion has yet been found for describing them. \\TC cannot say any
distribu tion

(1, 2, 4, 8, · · · , 2n- 2
, 2n- 2)

(at least from our analysis) since for example

3, 6, 6, 7 = (2, 4, 8, 8)

cannot be decomposed into two sets

at , a2 , a3 , a. = (1, 2, 4, 4)

and

bl , s, , hi , b. = (1, 2, 4, 4)

It appears, however, that the almost uniform case is admissible.
As a final example in load distribution we will consider the case of a net-

work in which a number of trees in the same variables are to be realized.
A large number of such cases will be found later. The following is fairly
obvious from what we have already proved.
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Theorem 10: It is possible /0 construct m dlffaren! trees ill, lite same n variables
will, lite following distribution:

at, a2, ••• , an = (lit, 2111" 4111., • •• , 2"-I 11Z)

It is interesting to note that undcr these conditions the bothersome 1 disap-
pears for III, > 1. \Vc can equalize the load on all", of the variables, not just
It - 1 of them, to within, at worst, one transfer clement.

7. TIlE FUNCTION IJ(U)

We arc now in a position to study the behavior of the function lJ(u).
This will be done in conjunction with a treatment of the load distributions
possible for the general function of It variables. \Ve have already shown
that any function of three variables can be realized with the distribution

1, 1, 2

n terms of transfer clements, and, consequently J.L(3) < 4.

Any function of four variables can be realized with the distribution

1, 1, (2,4)

Hence 1-6-(4) ~ 6. For five variables we can get the distribution

1, 1, (2, 4, 8)

or alternatively

1, 5, 5, (2, 4)

so that Jl(5) S 10. With six variables we can get

1, 5, 5, (2, 4, 8) and J.L(6) ~ 10

for seven,

1, 5, 5, (2, 4, 8, 16) and p(7) S 16

etc, Also, since we can distribute uniformly on all the variables in a tree
except one, it is possible to give a theorem analogous to Theorem 7 for the
Iunction utu) :

Theorem 11: For all It

For almost all It
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For an ill-tillite number oj 11, ,
2"+1

p(,,) ~ (1 + E) ---
112

The proof is direct and will be omitted,

PART III: SPECIAL FUNCTIONS

8. FUNCTIONAL I{ELATIONS

We have seen that almost all functions require the order of

2"+1

U2

c. E. Shannon

clements per relay for their realization. Yet a little experience with the
circuits encountered in practice shows that this figure is much too large.
In a sender, for example, where many functions arc realized, S0J11C of them
involving a large number of variables, the relays carry an average of perhaps
7 or 8 contacts. In fact, almost all relays encountered in practice have less
than 20 clements, What is the reason for this paradox? The answer, of
course, is that the functions encountered in practice are far from being a
random selection. Again we have an analogue with transcendental numbers
-although almost all numbers are transcendental, the chance of first en-
countering a transcendental number on opening a mathematics book at
random is certainly much less than 1. The functions actually encountered
arc simpler than the general run of Boolean functions for at least t\VO major
reasons:

(1) A circuit designer has considerable freedom in the choice of functions
to be realized in a given design problem, and can often choose fairly simple
ones. For example, in designing translation circuits for telephone work it is
common to usc additive codes and also codes in which the same number of
relays arc operated for each possible digit. The fundamental logical simplic-
ity of these codes reflects in a simplicity of the circuits necessary to handle
them,

(2) Most of the things required of relay circuits arc of a logically simple
nature. The most important aspect of this simplicity is that 1110st circuits
can be broken down into a large number of small circuits. In place of
realizing a function of a large number of variables, we realize many functions,
each of a small number of variables, and then perhaps S01l1C function of these
functions. To get an idea of the effectiveness of this consider the following
example: Suppose we arc to realize a function
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of 211 variables. The best limit we can pu t on the total number of elements
22n+1

necessary is about -2-' I-Iowever, if we know that I is a function of two
It

functions It and 12 , each involving only 1t of the variables, i.e. if

!2 = !2(Xn+1 , X n+2, ... , X 2n)

then we can realizef with about

2"+1
4 · -

1t

22ra+1

elements, a much lower order of infinity than -2-' If g is one of the simpler
It

functions of two variables; for example if g{ft ,!2) = 11 +I;, or in any case
at the cost of two additional relays, we can do still better and realize f with

2"+1
about 2-- elements. In general, the more we can decompose a synthesis

n
problem into a combination of simple problems, the simpler the final circuits.
The significant point here is that, due to the fact that f satisfies a certain
functional relation

we can find a simple circuit for it compared to the average {unction of the
same number of variables.

This type of functional relation may be called functional separability. It
is often easily detected in the circuit requirements and can always be used
to reduce the limits on the number of elements required. We will now show
that most functions are not functionally separable.

Theorem 12.' The fraction of all [unctions of 11, variables that can be toriuen
in thef orm

f = g(h(X l •• • X.), X,+l , · .. , X n )

where 1 < s < It - 1 approaches zero as ", approaches 00.

We can select the s variables to appear in h in (:) ways; the function h

then has 22
' possibilities and g has 22

" - ' +1possibilities, since it has", - s + 1
arguments. The total number of functionally separable functions is there-
fore dominated by
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2

~ (n - 3)~ it 22"- 1

and the ratio of th is to 2
2
" --+ 0 as n --+ 00.

Fig. 2Q-Use of separability to reduce number of clements.

Fig. 21-Use of separability of two sets of variables.

c. E. Shannon

In case such a functional separability occurs, the general design method
described above can be used to advantage in many cases. This is typified
by the circuit of Fig, 20. If the separability is more extensive, e.g,

the circuit of Fig. 21 can be used, using for "1t2" either hi or It'}, J whichever
requires the least number of elements for realization together with its
negative.

We will now consider a second type of functional relation which often
occurs in practice and aids in economical realization. This type of relation
may be called group invariance and a special case of it, functions symmetric
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S2,l,:i, .. . ,ft

Sa.2.1,4, ...•n =

in all variables, has been considered in (6). A function f(X 1 , ••• , X,,)
will be said to be symmetric in Xl, X 2 if it satisfies the relation

It is symmetric in Xl and X'2 if it satisfies the equation

f(X 1 , X 2 , ••• , X n ) = f(X~ , X: , X 3 , ••• , X n )

These also arc special cases of the type of functional relationships we will
consider. Let us denote by
N oo • • • 0 = I the operation of leaving the variables in a function as they

arc,
N 100 • • • 0 the operation of negating the first variable (i.e, the one occupy-

ing the first position),
lVo l o • • • 0 that of negating the second variable,
N 110 ••• (I that of ncgating the first two, etc.
So that l'Tlot/(~y, ]1', Z) = !(X'lJ'Z') etc.

The symbols N i Iorm an abelian group, with the important property that
each element is its own inverse j Ni Ni. = I The product of t\VO clements
may be easily found - if LV. LVj = N I: , k is the number found by adding i
and j as though they were numbers in the base t\VO bu t toithou; carrying.

Note that there are 2" elements to this "negating" group. Now let
S1.2.3 .... .n = I = the operation of leaving the variables of a function in the

same order
be that of interchanging the first t\VO variables
that of inverting the order of the first three, etc.

Thus

S312!(X, r, Z) = f(Z, X, II')

S312!(Z, X, }J') = S~12f(X, IT, Z) = j(lT, Z, X)

etc. The S, also form a group, the famous "substitution" or "symmetric"
group. It is of order n!. It does not, however, have the simple properties
of the negating group-it is not abelean (n > 2) nor does it have the self
inverse properly.* The negating group is not cyclic if n > 2, the symmetric
group is not if It > 3.

The outer product of these two groups forms a group G whose general
element is of the form N i S, and since i may assume 2" values andj, ",! values,
the order of G is 2"",!

It is easily seen that Sj N i = N k Sj, where k may be obtained by per-

• This is redundant; the self inverse property implies commutativity for if XX ::I I
then XY == (Xy)-l s= y-lX-1 == Y,.,Y'.
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forming on i, considered as an ordered sequence of zero's and one's, the
permutation s.. Thus

SU 14NllOO = NIOIOS2J14.

By this rule any product such as N,SjN"N, Sm N"Sp can be reduced to the
form

N,Nj ... N"SPS9 ... S,.

and this can then be reduced to the standard form NiSj •

A function/will be said to have a non-trivial group invariance if there arc
clements NiSi of G other than I such that identically in all variables

n.s, ( = f.
It is evident that the set of all such elements, N iS, , for a given function,
forms a subgroup G. of G, since the product of two such clements is an ele-
ment, the inverse of such an element is an element, and all functions arc
invariant under I.

A group operator leaving a function I invariant implies certain equalities
among the terms appearing in the expanded form of /. To show this,
consider a fixed NiSj, which changes in some way the variables (say)
Xl, X 2 , ••• , X,.. Let the function f(X 1 , ••• , X,,) be expanded
about Xl, ... , X,.:

= [Xl + X 2 + + X,. + !1(Xr+1 , ••• , X,,)]

[X~ + X2 + + X, + !2(X,.+1 , · ~. , X,,)]

[X~ + X~ + ... + X~ + !2r(Xr+1 , .. · J X,,)]

If f satisfies NiSi! = ! we will show that there are at least 12" equalities
between the functions 11 , /2 J • •• ,/2r. Thus the number of functions
satisfying this relation is

since each independent [« can be any of just 22'11 - ' functions, and there are
at most i 2r independent ones. Suppose NiSj changes

into

X• X· x·fll' flJ , • •• , fir

where the ·'s may be either primes or non primes, but no X:i = Xi .

A

B

Give
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X 1 the value o. This fixes some element in B namely, XtJt where a, = 1.
There are two cases:
(1) If this element is the first term, at = 1, then wc have

OX2 , ••• ,Xr

lXtJ1 , ••• , X
tJ r

Letting X 2 , • •• , X, range through their 2r
-

1 possible sets of values gives
2r

-
1 equalities between different functions of the set ji since these arc

really

f(X 1 , X2 , • •• , X r t X r+l , • •• , X PI)

with Xl , X 2 , • •• , X, fixed at a definite set of values.
(2) If the element in question is another tenn, sal ~Y1J2 , we then give X 2

in line A the opposite value, X 2 = (x:2) , = (X 2 )'. Now proceeding as
before with the remaining r - 2 variables we establish 2r

-
2 equalities between

the Ii ·
Now there are not more* than 2"lt! relations

of the group invariant type that a function could satisfy, so that the number
of functions satisfying any non-trivial relation

~ 2" u,! 212".

Since

as 1t ~ 00

we have:
Theorem 13: Almost all [unctions have no non-trivial group iuvariance.
It appears from Theorems 12 and 13 and from other results that almost all

functions are of an extremely chaotic nature, exhibiting no symmetries or
functional relations of any kind. This result might be anticipated from the
fact that such relations generally lead to a considerable reduction in the
number of elements required, and we have seen that almost all functions are
fairly high in "complexity",

If we are synthesizing a function by the disjunctive tree method and the
function has a group invariance involving the variables

X1,X2,···,Xr

at least 2r
-

2 of the terminals in the corresponding tree can be connected to

• Our factor is really less than this because. first, we must exclude N,Si = 1; and second,
except for self inverse elements, one relation of this type implies others, viz. the powers
(N,Si)"! =r f.
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other ones) since at least this many equalities exist between the functions to
be joined to these terminals. This will, in general, produce a considerable
reduction in the contact requirements on the remaining variables. Also an
economy call usually be achieved in the M network, In order to apply this

•• •
INDEPENDENT

OF X,V
V'

(31 (4)

Fig. 22-Networks for group invariance in two variables.

~
(8)

(7)

~y

(3)
Z

Fig. 23-Networks for group invarlance in three variables.

method of design, however) it is essential that \VC have a method of deter-
mining which, if any, of the N, S, leave a function unchanged. The
following theorem, although not all that might be hoped for, shows that we
don't need to evaluate NiSi! for all NcS, but only the N i] and Sil·

Theorem 14: A necessary and sufficient condition that N iSj! = f is that
N i! = Si].

This follows immediately from the self inverse property of the N i. Of
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course, group invariance can often be recognized directly from circuit rc...
quirernents in a design problem.

Tables I and II have been constructed for cases where a relation exists
involving two or three variables. To illustrate their usc, suppose we have
a function such that

NulSau ! = f

-e::=:::
-. ----------~..__..~

Fig. 24-M network for partially symmetric functions.

The corresponding entry Z'Y'X in the group table refers us to circuit 9 of
Fig. 23. The asterisk shows that the circuit may be used directly; if there
is no asterisk an interchange of variables is required. We expand f about
X, Y, Z and only two different functions will appear in the factors. These
two functions arc realized with two trees extending from the terminals of the
network 9. Any such function! can be realized with (using just one variable
in the N network)

9 + 2(2"-4 - 2) + 2

elements,
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a much better limit than the corresponding

2"-1 + 18

for the general function.

C. E. Shannon

l'ADLE I
GROUP INVARIANCE INVOLVING Two VARIABLES (SUl'ERSCRIPTS !{EFER TO FIG. 22)

SII S21
«: (x y) (y x),·
No 1 (x y')2. (y x')'·
N lO (x'y)' (y'X)3*
N u (X'y')4 (y'x')'

TABLE II
GROUP INVARIANCt: INVOI.VING TIIR.:1~ VARIAIlLES (SUI'I~RSCRII'TS n.EFER TO FIG. 23)

S12. SIS2 S21S S2al Sa'2 S'21
Noaa .i'Y]'Z ...YZV 1 l'...YZ.* )'Z..\ 2* ZXI" 2* Zl'X:
Hoo l XYZ' 3* XZIN .* l'XZ' 7 }'ZX'1t zxr' 9 ZYX' 4

Nolo X]"Z 3 XZ'l'.* l'X'Z" I'Z'X 9 ZX'I" S) ZJ"X 7

s,; ..l{}"Z'6 XZ'l"1 )'X'Z'I )'Z'X'2 ZX'),·'2 Zl"X'.
Nino X'JTZ' X'ZIT7. J"XZ· j"'ZX' Z'X}' II Z'YX.
N 101 X'YZ'. )('ZI" '* )")(Z'I* l"'ZX':I Z'X),·':I Z'l'X'l
N u £» X'V'Z.* .i'\,'Z']' '* l"X'Z I )"Z'X 2 Z'X'}':I Z'Y'X.·
NI Il X')"'Z' 6 X'Z'}" 7 Y'X'Z' 7 l"Z'X' 9 Z'X'11'l' Z'l"X' 7

9. PARTIALLY SYMMETRIC FUNCTIONS

We will say that a function is "partially symmetric" or "symmetric in a
certain set of variables" if these variables may be interchanged at will
without altering the function. Thus

XITZll' + (Xl}" + X'Y)lV + lVZ'

is symmetric in X and Y. Partial symmetry is evidently a special case of
the general group invariance we have been considering. It is known that
any function symmetric in all variables can be realized with not more than
11-2 elements, where It is the number of variables." In this section we will
improve and generalize this result.

Theorem 15: A uy junction J(X1 , X 2 , • • • , Xm, }"1, }T2 , • •• }Tn) sym-
metric in Xl, X 2 , • •• , X m can be written

I(X1 , X 2 , • • • , X m , ]T1 , l'~2 , • • • , ]Tn)

[So(Xl, X2 , • • • , X m) + f o(]'1 , ]T2 , • • • , ]'n»).

[Sl(X 1 , X 2 , ••• ,Xm ) + !1(1'1, IT2 , ••• , V n ) ] .

where

f K (Y 1 , 1"2 , • • • , II'n)

=/(0,0, ... ,0,1,1, ···,1, Y 1 , ]1'2, ••• , Y n )

kO's (m-k)l's



The Synthesis of Two-Terminal Switching Circuits 627

and Sk(X 1 , X 2 , • • • , X m) is the symmetric function of XI , X 2 J • • • , X ft

w£tlt k fer .ts ouly a-number.
This theorem follows from the fact that since! is symmetric in Xl, X 2 ,

· .. , X m the value of f depends only 011 the number of X's that are zero and
the values of the ]T'S. If exactly K of the X's arc zero the value of ! is
therefore f K , but the right-hand side of (6) reduces to f /( in this case, since
then Sj(K! , X 2 , ••• , X m) = 1,j ~ K, and SK = o.

The expansion (6) is of a form suitable for our design method. We can
realize the disjunctive functions SI\(X1 , X 2 , • •• , X n ) with the symmetric
function lattice and continue with the general tree network as in Fig. 24,
one tree Irom each level of the symmetric function network. Stopping the
trees at }'n-l t it is clear that the entire network is disjunctive and a second
application of Theorem 1 allows us to complete the function! with two cle-
ments from ]Tn' 'Thus we have

Theorem 16. A fly [unction of In + It variables symmetric ill, fit of them can
be realized with not more than the smaller of

(Ill. + l)(:\(u) + fit) or (l1t + 1)(2 n + 11" - 2) + 2

elements. lit particular a function of It variables symmetric ill, fI, - 2 or more
of them can be realizedwillI not more titan

112 - n + 2

elements.
If the function is symmetric in Xl, X 2, • •• ,Xm , and also in Y 1 , ]T2, • • • ,

Y r , and not in Zl , Z2, ." , Z; it may be realized by the same method,
using symmetric function networks in place of trees for the I" variables.
It should be expanded first about the X's (assuming l1t < r) then about the
Y's and finally the Z's. The Z part will be a set of (111+ 1)(r + 1) trees.
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A Simplified Derivation of Linear Least Square
Smoothing and Prediction 'Theory"

H. W. BODEt, SENIOR MEMBER, IRE, AND C. E. SHANNONf, FELLOW, IRE

Fig. I-The smoothing and prediction problem.

future, say a seconds from now, or to what it was in the
past, a seconds ago. In these cases we wish to approxi-
mate s(t+a) with a positive or negative, respectively.
The situation is indicated schematically in Fig. 1; the
problem is that of filling the box marked "?"

It wiIJ be seen that this problem and its generaliza
tions are of wide application, not only in communicatioi
theory, but also in such diverse fields as economic pre
diction, weather forecasting, gunnery, statistics, and th
like.

The Wiener- Kolmogoroff theory rests on three rnai
assumptions which determine the range of application (
the results. These assumptions are:

1. The time series represented by the signal set) an
the noise net) are stationary. This means essentially tha
the statistical properties of the signal and of the nois
do not change with time. The theory cannot properl
be applied, for example, to long-term economic effect:
since the statistics of, say, the stock market were not th
same in 1850 as they are today.

2. The criterion of error of approximation is taken t
be the mean-square discrepancy between the actual ou1

put and the desired output. In Fig. 1 this means that w
fill the box" 7" in such a way as to minimize the mear
square error [get) -s(t+a)J2, the average being take
over all possible signal and noise functions with eac
weighted according to its probability of occurreno
This is called the ensemble average.

3. The operation to be used for prediction and smootl
ing is assumed to be a linear operation on the availabl
information, or, in communication terms, the box is t
be filled with a linear, physically realizable, filter. Th
available information consists of the past history of th
perturbed signal, i.e., the function f(t) with t ~ t1, whet
tl is the present time. A linear, physically realizable filn
performs a linear operation on f(t) over just this rang.
as we will see later in connection with equations (3) an
(4).

The theory may therefore be described as linear tea
square prediction and smoothing of stationary time serie
I t should be clearly realized that the theory applies on]
when these three assumptions are satisfied, or at lear
are approximately satisfied. If anyone of the conditior
is changed or eliminated, the prediction and smoothin
problem becomes very difficult mathematically, and Ii

Summary-The central results of the Wiener-KolJDolorol
smoothinl and prediction theory for stationary time serles are de-
veloped by a new method. The approach is motivated by physical
considerations based on electric circuit theol'J and does not involve
integral equatioDs or the autocorrelation function. The cases treated
are the "inftnite lag" smoothinl problem, the case of pure prediction
(without noise), and the general smoothinl prediction problem.
Finally, the basic assumptioDs of the theory are discussed in order to
clarify the question of when the theory wUI be appropriate, and to
avoid possible mlsappUcation.

I. INTRODUCTION

I N A CLASSIC REPORT written for the National
Defense Research Council, I Wiener has developed a
mathematical theory of smoothing and prediction of

considerable importance in communication theory. A
similar theory was independently developed by Kol-
rnogoroff" at abou t the same time. Unfortunately the
work of Kolmogoroff and· Wiener involves some rather
formidable mathematics-Wiener's yellow-bound re-
port soon came to be known among bewildered engi-
neers as "The Yellow Peril "-and this has prevented the
wide circulation and use that the theory deserves. In
this paper the chief results of smoothing theory will be
developed by a new method which, while not as rigorous
or general as the methods of Wiener and Kolmogoroff,
has the advantage of greater simplicity, particularly for
readers with a background of electric circuit theory. The
mathematical steps in the present derivation have, for
the most part, a direct physical interpretation, which
enables one to see intuitively what the mathematics is
doing.

I I. THE PROBLEM AND BASIC ASSUMPTIONS

The main problem to be considered may be formu-
lated as follows. We are given a perturbed signal f(t)
which is the sum of a true signal s(t), and a perturbing.
noise net)

f(t) = s(t) + n(t).

It is desired to operate on jet) in such a way as to obtain,
as well as possible, the true signal s(t). More generally,
one may wish to combine this smoothing operation with
prediction, i.e., to operate onj(t) in such a way as to ob-
tain a good approximation to what set) will be in the

• Decimal classification: 510. Original manuscript received by
the Institute. July 13,1949; revised manuscript received. January 17,
1950.

t Bell Telephone Laboratories, Inc., Murray Hill, N. J.
I N. Wiener, "The Interpolation, Extrapolation, and Smoothing

of Stationary Time Series," National Defense Research Committee;
reprinted as a book, together with two expository papers by N. Levin-
son, published by John Wiley and Sons, Inc., New York, N. Y., 1949.

t A. Kolm~orotr, "Interpolation und Extrapolation von Sta-
tionaren Zufllhgen Folgen," Bull. Acad. Sci. (URSS) ~r. Math. 5,
pp. 3-14; 1941.
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for the total response at ts.

(3)

(2)

(1)

_~l\(t)

PRESENT TIME

y(w)-
IMPULSE'
INPUT.L

Fig. 3-Response to an arbitrary input as a sum
of impulsive responses.

duce a responsef(t)dt Ketl-t) at any subsequent time tl.
Upon adding together the contributions of all the slices
we have the well-known formula

INPUT= fct>

Fig. 2-Impulsive response of a network.

of the filter to any artibrary inputf(t). It is merely nec-
essary to divide the input wave into a large number or
thin vertical slices, as shown by Fig. 3. Each slice can be
regarded as an impulse of strengthf(t)dt, which will pro-

Then Yew) is the direct Fourier transform of K(t)

pure sine wave of frequency WI and amplitude I Y(Wl) IE.
The phase of the output is advanced by the angle of
Y(Wl), the phase of the filter at this frequency. It is fre-
quently convenient to write the complex transfer func-
tion Y(w) in the form Yew)= eA(fo)} eUJ(w) where A (co) = log
IYew) I is the gain, and B(w) =angle [Y(w)] is the phase.
Since we will assume that the filter can contain an ideal
amplifier as well as passive elements, we can add any
constant to A to make the absolute level of the gain as
high as we please.

The second characterization of a filter is in terms of
time functions. Let K(t) be the inverse Fourier trans-
form of Yew)

1 fOOK(t) = - Y(w)etfIJtdw.
211" -00

Knowledge of K(t) is completely equivalent to knowl-
edge of Y(w); either of these may be calculated if the
other is known.

The time function K(t) is equal to the output ob-
tained from the filter in response to a unit impulse im-
pressed upon its input at time t=O, as illustrated by Fig.
2. From this relation we can readily obtain the response

I I I. PROPERTIES OF LINEAR FILTERS

In this section, a number of well-known results con-
cerning filters will be summarized for easy reference. A
linear filter can be characterized in two different but
equivalent ways. The first and most common descrip-
tion is in terms of the complex transfer function Yew).
If a pure sine wave of angular frequency WI and ampli-
tude E is used as input to the filter, the output is also a

de is known about usable explicit solutions. Some of the
limitations imposed by these assumptions \\,iII be dis-
cussed later.

How is it possible to predict at all the future behavior
of a function when all that is known is a perturbed ver-
sion of its past history? This question is closely asso-
ciated with the problems of causality and induction in
philosophy and with the significance of physical laws. In
general, physical prediction depends basically on an as-
sumption that regularities which have been observed in
the past will obtain in the future. This assumption can
never be proved deductively, i.e., by purely mathemati-
cal argument, since we can easily conceive mathematical
universes in which the assumption fails. Neither can it
be established inductively, i.e., by a generalization from
experiments, for this very generalization would assume
the proposition we were attempting to establish. The
assumption can be regarded only as a central postulate
of physics.

Classical physics attempted to reduce the physical
world to a set of strict causal laws. The future behavior
of a physical system is then exactly predictable from a
knowledge of its past history, and in fact all that is re-
quired is a knowledge of the present state of the system.
Modern quantum physics has forced us to abandon this
view as untenable. The laws of physics are now believed
to be only statistical laws, and the only predictions are
statistical predictions. The "exact" laws of classical
physics are subject to uncertainties which are small
when the objects involved are large, but are relatively
large for objects on the atomic scale.

Linear least square smoothing and prediction theory
is based on statistical prediction. The basic assumption
that statistical regularities of the past will hold in the
future appears in the mathematics as the assumption
that the signal and noise are stationary time series. This
implies, for example, that a statistical parameter of the
signal averaged over the past will give the same value as
this parameter averaged over the future.

The prediction depends essentially on the existence of
correlations between the future value of the signal
stt, +a) where tl is the present time, and the known
data f(t) = set)+net) for t ~ t1• The assumption that the
prediction is to be done by a linear operation implies
that the only type of correlation that can be used is
linear correlation, i.e., S(tl+a) f(t). If this correlation
were zero for all t ~ ti, no significant linear prediction
would be possible, as will appear later. The best mean-
square estimate of S(tl +a) would then be zero.
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(7)

The requirements of physical realizability lead to the
well-known loss-phase relations. For a given gain
A =log I Y(w) I satisfying (5), there is a minimum pos-
sible phase characteristic. This phase is given by

IIJ'(w) (2
(w - al)(W - al)(w a2)(w - (2) • • •

= k2 - - - - - - - - - - - - _

(w - (jl) (w - PI) (w - (j2) (w - P2) ·

(6)

(8)
(w - al)(W - a2) · · ·

k---------
(w - (3t)(W - ~2) • • ·

Yew)

2WOf 00 A{w) - A (wo)
B(wo) = - di»,

1(' 0 w2 - wo2

where ai, a2 . . . (j1J 131 . . . all have imaginary parts
>0. That is, these are the roots and poles of IYew) It in
the upper-half plane and the conjugate terms are the
corresponding roots and poles in the lower-half plane.
The minimum phase network then has the transfer
function

If the square of the prescribed gain IY(w) /2= Yew)
Yew) is a rational function of w, say, PI(w)/Pt(w) where
PI(w) and P 2(w) are polynomials, the minimum phase
characteristic can be found as follows: Calculate the
roots of PI(w) and PI(w) and write / Yew) 12 as

For the study of smoothing theory, (3) can conven-
iently be replaced by a slightly different expression. Set-
tingT=tl-t, we have

In this formulation, T stands for the age of the data, so
that JOI - T) represents the value of the input wave T

seconds ago. K(r) is a function like the impulsive ad-
mittance, but projecting into the past rather than the
future, as shown by Fig. 4. It is evidently a weighting
function by which the voltage inputs in the past must
be multiplied to determine their contributions to the
presen t ou tpu t.

Criteria for physical realizability can be given in
terms of either the K function or Y. In terms of the im-
pulsive response K(t), it is necessary that K (t) be zero
for t <0; that is, the network cannot respond to an im-
pulse before the impulse arrives. Furthermore, K(t)
must approach zero (with reasonable rapidity) as
t-++ 00. Thus the effect of an impulse at the present
time should eventually die out.

,
INPUl =f

~ ----===--==-~

K (-cJ PRE SENT INSTANT

(9)e(t) = set + a) - get)

IV. GENERAL EXPRESSION FOR THE MEAN·

SQUARE ERROR

Suppose we use for the predicting-smoothing filter in
Fig. 1 a filter with transfer characteristic Yew). What is
the mean-square error in the prediction? Since different
frequencies are incoherent, we can calculate the average
power in the error function

(5)fo" log IYew) I dw

1 + w2

is a finite number.

• Including the point at infinity. Actual physical networks will,
of course, always have zero gain at infinite frequency, and the above
requirement shows that the approach to zero c~nnot ~e too rapid. An C If the original function has a zero at infinity, so that the re-
app.roach of the type w- (6n db per octave) IS possible but ,-I-lor quired inverse has a pole there, there are complications, but an
,~'causes the integral in (5) to diverge and is physically unrealizable. adequate approximation can be obtained in physical cases.

Fig. 4-Response as a weighted average of the past input. A nlinir~lu~ phase n~twork has the impo~tant prop-
erty that Its Inverse, with the transfer function Y-I(W) ,

These requirements are also meaningful in terms of is also physically realizable." If we pass a signal f(t)
the interpretation of K as a weighting function. Thus, through the filter Yew), we can recover it in its original
the filter cannot apply a weighting to parts of the input form by passing it through the inverse filter. Moreover,
that have yet to occur; hence, K(r) = 0 for T <0. Also the recovery takes place without loss of time. On the
the effect of the very remote past should gradually die other hand, there is no physically realizable exact in-
out, so that K(1') should approach zero as r--' 00. I t may verse for a nonrninimum phase network. The best 'wecan
also be noted that these conditions are also sufficient for do is to provide a structure which has all the properties
physical realizability in the sense that any impulsive re- of the theoretical inverse, except for an extra phase Jag.
sponse K(t) satisfying them can be approximated as The extra phase lag can be equalized to give a constant
closely as desired with a passive lumped element net- delay by the addition of a suitable phase equalizer, but
work, together with a single amplifier. it cannot be eliminated. Thus, if 'we transmit a signal

In terms of frequency response, the principal condi- through a nonminimum network, we can recover it only
tion for physical realizability is that Y(w) , considered as after a delay; that is, we obtain f(t -ex) for some posi-
a function of the complex variable w, must be an analyt- tive a.
ic function in the half plane defined by Imtt») <0. In
addition, the function must behave on the real fre-
quency axis! in such a way that
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by adding the contributions due to different frequencies.
Consider the com ponen ts of the signal and noise of a
particular frequency Wl. I t will be assumed that the sig-
nal and noise are incoherent at all frequencies. Then, at
frequency Wl there will be a contribution to the error due
to noise equal to N(wl) I Y(Wl) 12, where N(w}) is the av-
erage noise power at that frequency WI'

There is also a contribution to the error due to the
failure of components of the signal, after passing through
the filter, to be correct. A component of frequency w\
should be advanced in phase by aWl, and the amplitude
of the output should be that of the input. Hence there
will be a power error

that Yew) must be a physically realizable transfer func-
tion. We will first solve the problem with this constraint
waived and then from this solution construct the best
physically realizable filter.

Waiving the condition of physical realizability is
equivalent to admitting any Y(w), or, equivalently, any
impulsive response K(t). Thus, K(t) is not necessarily
zero for t<O, and we are allowing a weighting function
to be applied to both the past and future of f(t). In
other words. we assume that the entire function f(t)
= s(t) +n(t) from t = - 00 to t = + 00 is available for use
in prediction.

In (12), suppose

(10) Y(w) = C(w)elB(w) (13)

where pew}) is the power in the signal at frequency WI.

The total mean-square error due to components of
frequency WI is the sum of these two errors, or

E(,Jl = t Y(Wl) 12N(Wl) + IY(Wt) - eiaCiI12p(Wt),

(11)

with C(w) and B(w) real. Then (12) becornes

E = f_: (C2N

+ P(C 2 + 1 - 2C cos (aw - B»]dw (14)

(18)

(16)

(15)

P J2 PN)
...,IP+N +P+N duJ.

(17)

C(w) P_<_6J)__
pew) + N(w)

pew)
Y(w) - -P-(w-)-+-N-(w-) e

i a w
•

Completing the square in C by adding and subtracting
P'/(P+N) we obtain

E = f_: [C2(P + N) - 2PC

p2 p2 J
+-P-+-N-- P+N +P dw

The bracketed term is the square of a real nurn ber, and
therefore positive or zero. Clearly, to minimize E we
choose C to make this term everywhere zero, thus

or

where C(w), N(w), and the like are written as C, N, and
so forth, for short. Clearly, the best choice of B(w) is
B(w) =aw since this maximizes cos (aw-B(w)). Then
(14) becomes

and

(12)

E = f_: [I Y(w) 1
2N (w)

+ IY(w) - ei a w
1
2p (w) ]dw.

The problem is to minimize E by proper choice of Y(W) ,
remembering that Y(w) must be physically realizable.

Several important conclusions can be drawn merely
from an inspection of (12). The only way in which the
signal and noise enter this equation is through their
power spectra. Hence, the only statistics of the signal
and noise that are needed to solve the problem are these
spectra. Two different types of signal with the same
spectrum will lead to the same optimal prediction filter
and to the same mean-square error. For example, if the
signal is speech it will be predicted by the same filter as
would be used for prediction of a thermal noise which
has been passed through a filter to give it the same
power spectrum as speech.

Speaking somewhat loosely, this means that a linear
filter can make use only of statistical data pertaining to
the amplitudes of the different frequency components;
the statistics of the relative phase angles of these com-
ponents cannot be used. Only by going to nonlinear pre-
diction can such statistical effects be used to improve
the prediction.

It is also clear that in the linear least square problem
we can, if we choose, replace the signal and noise by any
desired time series which have the same power spectra.
This will not change the optimal filter or the mean square
error in any way.

V. THE PURE SMOOTHING PROBLEM

The chief difficulty in minimizing (12) for the mean-
square error lies in properly introducing the condition With this choice of Y(w) the mean square error will be,

and the total mean-square error for all frequencies is
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(21)

The best weighting function is given by the inverse
Fourier transform of (18)

-waf CIO log pew) - log P(wo)
B(wo) = -- de,

7r 0 w2 - wo2

Furthermore, this minimum phase network has a phys-
ically realizable inverse.

We have now reduced the problem to the form shown

C'\C>ec;p
srt) =SUU OF

INDIVIDUAL

RESPONSES KCf}'

ACTUAL
SIGNAL
set)

yew)-

R[S'STAN~[ ~HOISE V(W)

h<tl

GAIN = "P(GJ)

UINIUUU PHASE

Fig. 5-Construction of actual signal spectrum

from resistance noise.

" ,
SERIES or
IMPULSES

in Fig. 5. What is actually available is the function s(t)
up to t =o. However, this is equivalent to a knowledge of
the resistance noise h(t) up to t =0, since the filter Y has
a physically realizable inverse and we can pass the avail-
able function set) through the inverse y-I to obtain h(t).

The problem, therefore, is equivalent to asking what
is the best operation to apply to h(t) in order to approxi-
mate s(t+a) in the least square sense? The question is
easily answered. A resistance noise can be though t of as
made up of a large number of closely spaced and very
short impulses, as indicated in Fig. 6. The impulses have
a Gaussian distribution of amplitudes and are statis-
tically independent of each other. Each of these im-
pulses entering the filter Y produces an output corre-
sponding to the impulsive response of the filter, as
shown at the right of Fig. 6, and the signal set) is the sum
of these elementary responses.

Fig. 6-Result of resistance noise input.

What is known is h(t) up to the present; that is, we
know effectively the impulses up to t = 0 and nothing
about those after t = 0; these have not yet occurred. The
future signal s(t+a) is thus made up of two parts; the
tails of responses due to impulses that have already oc-
curred, and a part due to impulses which will occur be-
tween the present time and time t =a. The first part is
completely predictable, while the second part is entirely
unpredictable, being statistically independent of our
available information at the present time.

The total result of the first part can be obtained by
constructing a filter whose impulsive response is the tail
of the impulsive response of filter Y moved ahead a sec-
onds. This is shown in Fig. 7 where K 1(t ) is the new im-
pulsive response and K(t) the old one. The new filter re-
sponds to an impulse entering now as the filter Y will
respond in a seconds. It responds to an impulse that
entered one second ago as Y will respond in a seconds to
one that entered it one second ago. In short, if h(t) is
used as input to this new filter Y1, the output now will be
the predictable part of the future response of Y to the
same input ex seconds from now.

The second, or unpredictable part of the future re-
sponse, corresponding to impulses yet to occur, cannot,

(20)

(19)
P(w)N(w)

-------dw.
P(w) + N(w)

E = fOCI
-00

1 J10 P(w)K(t) = - eiw(l+a)dw.
21r -00 P(w) + N(lJ))

from (17),

This K(t) will, in general, extend from t= - ex> to
t =+ ex>. It does not represent the impulsive response of
a physical filter. However, it is a perfectly good weight-
ing function. If we could wait until all the function
s(t) +n(t) is available, it would be the proper one to ap-
ply in estimating s(t+a).

To put the question in another way, the weighting
K(T) can be obtained in a physical filter if sufficient de-
lay is allowed so that K(T) is substantially zero for the
future. Thus we have solved here the "infinite Jag"
smoothing problem. Although Yew) in (18) is nonphysi-
cal, Y(w)e-/#w will be physical, or nearly so, if ~ is taken
sufficiently large.

VI. THE PURE PREDICTION PROBLEM

We will now consider another special case, that in
which there is no perturbing noise. The problem is then
one of pure prediction. What is the best estimate of
s(t+a) when we know s(t) from t = - ex> up to t =O?

We have seen that the solution will depend only on
the power spectra of the signal and noise, and since we
are now assuming the noise to be identically zero, the
solution depends only on the power spectrum pew) of
the signal. This being the case, we may replace the ac-
tual signal by any other having the same spectrum. The
solution of the best predicting filter will be the same for
the al tered problem as for the original problem.

Any desired spectrum P(w) can be obtained by pass-
ing wide-band resistance noise or "white" noise through
a shaping filter whose gain characteristic is vP(w). The
spectrum of resistance noise is flat (at least out to fre-
quencies higher than any of importance in comrnunica-
tion work), and the filter merely multiplies this constant
spectrum by the square of the filter gain pew). The phase
characteristic of the filter can be chosen in any way con-
sistent with the conditions of physical realizability. Let
us choose the phase characteristic so that the filter is
minimum phase for the gain VP(w). Then the filter has
a phase characteristic gi yen by
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Let the transfer characteristic of this network be Yl(W).
3. The optimal least square predicting filter then has

a characteristic

(26)
E
-=
U

best prediction by almost any other reasonable criterion,
such as the median value or the most probable value.
Thus in this case a nonlinear computation would offer
nothing which the linear process does not already pro-
vide. In the general case, on the other hand, the dis-

Fig. 8-Distribution of prediction errors in the
Gaussian case.

I)l

s.d.:JK(t\2dt
o

S(t ...at.)

The prediction will be relatively poor if the area under
the curve K(t)2 out to a is large compared to the total
area, good if it is small com pared to the total. It is evi-
dent from (26) that the relative error starts at zero for
a = 0 and is 'a monotonic increasing function of a which
approaches unity as a~ 00 •

There is an important special case in which a great
deal more can be shown by the argument just given. In
our analysis, the actual problem was replaced by one in
which the signal was a Gaussian type of time series, de-
rived from a resistance noise by passing it through a
filter with a gain Vpew). Suppose the signal is already
a time series of this type. Then the error in prediction.
due to the tails of impulses occurring between t =0 and
t =a, will have a Gaussian distribution. This follows
from the fact that each impulse has a Gaussian distri-
bution of amplitudes and the sum of any number of ef-
fects, each Gaussian, will also be Gaussian. The stand-
ard deviation of this distribution of errors is just the
root-mean-square error E obtained from (24).

Stated another way , on the basis of the available
data, that is, s(t) for t <0, the future value of the signal
s(t+a) is distributed according to a Gaussian distribu-
tion. The best linear predictor selects the center of this
distribution (or the predicted value. The actual future
value will differ from this as indicated in Fig. 8, where
the future value is plotted horizontally, and the prob-
ability density for various values of s(t+a) is plotted
vertically.

I t is clear that in this special case the linear prediction
method is in a sense the best possible. The center of the
Gaussian distribution remains the natural point to
choose if we replace the least square criterion of the

and the relative error of the prediction may be meas-
ured by the ratio of the root-mean-square error to the
root-mean-square value of s(t+a), i.e.,

I
a 1/2

o K2(t)dt

fo GOK2(t)dt

(24)

(25)

(23)

(22)
for t ~ 0

for < O.

Y t(W)Y-l(W).

Kt(t) = K(t + a)

=0

= p fo ..K2(t)dt

where p =r jp(w)dw is the mean-square signal. By a simi-
lar argument the mean-square value of s(t+a) win be

The mean-square error E in the prediction is easily
calculated. The error is due to impulses occurring from
time t=O to t=a. Since these impulses are uncorrelated,
the mean-square sum of the errors is the sum of the in-
dividual mean-square errors. The individual pulses are
effective in causing mean-square error in proportion to
the square of K(a-t). Hence, the total mean-square er-
ror will be given by

E2 2: P fo" K2(a - t)dt

Fig. 7-Construction of the physical response

K 1(e) from K (t).

of course, be constructed. We know, however, that the
mean value of this part must be zero, since future im-
pulses are as likel v to be of one sign as the other. Th us
the arithmetic average, or center of gravity, of the pos-
sible future responses 15 the predictable part given by
the output of Y I • But it is well known that the arith-
metic mean of any distribution is the point about which
the mean-square error is the least. The output of Yi is
thus the desired prediction of s(t+a).

In constructing Y1 we assumed that we had available
the white noise h(t). Actually, however, our given data
is the signal stt). Consequently, the best operation on
the given data is YI(w) V-lew), the factor V-lew) reduc-
ing the function set) to the white noise h(t), and the sec-
ond operation Y1(w) performing the best prediction
based on h(t).

The solution mav be summarized as follows:
1. Determine the minimum phase network having the

gain characteristic V P(w). Let the complex transfer
characteristic of this filter be Y(w) , and its impulsive
response K(t).

2. Construct a filter \Vh03e impulsive response is
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tribution of future values will not be Gaussian, and the
shape of the distribution curve may vary from point to
point depending upon the particular past history of the
curve. Under these circumstances, a nonlinear scheme
may offer improvements upon the linear process and the
exact characteristics of the optimal procedure will de-
pend critically upon the criterion adopted for the best
prediction.

VII. PREDICTION IN THE PRESENCE OF NOISE

Now consider the general prediction and smoothing
problem with noise present. The best estimate of
s(t+a) is required when the function s(t)+n(t) is
known from t = - 00 to the present. If set)+n(t) is
passed through a filter whose gain is [pew)+N(w) ]-1/2,

.the result will be a flat spectrum which we can identify
with white noise. Let Yt(w) be the transfer function of a
filter having this gain characteristic and the associated
minimum phase. Then both Y1(w) and the inverse
YI-I(W) are physically realizable networks. Evidently,
knowledge of the input of Yl and knowledge of its out-
put are equivalent. The best linear operation on the
output win give the same prediction as the correspond-
ing best linear operation on the input.

If we knew the entire function set)+n(t) from t = - 00

to t = + 00 the best operation to apply to the input of
YI(w) would be that specified by (18). If we let B(w)
be the phase component of Y I , this corresponds to the
equivalent operation

Fig. to-Weighting function K t (1') , corresponding
to Fig. 9.

now be shown as a consequence of a general statistical
principle.

Suppose we have a number of chance variables,
Xl, X2, ••• , x" which are statistically independent, or at
least have the property that the mean product of any
two, x.x", is equal to zero. These variables are to be
interpreted as the amplitudes of the individual white
noise impulses to which we are attempting to apply the
weighting function of Fig. 10.

Let y be another chance variable, correlated with
Xl, • •• , X", which we wish to estimate in the least
square sense by performing a linear operation on
Xl •• • X". In the problem at hand y is the actual signal
~(t) at the time a seconds from now.

The predicted value will be

and the mean-square error is

(28)

(29)

o

n n

= y2 - 2 2: aixiY + L: ajaixjxi
i=-1 t. ;",,=1

1l

= y2 - 2L aix,y + L ai2xi2,
i-I

since all terms in the double sum vanish except those for
which 'i =j. We seek to minimize E by proper choice of
the a.. Setting the partial derivatives with respect to at

equal to zero, we have

The important fact about this calculation is that each of
the n minimizing equations involves only the al in ques-
tion; aEjiJal involves only a1, etc. In other words, min-
mizing E on all the a, is equivalent to minimizing sep-
aratelyon the individual a,; al should have the value
XIY/X12 whatever values are assigned to the other a's.Fig. 9-Possible function K 2(t ) .

P(w)
y (w) - ei[aw-B(w}j (27)

2 - [P(w) + N(w) ]1/2

on the "white noise" output of Y1•

Let the impulse response obtained from (27) be
K 2(t ) . As illustrated by Fig. 9, K 2(t) will, in general, con-
tain tails extending to both t = + 00 and ,= - 00, the
junction between the two halves of the curve being dis-
placed from the origin by the prediction time a. The
associated K 2(T) of Fig. 10 is, of course, the ideal
weighting function to be applied to the "white noise"
output of Y l • But the only data actually available at
T =0 are the impulses which may be thought of as oc-
curring during the past history of this output. What
weights should be given these data to obtain the best
prediction? It seems natural to weight these as one
would if all data were available, and to weight the future
values zero (as we must to keep the filter physical).
The fact that this is actually correct weighting when the or
various input impulses are statistically independent will
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Returning now to the prediction and smoothing
problem, the function K 2(T) gives the proper weighting
to be attached to the impulses if we could use them all.
Requirements of physical realizability demand that fu-
ture impulses corresponding to T <0 be given weight
zero. From the above statistical principle those oc-
curring in the past should stiJl be given the weighting
K 2(T). In other words, the proper filter to apply to the
input white noise has an impulse response zero for
t <0 and K 2(t) for e-o.

To summarize, the solution consists of the following
steps:

1. Calculate the minimum phase transfer function for
the gain (P+N)_ol/2. Let this be Y1(W).

2. Let

This is a nonphysical transfer function. Let its Fourier
transform be Kt(t).

3. Set K.(t) = K 2(t+ a ) for t~ 0 and Ka(t) = 0 for
t <0. That is, cut off the first a seconds of K 2(t ) and
shift the remaining tail over to t =O. This is the impulse
response of a physical network, and is the optimal op-
eration on the past history of the white noise input. Let
the corresponding transfer function be Ya(W).

4. Construct Y.(w) = Y,(w) Y1(w). This is the op-
timal smoothing and prediction filter, as applied to the
actual given s(t) +n(t).

As in the pure prediction problem, if the signal and
noise happen to be Gaussian time series, the linear pre-
diction is an absolute optimum among all prediction
operations, linear or not. Furthermore, the distribution
of values of s(t+a), when f(t) is known for t <0, is a
Gaussian distribution.

VIII. GENERALIZATIONS

This theory is capable of generalization in several
directions. These generalizations will be mentioned only
briefly, but can all be obtained by methods similar to
those used above.

In the first place, we assumed the true signal and the
noise to be uncorrelated. A relatively simple extension
of the argumen t used in Section IV allows one to accoun t
for correlation between these time series.

A second generalization is to the case where there are
several correlated time series, say fl(t) , !2(t) , · .. , f,.(t).
I t is desired to predict, say, S1(t +a) from a knowledge
of ft, It.... .L:

Finally the desired quantity may not be s(t+a) but,
for example, s'(t+o:), the future derivative of the true
signal. In such a case, one may effectively reduce the
problem to that already solved by taking derivatives
throughout. The function f(t) is passed through a dif-
ferentiator to produce g(t) = f'(t). The best linear pre-
diction for g(t) is then determined.

IX. DISCUSSION OF THE BASIC ASSUMPTIONS

A result in applied mathematics is only as reliable as
the assumptions from which it is derived. The theory
developed above is especially subject to misapplication
because of the difficulty in deciding, in any particular
instance, whether the basic assumptions are a reasonable
description of the physical situation. Anyone using the
theory should carefully consider each of the three main
assumptions with regard to the particular smoothing or
prediction problem involved.

The assumption that the signal and noise are sta-
tionary is perhaps the most innocuous of the three, for it
is usually evident from the general nature of the prob-
lem when this assumption is violated. The determina-
tion of the required power spectra P(w) and N(w) will
often disclose any time variation of the statistical struc-
ture of the time series. If the variation is slow compared
to the other time constants involved, such nonstationary
problems may still be solvable on a quasi-stationary
basis. A linear predictor may be designed whose transfer
function varies slowly in such a way as to be optimal for
the "local" statistics.

The least square assumption is more troublesome, for
it involves questions of values rather than questions of
fact. When we minimize the mean-square error we are,
in effect, paying principal attention to the very large
errors. The prediction chosen is one which, on the whole,
makes these errors as small as possible, without much
regard to relatively minor errors. In many circum-
stances, however, it is more important to make as many
very accurate predictions as possible, even if we make
occasional gross errors as a consequence. When the dis-
tribution of future events is Gaussian. it does not matter
which criterion is used since the most probable event is
also the one with respect to which the mean-square
error is the least. With lopsided or multimodal dis-
tributions, however, a real question is involved.

As a simple example, consider the problem of predict-
ing whether tomorrow will be a clear day. Since clear
days are in the majority, and there are no days with
negative precipitation to balance days when it rains, we
are concerned here with a very lopsided distribution.
With such a curve, the average point, which is the one
given by a prediction minimizing the mean-square error,
might be represented by a day with a light drizzle. To a
man planning a picnic, however, such a prediction would
have no value. He is interested in the probability that
the weather will really be clear. If the picnic must be
called off because it in fact rains, the actual amount of
precipitation is of comparatively little consequence.
As a second example, consider the problem of inter-

cepting a bandit car attempting to flee down a network
of roads. If the road on which the bandit car happens to
be forks just ahead, it is clear that a would-be inter-
ceptor should station himself on one fork or the other,
making the choice at random if necessary. The mean-
square error in the interception would be least, how-
ever, if he placed himself in the fields bevond the fork.
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Problems similar to these may also arise in gunnery,
where, in general, we are usually interested in the num-
ber of actual hits and "a miss is as good as a mile."

The third assumption, that of linearity, is neither a
question of fact, nor of evaluation, but a self-imposed
limitation on the types of operations or devices to be
used in prediction. The mathematical reason for this as-
sumption is clear; linear problems are always much
simpler than their nonlinear generalizations. In certain
applications the linear assumption may be justified for
one or another of the following reasons:

1. The linear predictor may be an absolute optimal
method, as in the Gaussian time series mentioned
above.

2. Linear prediction may be dictated by the simplic-
ity of mechanization. Linear filters are easy to syn-
thesize and there is an extensive relevant theory, with
no corresponding theory for nonlinear systems.

3. One may use the linear theory merely because of
the lack of any better approach. An incomplete solution
is better than none at all.

How much is lost by restricting ourselves to linear
prediction? The fact that nonlinear effects may be irn-
portan t in a prediction can be illustrated by returning
to the problem of forecasting tomorrow's weather. We
are an familiar with the fact that the pattern of events
over a period of time may be more important than the
happenings taken individually in determining what will
come. For example, the sequence of events in the pas-
sage of a cold or warm front is characteristic. Moreover,
the significance of a given happening may depend
largely upon the intensity with which it occurs. Thus, a
sharp dip in the barometer may mean that moderately
unpleasant weather is coming. Twice as great a drop in
the same time, on the other hand, may not indicate that
the weather win be merely twice as unpleasant; it may
indicate a hurricane.

As a final point, we may notice that the requirement
that the prediction be obtained from a linear device and
the objective of minimizing the mean-square error are
not, in all problems, quite compatible with one another.
The absolute best mean-square prediction (ignoring the
assumption of linearity) would, of course, always pick
the mean of the future distribution, i.e., the "center of
gravity," since in any case this minimizes the mean-
square error. In general, however, the position of this
center of gravity will be a nonlinear function of the past
history. When we require that the prediction be a
linear operation on the past history, the mathematics is

. forced to compromise among the conflicting demands of
various possible past histories. The compromise amounts
essentially to averaging over-all relative phases of the
various components of the signal; any pertinent in-
formation contained in the relative phases cannot be
used properly.

This can be illustrated by the familiar statistical prob-
lem of calculating a line or plane of regression to provide
a linear least square estimation of one variable y from
the knowledge of a set of variables correlated with y.'
The simplest such problem occurs when there is just one
known variable x, and one unknown variable y to be
estimated from x. Fig. 11 shows three of the "scatter
diagrams" used in statistics. The variable x may be, for
example, a man's weight and ,. his height. A large
population is sampled and plotted. It is then desired to
estimate, or predict, a man's height, knowing only his
weight. If we agree to use only linear operations y must
be calculated in the form y = ax. The best choice of a for
least square prediction is xy/X2 and the corresponding
straight line is known as the line of regression. The case
of a normal distribution corresponds to the Gaussian
type noise in which the linear prediction is an absolute
optimum.

Figs. 11 (b) and 11 (c) are scatter diagrams for other
distributions of two variables. The lines of regression
are now not nearly as good in predicting y as they were
in Fig. 11(a). The requirement that the predicted value
be a linear function of the known data requires a com-
promise which may be very serious. It is obvious in
Figs. 11(b) and 11 (c) that a much better estimate of y
could be formed if we allowed nonlinear operations on x.
In particular, functions of the form ax 2+band cx3+dx

would be more sui table.
In predicting y {rom two known variables Xl and X2

we can construct a scatter diagram in three dimensions.
The linear prediction requires fitting the points with a
plane of regression. If there are n known quantities
Xlt X2 • • • • " x,. we need (n+ 1) dimensional space and
the linear theory corresponds to a hyperplane of n
dimensions.

The problem of smoothing and prediction for time
series is analogous. What we are now dealing with, how-
ever, is the function space defined by all the values of
f(t) for t <O. The optimal linear predictor corresponds
to a hyperplane in this function space.

• P. G. Hoel, "Introduction to Mathematical Statistics," John
Wiley and Sons, Inc., New York, N. Y.; 1947.



By CLAUDE E. SHANNON,

Bell Telephone Laboratoriea, Ino., Murra)f' Hill, N.J.

1. INTRODUCTIOK.

'fHJS papel' is concerned with the problem of constructing a computing
routine 01' "pl"ogranl ~, for It modern general purpose computer which
will enable it to llI8J' chess. AlthougJl perhaps of no practical Importance,
t he quest ion is of t heoretioal interest, and it is hoped that a satisfaetory
solution of this problem will" act lUi It wedge in attacking other problems
of a simiiar nature and of gl~~R.t('1" significance. Some possibilities in t.his
direct.ion are :--=-

( I) Machines fur designing filters, equalizers, etc.
(2) Machines for designing relay and switching circuits,
(:J) Machines which Will handle routing of telephone calls based nn

the individual circumstances rather than by fixed patterns.
(4) Machines for performing symbolic (non-numerical) mathemat.ieal

operat.ions,
(5) Machines capable of t rnusla ting from one language to another.
(6) l\'Iachines for making strategic decisions in simplified miJit.H.J'~·

-operations,
(7) Machines capable of orchestrating n melody,
(8) Machines capable of logical deduction.

It is believed that all of these and many other devices of a similar
nature are possible developments in the immediate future. TIle techniques
developed for modern electronic and relay type computers make .them
not 'only theoretical possibilities, but in several cases worthy of serious
consideration from the economic point of view.

Machines of this general type are an extension over the ordinary use
of numerical computers in several W8,YS. First, the entities dealt with art'
not, primarily numbers, but. rather chess positions, circuits, mathematical
expressions, words, etc, Second, the proper procedure involves genera.I
principles, something of the nature of judgment; and considerable tria.l
and error, rather than a strict, unalterable computing process. Finally,
the solutions of these problems are not merely right or wrong but have
8, continuous range of cc quality '" from the best down to the worst. W~

might be satisfied with a machine that designed good filters even though
they were not always the best possible.

* First presented a.t, the Nationa! IRE Convention, March 9, 194:9, New
York, U.S.A.
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The chess machine is an ideal one to start with, since: (1) the problem
is sharply defined both in allowed operations (the moves) and ill the
ultimate goal (checkmate}: (2) it is neither so simple Rfi to be trivial
nor too difficult for satisfactory solution; (3) chess is generally con-
sidered to require " thinking ~, for skilful play ; a solution of this problem
will force us either to admit the possibility of mechanized thinking or
to further restrict our concept of " thinking "; (4) the discrete structure
of chess fits well into the digital nature of modern computers,
" There is already a considerable literature on the su bject of CllCSS-

playing machines. During the late ISth and earl)' lOth centuries, the
Maelzol Chess Automaton, a device invented hy von Kempelen, was
exhibited widely as a chess-playing machine. A number of pa.pers appeared
at the tillIe, including an analytical CS~lt.Y h.y l~tlgnr Allan 1)00 (entitled
Maelzel's Chess Player) purporting to explain its operation. l\lost. of
these writers concluded, quite correctly, that the Automaton was
operated h)' a concealed human ohess-mastcr : th~ arguments leading to
this conclusion, however, were frequently fallacious. Poe assumes, for
example, that it is as easy to design n machine which will invariably
win as one which wins occasionally, and argues that since the Automaton
was not invincible it. was therefore operated bJ- a, human, a clear 'non
sequitnr. If01" a complete account of the history and method of operation
of the Automaton, t he reader is referred to a series of art.iclcs by Harkness
and Battell in Ches« Reoicui, Jn47.

A more honest attempt to design a chess-playing machine was .made
in 1D14 by Torres J" Ql1c\·cdo, who constructed a device which played
an end gallle of king and rook against king (Yignoron, 1UI4). The machine
played the side with king and rook and would force checkmate in a [0""

nlO\·CS however its human opponent played. Since an explicit set of
rules can be given for Junking satisfactory 1l10VeS in such an end game,
the problem is rclat ivcly simple, but the idea was quite advanced for
that period.

The thesis we will develop is that modern general pilrpose computers
can be used to play a tolerably good game of chess by tho use of a suitable
computing routine or " progralll ". While the approach given here is.
believed fundamentally sound, it will be evident that 11111Cll further
experimental and t-heoretical work remains to be done.

2. (lENERAL C'OXSIJ)EIt~\TIOXS.

A chess " position " 111ay be defined to include the following data :-

(1) A statement of the positions of all pieces on the board.
(2) A statement of which side, White or Black, has the 1l10VO.

(3) A .staternent as to whether the kings and rooks have moved, This
is important since by moving a rook, for example, the right. to castle on
that side is forfeited.

SER. 7, VOL. 4I • NO. 3I4.-MARCH 1950
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(4) A statcment of, say, the last movo. This will determine whether
8, possible en IJa88an,t capture is legal, since this privilege is forfeited after
one move.

(5) A statement of the number of 1l10VCS made since the last pawn
move or capture. This is important because of the 50 move drawing rule.
For simplicity, we will ignore the rule of draw after three repetitions of
a position.

III CllCSS there is no chance element apart from the original choice
of whic.h player has the first move, This is in contrast with card games,
backgammon, etc. Furthermore, in c~C8S each of the two opponents has
cc perfect information " at each move as to all previous moves (in contrast
with Kriegspiel, for example). These two facts imply (von Neumann and
Morgenstern, 1944) that any given position of the chess pieces. must be
either :-

(I) A won position for White. That is, White can force a win, however
Black defends.

(2) A draw position. White can force at least a draw, however Black
plays, and likewise Black can force at least a draw, however White plays.
If both sides play correctly the game will end in a draw.

(:J) A won positionfor Black. Black can force a win, however White
plays.

This is, for practical purposes, of the nature of an existence theorem,
No practical method is known for determining to which of the three
categories a general position belongs. If there were chess would lose
most of its interest as a game. One could determine whether the initial
position is won, drawn, or lost for White and the outcome of a game
between opponents knowing the method would be fully determined .at
the choice of the' first move. Supposing the initial position" a draw (as
suggested by empirical evidence from master games") every game would
end in a draw.

It is interesting that a slight change in the rules of chess gives a game
for which it is provable that White has a.t least a draw in the initial
position. Suppose the rules the same as those of chess except tllat a
player is not forced to move a piece at his turn to play, but lllay, if he
chooses,. cc pass". Then we can prove as a theorem that \\Tllite can at
least draw by proper play. For in the initial position either he has a
winning move or not. If so, let him make this move. If not, let him
pass. Black is now faced with essentialJy the same position that White'
had before, because of the mirror symmetry of the initial position t.
Since White had no winning nlOVC before, Black has none now. Hence,
Biack n~ best ~an draw. Therefore, in.eit.her case "'hite cnn at, least draw.

• The world championship match between Capablnnca and Alekhinc ended
with the score Alekhine 6,' Capablanca 3, drawn 25.

t The fact that the number of moves remaining before a draw is called
by the 50-move rule has decreased does not affect this argument.
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In some games there is a simple evaluation 'junction f(P) which can
he applied to '& position P and whose value determines to which category
(won, lost, etc.) the position P belongs.'. In the game of Nim (Hardy and
Wright, 193~), for example, this can be determined by writing the number
of matches in each pile in binary notation. These numbers are arranged
in a column (as though to add them). If the number of ones in each column
is even, the positiori is lost for the player about to move, otherwise won,

If suchan evaluation' function f(P) can be,found (or a game it is easy to
design a machine capable of perfect play. It would never lose or draw
a won position and never lose a drawn position and if the opponent ever
made a mistake the machine would capitalize on it. This could be
done as foHows.: Suppose

f{P) = I for a won position,
f(P)=O for Ii drawn position,
J(P)=-l for a lost position.

At the machine's turn to move it calculates J(P) for the various positions
obtained from the present position by each possible move that can be
made. It chooses that, move (or one of the set) giving the maximum
value to f. In the case of Nim where such a funotion f(P) is known, a
machine has actually been constructed which plays & perfect game *.

With chess it is possible, in principle, to playa perfect game oro construct
a machine to do 80 8S follows = , One considers in a given position all
possible moves, then all movea for the opponent, eto., to the end of the
game (in each variation).. The end must occur, by the .rules of the game,
after a finite number of moves]' (remembering the 50 move drawing rule).
Eaoh of these variations ends in win, 1088 or draw. By working backward
from the end one can determine whether there is a forced win, the
position is a draw or is lost. It is easy to show, however, that even with
the high computing speeds available in electronic calculators this com-
putation is impractical, In typical chess positions there will be of the
order of 30 legal moves. The number holds fairly constant until the game
is nearly finished as shown in Fig. I. This graph was constructed from
data' given by De Groot, who averaged the number of legal moves in a
large number of master games 0 (De Groot, 1946, a). Thus a move for
White and then one for Black gives about 103 possibilities. A typical
game J8S~8 about 40 moves to resignation of one party. This is con-
servative for. our calculation since the machine, should calculate out to
checkmate, not 'resignation. However, even at this figure there will be

• Condon, Tawney and Derr, U.S. 'Patent 2;215,544. The II Nimotron U

based on this patent was built and exhibited by Westinghouse at the 1938
New York World's Fair..

t The longest possible chess game is 6350 moves, allowing 50 moves between
each pawn move or capture. The longest tournament game on record between
masters lasted 168 moves, and the' shortest four moves. (Chernev, Curious
Che88 Facta, The Black Knight Press, 1937.)
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1012~ variations to be calculated from the initial position, A' machine
operating- at the rate of one variation per' micro-microsecond would,
require over 1080 years to calculate its first move 1

Another (equally impractical) method is to have a (C dictionary" of
all possible positions of the chess pieces. For each possible position there
'is an entry giving the correct move (either calculated by the above
process or supplied by a chess master). At the machine's turn to move
i~ merely looks up the position and makes the indicated move'. The
number of possible positions, of the general order. of 641132 ! 8 !2 2 18, or
roughly 1043, naturally makes snell a design unfeasible.

It is clear then that. the problem is not that of designing a machine
to play perfect chess (which is quite impractical) nor one which. merely
JllRJrS legal chess (which is trivial). \Vc would like it to play' a skilful
game, perhaps comparable to -tllat of a good human player.

A strategy for chess may be described as a process for choosing. a n~o,"e

in any given posit-ion. If the process always chooses the same move in

Fig. I.
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the same position the strategy is known in the theory of games as a
cc pure" strategy. If the process involves statistical elements and. does
not always result in the same choice it is a cc mixed" strategy. The
following are simple examples of strategies :-'

(1) Number the possible legal moves in the position P, according to
some standard procedure. Choose the first on the Jist. This is a pure
strategy.

(2) Number the legal moves and choose' one at random from the list...
This is a mixed strategy.

Both of these, of course, are extremely poor strategies, making no
attempt to select good moves. Our problem is to 'develop a tolerably good
strategy for selecting the move to be made.
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3. ApPROXIMATE EVALUATING FUNCTIONS.

Although iii chess there is no known simple and exact evaluating
function f(P), 'and probably never will 'be because of the arbitrary and
complicatednature of the rules of the ga~e, it is still possible to perform
an approximate evaluation' of a position.· Any good chess player must,
in fact, be able to perform such a position evaluation. Evaluations are
based on the general structure. of the position, the number and kind of
Black and .White pieces, pawn formation, mobility, etc, These evaluations
are not perfect, but the stronger the player the better his evaluations.
Most of the maxims and principles of correct play are really assertions
about evaluating positions, for example :-

(1) The relative values of queen, rook, bishop, knight and IJ3Wn are
about' O~ 5, 3, 3, 1, respectively.' Thus other things being equal (I) if we
add the numbers of pieces for the two sides with these coefficients, the
.side with the largest total has the better position.

(2) Rooks should be placed on open files. This is part of a more
general principle that the side with the greater mobility, other things
equal, )lSS the better game.

(3), Backward, isolated and doubled pawns are weak,
(4) An exposed king is a weakness (until the end game).

These and similar. principles are only generalizations from empirical
evidence of numerous games, and only have a kind of statistical validity.
Probably ~ny chess principle can be contradicted by particular counter
examples. However, from these principles one can construct a· crude
evaluation function. The following is an example :-

,f{P)=200(K-K')+9(Q-Q/)+5(R-R')+3(B-B/+N-N')+(P~P')

-·5(D-D'+S-S'+I-!')+·1(M-M')+ ..•

ill which t-e-

K, Q, R, B, N, P are the number of White kings, queens, rooks, bishops,
knights and pawns on the. board.

D, S, I are doubled, backward and isolated White pawns.
M=White .mobility (measured, say, as the number of legal moves

available to White)..
Primed letters are the similar quantities for Black.

The coefficients ·5 and -I are merely the writer's rough estimate.
Furthermore, there are many other terms that, should be included 41.

The formula is given only for illustrative purposes. Checkmate ]138 been
artificially included here by giving the king the largo value 200 (anything
greater thanbhe maximum of all otherterms would do).

It may be noted tha~ this .approximate evaluation J'(P) has a more
or Jess continuous range of possible values, while with an exact evaluation
there are only three possible' vallies. This is 8S it should 'be. In practical

• See Appendix I.
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play a position may be an cc easy win" if a player is, for example, a
queen ahead, or a very difficult win with only a pawn advantage. In
the former case there are many ways to win while in the latter exact
play is required, and a single mistake often destroys the advantage,
The unlimited intellects assumed in the theory of games, ,on the other
hand, never make a mistake and the smallest winning advantage is as
good as mate in one. A game between two such mental giants, Mr" A
and Mr, B, would proceed as follows. They sit down at the chessboard,
draw for colours, and then survey the pieces for a moment. Then either

(1) Mr. A says, '" I resign" or
(2) Mr. 'B says, " I resign" or
(3) Mr. A says, cc I offer a draw," and Mr. B replies, cc I accept,"

4. STRATEGY BASED ON' AN EVALUATION FUNCTION.

A very. important point about the simple type of evaluation function
given above (arid general principles of chess) is that they can only be
applied in relatively quiescent positions. For example, in an exchange
of queens White plays, say, Q X Q (x =captures) and Black will reply
P X Q. It. would be absurd to, calculate the function f(P) after Q X Q
while White is, for a moment, a queen ahead, since Black will imme-
diately recover it. More generally it is meaningless to calculate an
evaluation of the general type given above during the course of a com-
bination or a series of exchanges.

More terms could be added to f(P) to account for exchanges in progress"
but it appears that combinations, and forced variations in general, are
better accounted for by examination of specific variations. This is, in
fact, the way. chess players calculate, A certain number of variations
are investigated move bymove until a more or less quiescent position
is reached and. at this point something of the- nature of an evaluation is
applied to the resulting position. The player chooses the variation
leading to the highest evaluation for him when the opponent is assumed
to be playing to reduce this' evaluation.

The, process. can be described mathematically. ,We omit at first the
fact that f(P) should only be applied in quiescent positions.. A strategy
of 'play based on f(P) and operating' one move deep is the following.'
Let MIt M2, Ma, • . ., Ms be the moves that can be made in position P
and let MtP t MaP, etc. denote symbolically the resulting positions when
MI , MI , etc. are applied to P. Then one chooses the Mm which maximizes
J(MmP).

A deeper strategy would consider the opponent's replies. Let Milt

M,2, · .. , Mis be the possible. answers' by Black, if White chooses move
M,. Black should play to 'minimize J(P). Furthermore, his choice occurs
after White's move. Thus, if White plays M; Black may be assumed to
play the Mi. such that
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is a mtntmum. White should play Ilia first move SUC)l that f is a maximum
after Black chooses his best reply. Therefore, White should play to
maximize on Mi. the quantity

min ~f(MijMi~).

Mil

The mathematical process involved is shown for a, simple case in Fig. 2.
The point, at the left represents the position being considered'. ~t is
assumed that there are three possible moves for White, indicated by
the three solid lines, and if any of these is made there are three possible
moves for Black, indicated by the dashed lines. The possible positions
after a Whito and Black move are then the nine points on the right, and
the numbers are the evaluations for these positions, Minimizing on 'the
upper three gives +·1 which is the resulting value if White C1100S0S the

Fig. 2.
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upper variation and Black replies with his best move, Similarly, the
second and. third moves lead to values of -7 and - 6. Maximizing 011

White's move, we obtain +·1 with the upper move as White's best choice.
In a similar way a, two-move strategy (based on considering all variations

out to 2 moves) is given by

Max Min Max Min f(Mil kl l\{ijl~ Mil l\f; P)

M; Mil Milk MlJkl • (1)

The order of maximizing and minimizing this function is important. It,
derives from the fact that the choices of moves oocur in a definite order.

A machine operating on this strategy' fl,t the two-move level would
first calculate all variations out to two moves (for each side) and the
resulting positions. The evaluations.j'(P) are calculated for each of these
positions. Fixing all but, the last Black move, this last is varied and the
move chosen which minimizes j. This is Black's assumed last. move in
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the variation' in question. Another move for White's second move is
chosen and the process repeated for Black's second move. This is done
for each second White move and the one chosen giving the largest final f
(after Black's best assumed reply in each case). In this way White's
second move in each variation is determined. Continuing in this way
the machine works back to the present position and the best first White
move, This move is then played. This process generalizes in the obvious
way for any number of moves,

,A strategy of this" sort, in which all variations are considered out to a
definite number of moves and the move then determined from a formula
such as (1) will be called a ,type A strategy, The type A strategy has
certain basic weaknesses, which we will discuss later, but is conceptually
simple, and we will first SllOW how a computer can be programmed for
such a strategy.

5. ,PROORA1\'Il\IINO A GENERAL PURPOSE COl\IPUTER FOR ,A

TYPE A STRATEGY.

We assume a large-scale digital computer, indicated schematically in
Fig. 3, with the following properties :-

Fig. 3.

~EMOAV

AJI'THMETIC
DEVICE

"(I) There is a large internal memory for storing numbers. The memory
is divided into a number of boxes each capable of holding, say, a ten-digit
number. Each box is assigned a ce box number "."

(2) There' is an arithmetic organ which can perform the elementary
operations of addition, multiplication, etc.

(3) The computer operates under the control of a "<program " ..
The program consists of a, sequence of elementary cc orders ". A
typical order' i~ A 372, 451, 133. This means;' extract the contents of
box 372 and of box 451. add these numbers, 'and put the sum in box 133.
Another type of order involves a decision, for example, C 291, 118, 345.
This tells the machine to compare the contents of box 291 and 118. If
the first is larger the machine goes on to the next order in the program.
If not, it takes its next order from box 345. This typo of order .enables
the machine to choose from alternative procedures, depending on the
results of previous calculations. It is assumed that orders are available
for transferring numbers, the arithmetic operations, and decisions.
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Our problem. is to represent chess as numbers and operations on
numbers., and to reduce the strategy decided upon to a sequence of
computer orders'. We will not carry this. out in detail but only outline
the programs. As a 'coUeague puts it, the final program for a
computer must be written in. words of one .microsyllable.

TIle rather Procrustean tactics of forcing chess into an arithmetic
computer are dictated by economic considerations. Ideally, we would
like to design a special computer for chess containing, in place 'of the
arithmetic organ, a "ch~ss organ ". specifically. designed to perform the
simple chess ~alculations. Although a large Improvement in speed of
operation would undoubtedly result, the initial cost of computers seems
to prohibit such a possibility. It is planned, however, to experiment with
a simple strategy on one of the numerical computers now being
constructed.

Fig. 4.
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A game of chess can be divided into three phases, the opening, the
middle game, ·and the end game. Different principles of .play apply
in the different phases. In the opening, which generally lasts for about
ten moves, development of the pieces to good positions is the main
objective. During the middle game taotics and combinations are pre..
dominant. This phase lasts 'until most of the ,pieces are exchanged,
leaving only kings, pawns a.nd perhaps one or two pieces on each side.
The end game is mainly concerned with pawn promotion. Exact timing
and suchpossibilitiea as Cf Zugzwang ", stalemate, etc. become important.

Due to the difference in strategic aims, different programs should
be used for the different phases of a game. We .will be chiefly concerned
with the middle game and will not consider the end game at all. There
seems no reason, however, why an end game strategy cannot be designed
and programmed equally well.
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A square on a chessboard can be occupied in 13 different ways : either
it is empty (0) or occupied by one of the six possible kinds of White
pieces (P=I, N =2, B=3, R . 4, Q.=5, K=6) or one of the six possible
Black pieces'(P=-I, N=~2, ... t K=-6). Thus, the state of a square
is specified by giving an integer from -6 -to +6. The 64 squares can be
numbered according to a co-ordinate system 8S shown in Fig. 4. TIle
position of all pieces is then given by a sequence of 64 numbers each
lying between -6 and +6.. A total of 256 bits (binary digits) is sufficient
memory in this representation. Although not the most efficient encoding,
it is a convenient one for calculation. One further number" will be
+1 or - 1 according as it is White's or Black's move. A few more should
be added for data relating to castling privileges (whether the White or
Black' kings and rooks have moved), and en passomt captures (e.(J~, a
statement of the last move). We will neglect these, however. In this
notation the starting chess position is given by:-

4, 2~ 3, 5, 6, 3, 2, 4; 1, I, I, I, 1, 1; 1, 1;

0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, 0, 0;

0, 0, 0, 0, 0, 0, 0, 0; 0, 0, 0, 0, 0, 0, ,0 0;

-1, -I, ~l, -I, -I, -1, -1, -1; -4, -2, -3, -5, -6, -3, -2, -4;
+1 (=A).

A move (apart from castling and pawn promotion) can be specified by
giving the original and final squares occupied by the moved piece. Each
of these aquaresis a choice from 64, thus 6 binary digits each is sufficient,
a total of 12 for the move. Thus the initial move P-I{4 would be repre-
sented by 1,4; 3,4. To represent pawn promotiona set of three binary
digits can be added specifying the piece that the pawn becomes. Castling
is described by giving the king' move (this being the only way the king
can move two squares). Thus, a move is represented by (a, b, c) where
a and b are squares and c specifies a piece in case of promotion.

The complete program for a type A strategy consists of nine sub-
programs which we designate To, T 1, ••• , Ts and a master program
Te. The basic. functions of these programs are as follows :-

To-Makes move (a, b, c) in position P to obtain the resulting position.
T 1-Makes a list of the possible moves of a pawn at square (x~ y) in

position P.
T 2, .... , To-Similarly for other types of pieces: knight, bishop, rook,

que~n and king.
T.,-Makeslist of all possible moves in a given position.
Ta-Calculates the evaluating function f(P)' for a given position P.
Tg-Master program; performs maximizing and minimizing calcula-

tion to determine proper move.

With a given position P and a move (a, b, c) in the internal memory
of the machine it can make the move and obtain the resulting position
by the following program To.



648 C.E.Shannon

(1) TIle square corresponding to number a in the position is located
in the position memory.

(2) The number in this square x is extracted and replaced by 0 (empty).
(3) (a) If x=J, and the first co-ordinate. ofn is 6 (White pawn being

promoted) or if x .- I, and the first co-ordinate of a is 1 (Black pawn
being promoted), the number c is placed in square b (replacing whatever
was there),

(b) If x=6 and a.-b=2 [White castles, king side) 0 is placed in
squares 04 and 07 and 6 and 4 in squares 06 and 05, 'respectively. Similarly
for the casesx=6, b-a=2 (White castles, queen side) and x= -6, a-b=±2
(Black castles, king or queen side).

(c) In all other cases, z is placed in square b.
(4) Tho sign of ,\ is changed.
For each type of piece there is It program for determining its possible

moves. As a typical example the bishop program, Ta, is briefly as
follows. Let (x, 1/) be the co-ordinates of the square occupied by the
bishop.

(I) Construct (x+ 1, y+ I) and read the contents u of this square ill

the position "1:).
(2) If 1t=O (empty) Jist. the nlOVC (x, t/), (x+l, v+I) and start over

with (x+2, y+2) instead of (x+ 1, y+ I).

If ,\U is positive (own piece in the square) continue to 3.
If "U is negative (opponent.'s piece in the square) Jist the move and

continue to 3.
If the square does not exist continue to 3.

(:J) Construct (x+ 1, y-l) and perform similar calculation.
(4) Similarlywith (x-I, y+l)~
(5) Similarly with (x-l,y-l).
By this progranl a list is constructed of the possible moves of a

bishop in a given poeltiorr P. Similar programs would list the moves
of any other piece. There is considerable scope for opportunism in
simplifying these programs; e. g., the queen program, T&J can be a
combination of the bishop and rook progralns, T3 and Tc.

Using the piece programs T 1 ••• Te and a controUing program
T7 the machine can construct a list of all possible moves in any given
position P. The controlling program T7 is briefly as follows (omitting
details) :-

(1) Start at. square 1,1 and extract contents z.
(2) If "it iapositive start corresponding piece progranl T x and when

complete return to (I) adding I to square number, If;\x is zero or negative,
return to I adding I to square number.

(3) Test each of the listed moves for legality and discard those which
are illegal. This is done by making each of the moves in the position P
(by program To) and examining whether it leaves the king in check.
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With the programs To ... T7 it is possible for the machine to play
legal Ch~8S, merely making a randomly chosen legal move at each turn
to move, The level of play with such a strategy is unbelievably bad.* The
writer played a few games against this random strategy and was able
to checkmate generally in four or five moves (by fool's mate, etc.), TIle
following game will illustrate the utter purposelessness of random play :-

\\Thite (Random) Black

(1) P-KN:J 1~-I(4

(2 ) P-Q:~ B-B4

(:3) B..... Q2 Q-B3
(4) N-QB:J (~X Pmate

\Vo now return to the sbratogy based on an evaluation f(P). .Tl18
program ·T8 performs the function of evaluating n, position according
to the agreed-upon .f(P). This can be dono by the obvious means of
.scanning the squares and adding the terms involved. It is not difficult to
include terms such as doubled pawns, etc.

The finalmaster program T. is needed to select tJIC move according
to the maximizing and minimising process indicated above. On the
basis of one 1l10Ve (for each side) T. works as follows :-

(1) List the legal moves (by T7) possible in the present position.
(2) Take the first in the list and make this 1110ve by To, giving position

M.P.
(3) List the Black moves in M.P.
(4) Apply the first one giving M1tM1P, and evaluate by Te•
(5) Apply the second Black move M12and evaluate.
(6) Compare, and reject the move with the smaller evaluation.
(7) Continue with the third Black move and compare with the retained

'value, 'etc.
(8) When 'the Black moves are exhausted, one will be retained together

with its evaluation. The process is now repeated with the second White
move.

(9) The final evaluations from these two computations are compared
and the maximum retained.

(10) This is continued with all White moves until the best is selected
(i. e. the one remaining after all are tried). This is the move to be made.

• Although thereis &. finite probability, of the order of 10-75, that random
·play.would win &.game from Botvinnik. Bad as randompley is, there are even
worse strategies,which choose moves which actually aid the opponent. For
.example, White's strategy in the following game: 1. P-KB3, P-K4.
:2. P-K.N4, Q-R5 mate.
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These programs are, of course, highly iterative. For th~t reason they
should not require a great deal of program memory ifefficiently worked out.

The internal memory for positions and-temporary results of calculations
whenplaying three moves deep can be estimated. Three positions should
probably be remembered : the initial position, the next to the last, and
the last position (now being evaluated). This .roquires some 800 bits.
Furthermore, there are five lists of moves each requiring about
:JOX 12=360 bits, a total of 1800. Finally, about 200 bits would cover
the selections and evaluations up to tho present calculation. TIIUS,
some 3000 bits should suffice.

6. Il\IPROVEME~TS IN TIlE STRATEGY.

Unfortunately a machine operating according to this t.y·pc A strategy
would be both slow and a weak player. It would be slow since even if
each position were evaluated in one microsecond (very optimistic) there
are about 10' evaluations to be made after three 1110VCS (for each side).
TIlUS, more than 16 minutes would be required for It move, or 10 hours
for its half of a 40-nlove game.

It would be weak in playing skill because it is only seeing three moves
deep and because "·C have not. included any conditions about quiescent
positions for evaluation. The machine is operating in an extremely
inefficient fashion-c-it computes all variations to exactly three moves and
then stops (even though it or the opponent be in check). A good human
player examines only a few selected variations and carries these -'out to
a reasonable stopping-point. A world champion call construct (at best)
combinations say, 15 or 20 moves deep, Some variations given by
Alekhine (CC My Best Games of Chess 1924-1937") are of this length,
Of course, only a few variations are explored to any such depth. In
amateur play variations are seldom examined J110re deeply than six or
eight moves, and this only when the moves are of a highly forcing nature
(with very limited possible replies). More generally, when there arc few
threats and forceful moves, most calculations are not deeper than one or
two moves, with perhaps half-a-dozen forcing variations explored to
three, four or five moves,

On this point a quotation -from Reuben Fine (Fine 1942), a leading
American master, is interesting: Ie Very often people have the idea th~t

mastera foresee everything or nearly everything ; that when they. played
P-R3 on the thirteenth move they foresaw that this would be needed
to provide a loophole for the king after the complicatlons twenty moves
later, or. even tha.t when they play I P-K4 they do it with the idea of
preventing Kt-Q4 on Black's twelfth turn, or they feel that everything
is mathematically calculated down to the smirk when the Queen's Rook
Pawn queens one move ahead of the opponent's King's. Knight's Pawn..
Ali this is, of course, pure fantasy. 'The best course to follow is to note
the major consequences for two moves, but try to work out forced..
variations as they go."
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The amount of selection exercised by chess masters in examining
possible variations has been studied experimentally by De 'Groot (1946, b).
He showed various typical positions to chess masters and asked them
to decide on the best move, describing aloud their analyses of the positions
as they thought, them through, In this manner the number and depth
of the variations examined could be determined. Fig. 5 shows the result
of one such experiment. In this ease the chess master examined sixteen
variations, ranging in' depth from 1/2 (one Black move) to 4:-1/2 (five
Black and four White) moves. The total number of positions considered.
was 44.

Fig. 5.
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From these remarks it appears that to improve the speed and strength
of play the machine must :-

(1) Examine forceful variations out as far as possible and evaluate
only at reasonable positions, where some quaei-stebility has been
established.

~2) Select the variations to be explored by some process so that the
machine does not waste its time in totally pointless variations.

A strategy with these two improvements will be called a type B
strategy. It is not difficult to construct programs incorporating these
features. For the first we define' a function g(P) of' a position which
determines whether approximate stability exists (no pieces en prise,
eto.), A crude definition might be :
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y(P)=

1 jf any piece is attacked by a piece of lower value, or by more
pieces then defences or if any check exista on a square
controlled by opponent.

ootherwise.

Using this function, variations could be explored until U(P)=O, always,
however, going at least two moves and never more than say, 10.

The second improvement would require a function /1,(P, M) to decide
whether a move 1\1 in position P is worth exploring..It is important that
this preliminary screening should not eliminate moves which merely look
bad at first sight, for example, a move which puts a piece en prise ;
frequently such moves are actually very strong since the piece cannot
he safely taken.

•,; Always give check, it may be n;ate" is tougue-in-cheek advice
given to beginners aimed at their predilection for useless checks. "Always
investigate a check, it Jnay lead to Illata H is sound advice for any player•
•\ check is the l110St forceful type of nlOVC. Tho opponent's replies are
highly limited-s-he can never answer by counter. attack, for example.
This means that a variation starting with a check can be more readily
calculated than any other. Similarly captures, attacks on major pieces,
l hreats of 111a.tC, etc. limit the opponent's replies and should be calculated
whether the move looks good at first sight or not. Hence, It(P, M) should
he given large values for all forceful moves (checks, captures and attacking
moves), for developing JllOVCS, medium values for defensive moves, and
low values for other moves, In exploring a variation It{P, M) would be
calculated as tho machine computes and would be used to select the
variations considered. As it gets further into the variation tho require-
ments on h are set higher so that fewer and fewer subvariations are
examined. Thus, it would start considering every first move for itself,
only the more forceful replies, etc. BJ" this process it.s computing efficiency
would be greatly improved.

It is believed that an electronic computer incorporating these two
improvements 'in the }lrogranl would play It fairly strong game, at
speeds comparable to human speeds. It may be noted that a machine
has several advantages over humans :-

(1) High-speed operation in' individual calculations.
(2) Freedom from errors. The only errors will be due. to deficiencies

of the progranl while human players are continually guilty of very
simple and obvious blunders.

(3) Freedom front laziness. It is all too easy for It' ]lU111an player to
make instinctive moves without !Jroper analysis of the position.

(4) Freedom from "nerves". Human 'players are prone to blunder
due to over-confidence in U won" positions. or defeatism and self-
recrimination in cc lost " positions.

These must be balanced against the flexibility, imagination and
inductive and learning capacities of the human mind,
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Incidentally, the person WIlO designs the program can calculate
'the move that the machine will 01100SC in any position, and tl1US in a
sense can play an equally good game. In actual fact, however, the
calculation would be impractical because of the time required, On a
fair basis. of comparison, giving, the machine and the designer equal
time to decide on a move, the machine might well playa stronger game.

7. VARIATIONS IN PLAY AND IN STYLE.

As described so far the machine once designed would always make the
same move in the same position. If the opponent made the same moves
this would always lead to the same game. It is desirable to avoid this,
since if the opponent wins one game he could play the same variation
and win continuously, due perhaps to some particular position arising
in tho variation whore the machine chooses a very weak move,

One way to prevent this is to have a statistical element in the machine..
'Vhetlever'there are two or more moves which are of nearly equal value
according to the machine's calculations it chooses from them at random,
In the same position a second time it may then choose another in the set.

The opening is another place where statistical variation can be intro-
duced. It would seem desirable to J1Bve a number of the standard
openings stored in a slow-speed memory in the machine. Perhaps a few
hundred would be satisfactory. For the first few moves' (until either the
opponent deviates from the Ie book" or the end of the stored variation
is, reached) the machine plays by memory. This is hardly cc cheating ,.
since that is the way chess masters play the opening.

It is interesting that the cc style" of play of the machine can be changed..
very easily by altering some of the coefficients and numerical factors
involved in the evaluation function and the other programs. By
placing high values on positional weaknesses, etc. a positional-type player
results. .By more intensive examination of forced variations it becomes
a combination player. Furthermore, the atrength of the play can be
easily adjusted by· changing the depth of calculation and by omitting
or adding. terms to the evaluation function.

Finally we ma~ note that a machine of this type will play cc brilliantly"
up to its limits. It will readily sacrifice a queen, or other piece. in order
to gain more material later or to give checkmate provided the completion
of the combination occurs within its computing limits.

The 'chief weakness is that the machine will not learn by its mistakes..
The only way to improve its play is by improving the program.
Some thought has been given to designing a. program which is self-
improving but, although it appears to be possible, the methods thought
of so far do not seem to be very practical. One possibility is to have a
higher level program which changes the terms and coefficients involved
in the evaluation function depending on the results of games the machine
has played. Small variations might be introduced in these terms and
the values selected to give the greatest percentage of cc wins".
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8. ANOTHER TYPE OF STRATEGY.

rJ~J10 Mt"l'n,t,cgic~ described above do nob, of 'course, exhaust tho })OMMi-

hilities. ,In fact, there arc undoubtedly uthers which nrc far more efficient.
in tho usc of a vailable computing tiUIC OJI the machine, Even with the
improvements we have discussed the above strategy gives all impression
of relying too much on ,~ bruteforce " ealculations rather than on logical
unalysis of a position. It plays something liko a beginner at chess who
)ias ,been told BODle' of the, principles and is possessed of tremendous
energy.and accuracy for calculation but JUts J10 experience with the game.
A Cl1088 master, 011 the other hand, has available knowledge of hundreds
or perhaps thousands of. standard situnt.ions, stock combinations, and
common maneeuvros which occur time and again in the ,game., There
nro, for example, the typical sacrifices of a knight a.t 137 or a' bishop at
It7, the standar{l,nlnte~ such as the "T'hilidor Legacy ", manceuvrcs
based 011 pins, forks, discoveries, ·pl'oI11ot,iol1, etc. In u~ given .position
Ito recognizes somesimilarit.y to n, 'familiar sltuaf.ion and this directs his
mental calculations along Iines with greater probability of SUC~CBS.

There is no reason WIlY a }>rogralll based on SHC)l h type positions "
could not be constructed, ~rJlis would require, however, a rather for-
midable analysis of the game, Although there arc vnrious books analysing
combination play and the middle game, they arc written for human
consumption, not, for eomputing machines. It iH possible -to give a l)ersol~

one or two specific examples of a general. situat ion and have him under-
stand RI1(I RIll»))' the general principle involved _ 'Vit 11 n computer an
exact and completely explicit characterization .of the situation must be
given with all Iimitations, special cases, etc. taken into account, "TO

are .inclined to believe, however, t.haf if t.his were done a much more
'officient llrogl'ltnl would result.

1"0 progranl such a stratogy we mlght suppose that any position
in the machine is accompanied by a rather elaborate analysis of the
tuctical structure of tho position suitably encoded. ' This analyt.ical dat.~
will state that, (or example, .the Black knight at B:J is pinned by a bishop,
that the White rook at K I cannot leave the back rank because of' a
threatened mate 011 B8" tha~ a White knight at R4 .has no move, etc.; in
short, al! t,)16 facts to which a, ehesa player would ascribe importance in
nnalysing tactical possibilities. These data would be supplied by Ii
program and would be continually changed, and kept up-to-date ns
the game progressed, The analytical data would be used to trigger
various other programs depending on tho .partioular nature of tho
position. A pinned piece' should be attacked. If a rook must guard
the back 'rank it cannot guard tho pawnin front of it, etc. The machine
obtains in this manner auggestions of plausible nlOVCS to investigate.

I~ is not being suggested that we should design the strategy in our own
image. Rather it should be matched to the capacities and weaknesses
of the computer, The computer is strong in speed and accuracy and
weak 'in analytical ability and recognition. Hence, it should make more
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usc 9£ brutal calculations than humans, hut, with possi ble variabions
increasing by a factor of 103 c~el'Y .~110VC, a little selection goes it lung
Wlty toward improving blind trial and error.
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APPENDIX.

'l'JI~ EVALUA'l'ION 1.'uNc'l10~ ron l!]II~~S.

'I'he evuluntion function J'(P) should take into account (,110 ,. long term :"
udvantuges alill disadvantages of a position, i, e. effects which may bu
expected to pcraist over n number of Ill0VeS longer than individuul
variations are calculated. Thus the evaluation is mainly concerned with
positional 01' st I'utegic considerat ions rat her than com binatorial or tactical
ones. Of course t.here is no sharp line of division ; many features of a
position are 011 t.110 borderline. It ap})cnr:';t however, t.lul,t tho following
might properly be included in ·j'(l» :-

(l) Materia! advantage (difference in totul material).
(~) l)n,Wll formation :

(",) Backward, isolated and doubled lutWIl~.

(/~) Relat.ive control of centre (pawns at ]{.f, (l4, J~4).

(c) Weakness of pawns near king (c. y. advanced l\..Nll).
(fl) Pawns on opposite colour squares from bishop,
(e) Passed pawns.

(a) Positions of pieces :
(a) Advanced knight (at }{!), (l';t 135, Ku, (~U, BU), especially, if

protected by pawn and free from IU\Wll uttuck.
(b) Rook on open, file, or semi-open file.
(c) Rook on seventh rank.
(fl) Doubled rooks.

(4') Conunitrnonts.tattacks and options :
(a) Pieces which are required for guarding Iunctions aud, thoro..

fore, committed and with limited mobility.
(b) Attacks on pieces which give one player an .opbion of

exchanging.
(c) Attacks on squares adjacent to king.
(d) Pins. We mean hero immobilizing pins where the 'pinl1ed

piece is of value not greater than the pinning pieoe ; f011l

example, a knight pinned by a bishop,
(5) Mobility.
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These factors will apply in the middle game: during the opening and
end game different principles. must be used. The relative values to be
given eaoh of the above quant.itiea is open to considerable debate, 8n(1
should be determined by some experimental procedure. There are also
numerous other factors which may well be worth inclusion. The more
violent tactical weapons, such as discovered checks, forks' and pins by It

piece of lower value are omitted since they are best accounted for by
the examination of specific variations.
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Thinking makes it so.

Things are in the saddle and ride mankind.

You're not a man, you'r« a machine.
-GEORGe BERNARD SHAW (Arms and the Man)

-SUAKESPEARE (Ha"l1e/)

-RALPH W ALOO EMERSON

A Chess-Playing Machine
By CLAUDE E. SHANNON

FOR centuries philosophers and scientists have speculated about whether
or not the human brain is essentially a machine. Could a machine be de..
signed that would be capable of "thinking"? During the past decade sev-
eral large-scale electronic computing machines have been constructed
which are capable of something very close to the reasoning process. These
new computers were designed primarily to carry out purely numerical
calculations. They perform automatically a long sequence of additions,
multiplications and other arithmetic operations at a rate of thousands per
second. The basic design of these machines is so general and flexible, how-
ever) that they can be adapted to work symbolically with clements repre-
senting words, propositions or other conceptual entities.

One such possibility, which is already being investigated in several quar-
ters, is that of translating from one language to another by means of a
computer. The immediate goal is not a finished literary rendition, but only
a word-by-word translation that would convey enough of the meaning to
be understandable. Computing machines could also be employed for many
other tasks of a semi-rote, senti-thinking character, such as designing elec-
trical filters and relay circuits, helping to regulate airplane traffic at busy
airports, and routing long-distance telephone calls most efficiently over a
limited number of trunks.

Some of the possibilities in this direction can be illustrated by setting up
a computer in such a way that it will play a fair game of chess. This
problem, of course, is of no importance in itself, but it was undertaken
with a serious purpose in mind. The investigation of the chess-playing
problem is intended to develop techniques that can be used for more prac-
tical applications.

The chess machine is an ideal one to start with for several reasons. The
problem is sharply defined, both in the allowed operations (the moves of
chess) and in the ultimate goal (checkmate). It is neither so simple as to
be trivial nor too difficult for satisfactory solution. And such a machine
could be pitted against a human opponent, giving a clear measure of the
machine's ability in this type of reasoning.

Reprinted with permission. Copyright © (1950) by Scientific American, Inc. All rights reserved
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There is already a considerable literature on the subject of chess-playing
machines. During the late 18th and early 19th centuries a Hungarian in-
ventor named Wolfgang von Kempelen astounded Europe with a device
known as the Maelzel Chess Automaton, which toured the Continent to
large audiences . A number of papers purporting to explain its operation,
including an analytical essay by Edgar Allan Poe, soon appeared. Most of
the analysts concluded, quite correctly, that the automaton was operated
by a human chess master concealed inside. Some years later the exact
manner of operation was exposed (see Figure I).

FIGURE I-Chess machine of the 18th century was actually ron by man inside.

A more honest attempt to design a chess-playing machine was made in
1914 by a Spanish inventor named L. Torres y Quevedo, who constructed
a device that played an end game of king and rook against king. The
machine, playing the side with king and rook, would force checkmate in
a few moves however its human opponent played. Since an explicit set of
rules can be given for making satisfactory moves in such an end game,
the problem is relatively simple, but the idea was quite advanced for that
period.

An electronic computer can be set up to playa complete game. In order
to explain the actual setup of a chess machine, it may be best to start with
a general picture of a computer and its operation.

A general-purpose electronic computer is an extremely complicated de-
vice containing several thousand vacuum tubes, relays and other elements.
The basic principles involved, however, are quite simple. The machine has
four main parts : (1) an "arithmetic organ," (2) a control element, (3) a
numerical memory and (4) a program memory. (In some designs the two
memory functions are carried out in the same physical apparatus.) The
manner of operation is exactly analogous to a human computer carrying
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out a series of numerical calculations with an ordinary desk computing
machine. The arithmetic organ corresponds to the desk computing ma-
chine, the control element to the human operator, the numerical memory
to the work sheet on which intermediate and final results are recorded,
and the program memory to the computing routine describing the series of
operations to be performed.

In an electronic computing machine, the numerical memory consists of
a large number of "boxes," each capable of holding a number. To set up
a problem on the computer, it is necessary to assign box numbers to all
numerical quantities involved, and then to construct a program telling the
machine what arithmetical operations must be performed on the numbers
and where the results should go. The program consists of a sequence of
"orders," each describing an elementary calculation. For example, a typi-
cal order may read A 372, 451, 133. This means: add the number stored
in box 372 to that in box 451, and put the sum in box 133. Another type
of order requires the machine to make a decision. For example, the order
C 291, 118, 345 tells the machine to compare the contents of boxes 291
and 118; if the number in box 291 is larger, the machine goes on to the
next order in the program; if not, it takes its next order from box 345.

This type of order enables the machine to choose from alternative proce-
dures, depending on the results of previous calculations. The "vocabulary"
of an electronic computer may include as many as 30 different types of
orders.

After the machine is provided with a program, the initial numbers re-
quired for the calculation are placed in the numerical memory and the
machine then automatically carries out the computation. Of course such
a machine is most useful in problems involving an enormous number of
individual calculations, which would be too laborious to carry out by
hand.

The problem of setting up a computer for playing chess can be divided
into three parts: first, a code must be chosen so that chess positions and
the chess pieces can be represented as numbers; second, a strategy must be
found for choosing the moves to be made; and third, this strategy must be
translated into a sequence of elementary computer orders, or a program.

A suitable code for the chessboard and the chess pieces is shown in
Figure 2. Each square on the board has a number consisting of two digits,
the first digit corresponding to the "rank" or horizontal row, the second

to the "file" or vertical row. Each different chess piece also is designated
by a number: a pawn is numbered 1, a knight 2, a bishop 3, a rook 4 and
so on. White pieces are represented by positive numbers and black pieces
by negative ones. The positions of all the pieces on the board can be
shown by a sequence of 64 numbers, with zeros to indicate the empty
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FIGURE 2-Code lor a chess-playing machine i. plotted on a chessboard . Each squire can be

designated by two digits. one representing the hurizontal row and the other the verti-

cal . Pieces also are coded In numbers.

squares. Thus any chess position can be recorded as a series of numbers
and stored in the numerical memory of a computing machine .

A chess move is specified by giving the number of the square on which
the piece stands and of the one to which it is moved. Ordinarily two
numbers would be sufficient to describe a move, but to take care of the
special case of the promotion of a pawn to a higher piece a third number
is necessary. This number indicates the piece to which the pawn is con-
verted. In all other moves the third number is zero. Thus a knight move
from square 01 to 22 is encoded into 0I, 22, O. The move of a pawn from
62 to 72, and its promotion to a queen, is represented by 62, 72, 5.

The second main problem is that of deciding on a strategy of play. A
straightforward process must be found for calculating a reasonably good
move for any given chess position. This is the most difficult part of the
problem. The program designer can employ here the principles of correct
play that have been evolved by expert chess players. These empirical
principles are a means of bringing some order to the maze of possible
variations of a chess game. Even the high speeds available in electronic
computers are hopelessly inadequate to play perfect chess by calculating
all possible variations to the end of the game. In a typical chess position
there will be about 32 possible moves with 32 possible replies-already
this creates 1,024 possibilities. Most chess games last 40 moves or more
for each side. So the total number of possible variations in an average
game is about 1012°. A machine calculating one variation each millionth
of a second would require over 1005 years to decide on its first move!
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Other methods of attempting to play perfect chess seem equally im-
practicable; we resign ourselves, therefore, to having the machine play a
reasonably skillful game, admitting occasional moves that may not be the
best. This, of course, is precisely what human players do: no one plays a
perfect game.

In setting up a strategy on the machine one must establish a method of
numerical evaluation for any given chess position. A chess player looking
at a position can form an estimate as to which side, White or Black, has
the advantage. Furthermore, his evaluation is roughly quantitative. He
may say, "White has a rook for a bishop, an advantage of about two
pawns"; or "Black has sufficient mobility to compensate for a sacrificed
pawn." These judgments are based on long experience and are summarized
in the principles of chess expounded in chess literature. For example, it
has been found that a queen is worth nine pawns, a rook is worth five,
and a bishop or a knight is worth about three. As a first rough approxima-
tion, a position can be evaluated by merely adding up the total forces for
each side, measured in terms of the pawn unit. There are, however, numer-
ous other features which must be taken into account: the mobility and
placement of pieces, the weakness of king protection, the nature of the
pawn formation, and so on. These too can be given numerical weights
and combined in the evaluation, and it is here that the knowledge and
experience of chess masters must be enlisted.

Assuming that a suitable method of position evaluation has been de-
cided upon, how shoutd a move be selected? The simplest process is to
consider all the possible moves in the given position and choose the one
that gives the best immediate evaluation. Since, however, chess players
generally look more than one move ahead, one must take account of the
opponent's various possible responses to each projected move. Assuming
that the opponent's reply will be the one giving the best evaluation from
his point of view, we would choose the move that would leave us as well
off as possible after his best reply. Unfortunately, with the computer
speeds at present available, the machine could not explore all the possi-
bilities for more than two moves ahead for each side, so a strategy of this
type would play a poor game by human standards. Good chess players
frequently play combinations four or five moves deep, and occasionally
world champions have seen as many as 20 moves ahead. This is possible
only because the variations they consider are highly selected. They do not
investigate all lines of play, but only the important ones.

The amount of selection exercised by chess masters in examining possi-
ble variations has been studied experimentally by the Dutch chess master
and psychologist .A. D. De Groot. He showed various typical positions to
chess masters and asked them to decide on the best move, describing
aloud their analyses of the positions as they thought them through. By
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this procedure the number and depth of the variations examined could
be determined. In one typical case a chess master examined 16 variations,
ranging in depth from one Black move to five Black and four White
moves. The total number of positions considered was 44.

Clearly it would be highly desirable to improve the strategy for the
machine by including such a selection process in it. Of course one could
go too far in this direction. Investigating one particular line of play for
40 moves would be as bad as investigating all lines for just two moves.

A suitable compromise would be to. examine only the important possible
variations-that is, forcing moves, captures and main threats-and carry
out the investigation of the possible moves far enough to make the conse-

quences of each fairly clear. It is possible to set up some rough criteria
for selecting important variations, not as efficiently as a chess master, but
sufficiently wen to reduce the number of variations appreciably and
thereby permit a deeper investigation of the moves actually considered.

The final problem is that of reducing the strategy to a sequence of
orders, translated into the machine's language. This is a relatively straight..

forward but tedious process, and we shall only indicate some of the
general features. The complete program is made up of nine sub-programs
and a master program that cans the sub-programs into operation as
needed. Six of the sub-programs deal with the movements of the various
kinds of pieces. In effect they tell the machine the allowed moves for these
pieces. Another sub-program enables the machine to make a move "men..
tally" without actually carrying it out: that is, with a given position stored
in its memory it can construct the position that would result if the move
were made. The seventh sub-program enables the computer to make a list
of all possible moves in a given position, and the last sub-program evalu..
ates any given position. The master program correlates and supervises the
application of the sub-programs. It starts the seventh sub-program making
a list of possible moves, which in turn calls in previous sub-programs to
determine where the various pieces could move. The master program then
evaluates the resulting positions by means of the eighth sub-program and

compares the results according to the process described above. After

comparison of all the investigated variations, the one that gives the best

evaluation according to the machine's calculations is selected. This move
is translated into standard chess notation and typed out by the machine.

It is believed that an electronic computer programmed in this manner
would playa fairly strong game at speeds comparable to human speeds. A
machine has several obvious advantages over a human player: (1) it can
make individual calculations with much greater speed; (2) its play is free
of errors other than those due to deficiencies of the program, whereas
human players often make very simple and obvious blunders; (3) it is free
from laziness, or the temptation to make an instinctive move without
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Black
RXR
QXQ

proper analysis of the position; (4) it is free from "nerves," so it will
make no blunders due to overconfidence or defeatism. Against these ad-
vantages, however, must be weighed the flexibility, imagination and learn-
ing capacity of the human mind.

Under some circumstances the machine might well defeat the program
designer. In one sense, the designer can surely outplay his machine; know-
ing the strategy used by the machine, he can apply the same tactics at a
deeper level. But he would require several weeks to calculate a move, while
the machine uses only a few minutes. On an equal time basis, the speed,
patience and deadly accuracy of the machine would bc telling against
human fallibility. Sufficiently nettled, however, the designer could easily
weaken the playing skill of the machine by changing the program in such
a way as to reduce the depth of investigation (see Figure 3). This idea
was expressed by a cartoon in The Saturday Evening Post a while ago.

As described so far, the machine would always make the same move
in the same position. If the opponent made the same moves, this would
always lead to the same game. Once the opponent won a game, he could
win every time thereafter by playing the same strategy, taking advantage
of some particular position in which the machine chooses a weak move.
One way to vary the machine's play would be to introduce a statistical
element. Whenever it was confronted with two or more possible moves
that were about equally good according to the machine's calculations, it
would choose from them at random. Thus if it arrived at the same position
a second time it might choose a different move.

Another place where statistical variation could be introduced is in the
opening game. It would be desirable to have a number of standard open-
ings, perhaps a few hundred, stored in the memory of the machine. For
the first few moves, until the opponent deviated from the standard re-
sponses or the machine reached the end of the stored sequence of moves,
the machine would play by memory. This could hardly be considered
cheating, since that is the way chess masters play the opening.

We may note that within its limits a machine of this type will play a
brilliant game. It will readily make spectacular sacrifices of important
pieces in order to gain a later advantage or to give checkmate, provided
the completion of the combination occurs within its computing limits. For
example, in the position illustrated in Figure 4 the machine would quickly
discover the sacrificial mate in three moves:

White
1. R..K8 Ch
2. Q-Kt4 Ch
3. Kt-B6 Mate

Winning combinations of this type are frequently overlooked in amateur
play.
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FIGURE J-Inevltable advantage 01 man over the machine Is Illustrated In lhls draw In,. At top

human player loses to machine. In eenter netlled human player revises machine '. In-

.trucUons. At bottom human player win•.
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FIGURE 4-rroblem Ihat Ihe machine could solve brilllanlly mllht belln wilh Ihis chess posltlon,

The machine would sacrifice a rook. and a queen . the most powerful piece on 'he

board. and Ihcn win In only one more move.

The chief weakness of the machine is that it witl not learn by its mis-
takes . The only way to improve its play is by improving the program.
Some thought has been given to designing a program that would develop
its own improvements in strategy with increasing experience in play.
Although it appears to be theoretically possible, the methods thought of
so far do not seem to be very practical. One possibility is to devise a
program that would change the terms and coefficients involved in the
evaluation function on the basis of the results of games the machine had
already played. Small variations might be introduced in these terms, and
the values would be selected to give the greatest percentage of wins.

The Gordian question, more easily raised than answered is: Does a
chess-playing machine of this type "think"? The answer depends entirely
on how we define thinking. Since there is no general agreement as to the
precise connotation of this word, the question has no definite answer.
From a behavioristic point of view, the machine acts as though it were
thinking. It has always been considered that skillful chess play requires
the reasoning faculty. If we regard thinking as a property of external
actions rather than internal method the machine is surely thinking.

The thinking process is considered by some psychologists to be essen-
tially characterized by the following steps: various possible solutions of a
problem are tried out mentally or symbolically without actually being
carried out physically ; the best solution is selected by a mental evaluation
of the results of these trials ; and the solution found in this way is then
acted upon. It will be seen that this is almost an exact description of how



666 C. E. Shannon

a chess-playing computer operates, provided we substitute "within the
machine" for "mentally."

On the other hand, the machine does only what it has been told to do.
It works by trial and error, but the trials are trials that the program
designer ordered the machine to make, and the errors are called errors
because the evaluation function gives these variations Jow ratings. The
machine makes decisions, but the decisions were envisaged and provided
for at the time of design. In short, the machine does not, in any real sense,
go beyond what was built into it. The situation was nicely summarized by
Torres y Quevedo, who, in connection with his end-game machine, re-
marked: "The limits within which thought is really necessary need to be
better defined . . . the automaton can do many things that are popularly
classed as thought."



Memory Requirements in a Telephone Exchange

By CLAUDE E. SHANNON

(Alatulscript Received Dec. 7-, 1949)

1. INTRODUCTION

A GENERAL telephone exchange with 1" subscribers is indicated sche-
matically in Fig. 1. The basic function of an exchange is that of setting

up a connection between any pair of subscribers. In operation the exchange
must "remember," in some Iorm, which subscribers arc connected together
until the corresponding calls are completed. This requires a certain amount
of internal memory, depending on the number of subscribers, the maximum
calling rate, etc. A number of relations will be derived based on these con-
siderations which give the minimum possible number of relays, crossbar
switches or other elements necessary to perform this memory function.
Comparison of any proposed design with the minimum requirements ob-
tained from the relations gives a measure of the efficiency in memory utili-
zation of the design.

Memory in a physical system is represented by the existence of stable
internal states of the system, A relay can be supplied with a holding con-
nection so that the armature win stay in either the operated or unoperated
positions indefinitely, depending on its initial position. It has, then, two
stable states. A set of N relays has 2N possible sets of positions for the arma-
tures and can be connected in such a way that these are all stable. The total
number of states might be used as a measure of the memory in a system,
but it is more convenient to work with the logarithm of this number. The
chief reason for this is that the amount of memory is then proportional to
the number of elements involved. With N relays the amount of memory is
then M = log 2N

= N log 2. If the logarithmic base is two, then 10g2 2 = 1
and M = N. The resulting units may be called binary digits, or more
shortly, bits. A device with M bits of memory can retain M different "yes's"
or "no's" or M different O's or 1's, The logarithmic base 10 is also useful in
some cases. The resulting units of memory will then be called decimal
digits. A relay has a memory capacity of .301 decimal digits. A 10 X 10
crossbar switch has 100 points. If each of these points could be operated
independently of the others, the total memory capacity would be 100 bits
or 30.1 decimal digits. As ordinarily used, however, only one point in a
vertical can be' closed. With this restriction the capacity is one decimal
digit for each vertical, or a total of ten decimal digits. The panels used in a

667
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(1)

(2)

panel type exchange are another form of memory device. If the commutator
in a panel has 500 possible levels, it has a memory capacity of log 500;8.97
bits or 2.7 decimal digits. Finally, in a step-by-step system, IOO-point selec-
tor switches are used. These have a memory of two decimal digits.

Frequently the actual available memory in a group of relays or other
devices is less than the sum of the individual memories because of artificial
restrictions on the available states. For technical reasons, certain states are
made inaccessible-if relay A is operated relay B must be unoperated, etc.
In a crossbar it is not desirable to have more than nine points in thc same
horizontal operated because of the spring loading on the crossarm, Con-
straints of this type reduce the 1l1CJUory per ClC111cnt and imply that more
than the minimum requirements to be derived will be necessary.

,--
en 2--cr
w
Ul I
ii I EXCHANGE\J I
U1 Im I:>
en

N"-

Fig. I-General telephone exchange.

2. MEMORY !{EQUIRED FOR ANY S CALLS OUT O}~ N Sunscumzas

The simplest case occurs if we assume an isolated exchange (no trunks
lo other exchanges) and suppose it should be able lo accommodate any pos-
sible set of S or fewer calls between pairs of subscribers. If there are a total
of N subscribers, the number of ways we can select m pairs is given by

N (IV - 1) (1" - 2) .. · (1" - 2111 + 1) _ 1" !
2m lIt! - 2m,n!(N - 21n)!

The numerator N(ftl - 1) ... (N - 211t + 1) is the number of ways of
choosing the 211t subscribers involved ou l of the iV. The 11/.! takes care of
the permutations in order of the calls and 2"& the inversions of subscribers
in pairs. The total number of possibilities is then the sum of this for 111 =

0, 1, · · · , S; i.e.

8 1\' r2: ·
".-0 2m 1n!(N - 211t)!

The exchange must have a stable internal state corresponding to each of
these possibilities and must have, therefore, a memory capacity Al where

l3 i\1 I
M = 10 L zv : .

g 0 2"'11t !(N - 211l)!
(3)
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If the exchange were constructed using only relays it must contain at least
log2 L NI/2mllt l(i, r - 2I1t)! relays. If 10 X 10 point crossbars arc used in

the normal fashion it must contain at least 1~ loglD L N !/2mm !(N - 2m)!

of these, etc. If Iewer arc used there arc not enough stable configurations of
connections available to distinguish all the possible desired interconnections,
With N = 10,000, and a peak load of say 1000 simultaneous conversations
M = 16,637 bits, and at least this many relays or 502 10 X 10 crossbars
would be necessary. Incidentally, for numbers LV and S of this magnitude
only the term l1t = S is significant in (3).

The memory computed above is that required only for the basic function
of remembering who is talking to \Vh0I11 until the conversation is completed.
Supervision and control functions have been ignored. One particular super-
visory function is easily taken into account. The call should be charged to

MEMORY RELAYS
,_-----A~__- __

f--

2--

I
I
I
I
I
I
I
I

N--

SWITCHING
NETWORK

CONTROL CIRCUIT

Fig. 2-l\'lininlulll memory exchange.

the calling party and under his control (i.e. the connection is broken when
the calling party hangs up). Thus the exchange must distinguish between
a calling band b calling 0.. Rather than count the number of pairs possible
we should count the number of ordered pairs. The effect of this is merely
to eliminate the 2'n in the above formulas,

The question arises as to whether these limits are the best possible-could
we design an exchange using only this minimal number of relays, for ex-
ample? The answer is that such a design is possible in principle, but for
various reasons quite impractical with ordinary types of relays or switching
elements. Figure 2 indicates schematically such an exchange. There are M
memory relays numbered 1, 2, ... , M. Each possible configuration of calls
is given a binary number Irom °to 2M and associated with the corresponding
configuration of the relay positions. \Vc have just enough such positions to
accommodate an desired interconnections of subscribers.

The switching network is a network of contacts on the memory relays
such that when they arc in a particular position the correct lines are con-
nected together according to the correspondence decided upon. The control
circuit is essentially merely a function table and requires, therefore, no
memory, When a call is completed or a new call originated the desired con-



670 c. E. Shannon

(4)

figuration of the holding relays is compared with the present configuration
and voltages applied to or eliminated from all relays that should be changed.

Needless to say, an exchange of this type, although using the minimum
memory, has many disadvantages, as often occurs when we minimize a
design for one parameter without regard to other important characteristics.
In particular in Fig. 2 the following may be noted: (1) Each of the memory
relays must carry an enormous number of contacts. (2) At each new call or
completion of an old call a large fraction of the memory relays must change
position, resulting in short relay life and interfering transients in the con-
versations. (3) Failure of one of the memory relays would put the exchange
completely out of commission,

3. TIlE SEIJARATE ME~[ORY CONDITION

The impracticality of an exchange with the absolute minimum memory
suggests that we investigate the memory requirements with more realistic
assumptions. In particular, let us assume that in operation a separate part
of the memory can be assigned to each call in progress. The completion of
a current call or the origination of a new call will not disturb the state of the
memory clemenls associated with any call in progress. This assumption is
reasonably well satisfied by standard types of exchanges, and is very natural
to avoid the difficulties (2) and (3) occurring in an absolute minimal design.

If the exchange is to accommodate S simultaneous conversations there
must be at least S separate memories, Furthermore, if there are only this

number, each' of these must have a capacity log N(N2- 1). To see this,

suppose all other calls are completed except the one in a particular memory,
The state of the entire exchange is then specified by the slate of this par-
ticular memory. The call registered here can be between any pair of the N
subscribers, giving a lolal of ,,'(I\T - 1)/2 possibilities. Each of these must
correspond to a different state of the particular memory under considera-
tion, and hence it has a capacity of least log ftl(i,r - 1)/2.

The total memory required is then

M = S 1 f\l(l\T - 1)
og 2 ·

If the exchange must remember which subscriber of a pair originated the
call we obtain

M = S log NCAr - 1).
or, very closely when IV is large,

M = 2S log N,

(5)

(6)

1 B. D. Holbrook has pointed out that by using more than S memories, each can have

for certain ratios of ~, a smaller memory, resulting in a net saving. This only occurs,

however, with unrealistically high calling rates.
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The approximation in replacing (5) by (6), of the order of~ log e, is equiva-

lent to the memory required to allow connections to be set up from a sub-
scriber to himself. With N = 10,000, S = 1,000, we obtain M = 26,600

~ ~:~=t: :::=t:=::
tt ' I 1 I I
o ' " I Ien : I I , I
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:> ,
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Fig. 3-Minimum separate memory exchange.
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Fig. 4-Interconnecting network for Fig. 3.

from (6). The considerable discrepancy between this minimum required
memory and the amount actually used in standard exchanges is due in part
to the many control and supervision functions which we have ignored, and
in part to statistical margins provided because of the limited access property.

The lower bound given by (6) is essentially realized with the schematic
exchange of Fig. "3. Each box contains a memory 2 log IV and a contact
network capable of interconnecting any pair of inputs, an ordered pair being
associated with each possible stale of the memory. Figure 4 shows such an
interconnection network. By proper excitation of the memory relays 1, 2,
· · ., M, the point p can be connected to any of the ft.' = 2m subscribers on
the left. The relays 1', 2', · · ., M' connect p to the called subscriber on
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the right. The general scheme of Fig, 3 is not too far from standard methods,
although the contact load on the memory clements is still impractical, In
actual panel, crossbar and step-by-step systems the equivalents of the
memory boxes are given limited access to the lines in order to reduce the
contact loads. This reduces the flexibility of interconnection, but only by
a small amoun t on a statistical basis.

4. I{ELATION TO INFORIHATION THEORY

The Iormula !vI = 25 log 1" can be interpreted in terms of information
thcory.! When a subscriber picks up his telephone preparatory to making
a call, he in effect singles out one line Irom the set of 1", and if we regard
all subscribers as equally likely to originate a call, the corresponding amount
of information is log 1". \Vhen he dials the desired number there is a second
choice Irom IV possibilities and the total amount of information associated
with the origin and destination of the call is 2 log 1\'. With S possible simul-
taneous calls the exchange must remember 2S log 1'7 units of information.

The reason we obtain the "separate memory" formula rather than the
absolute minimum memory by this argument is that we have overestimated
the information produced in specifying the call. Actuallythe originating
subscribers must be one of those not already engaged, and is therefore in
general a choice from less than N, Similarly the called party cannot be
engaged; if the called line is busy the can cannot be set up and requires no
memory of the type considered here. When these factors are taken into

account the absolute minimum formula is obtained. The separate memory
condition is essentially equivalent to assuming the exchange makes no use
of information it already has in the Iorm of current calls in remembering
the next call.

Calculating the information on the assumption that subscribers arc
equally likely to originate a call, and are equally likely to call any number,
corresponds to the maxirnum possible information or "entropy" in corn-

munication theory. If we assume instead, as is actually the case, that certain
interconnections have a high a priori probability, with others relatively
small, it is possible to make a certain statistical saving in memory.

This possibility is already exploited to a limited extent. Suppose we have
two nearby communities, If a call originates in either community, the
probability that the called subscriber will be in the same community is
much greater than that of his being in the other. Thus, each of the exchanges
can be designed to service its local traffic and a small number of intercom-
munity calls, This results in a saving of memory. If each exchange has N
subscribers and we consider, as a limiting case, no traffic between exchanges,

2 C. E. Shannon, CCA Mathematical Theory of Communication," Bell S)'stelll Technical
J ournal, Vol. 27, pp, 379-423, and 623-656, July and October 1948.
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the total memory by (6) would be 45 log N, while with all 21V subscribers
in the same exchange 45 log 21" would be required.

The saving just discussed is possible because of a group effect. There are
also statistics involving the calling habits of individual subscribers. A typical
subscriber may make ninety per cent of his calls to a particular small
number of individuals with the remaining ten per cent perhaps distributed
randomly among the other subscribers. 'This effect can also be used to
reduce memory requirements, although paper designs incorporating this
feature appear too complicated to be practical.
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A SYMMETRICAL NOTATION FOR NUMBERS

c. E. SHANNON, Bell Telephone Laboratories

The possibility of representing real numbers in various scales of notation is
well known. Thus, in the scale r an arbitrary positive number b may be expanded
in the form,

N

b = L anr",
-00

o ~ a" ~ r - 1,

and represented in the "decimal" notation as (J,NaN-l • • • ao' a-la-2 • • • •

Negative numbers arc represented by prefixing a minus sign to the rcprcsenta-
tion of the corresponding positive numbers, Although it seems unlikely that the
scale ten will ever be changed for ordinary work, the usc of other scales and sys-
tems of notation is stiJl of practical as well as mathematical interest. In some
types of computing machines, for example, scales other than ten lend themselves
more readily to mechanization.

A slight modification of the ordinary expansion gives a representation for
numbers with certain computational advantages. Assuming r to be odd, it is
seen easily that any positive or negative number b can be represented as

N

b = L. anr",
-co

r-l r-1
---~a ~--,2 - n - 2

and we may denote b as usual by the sequence of its digits

b = aN • • • ao' a_I · · · .

Both positive and negative numbers arc thus represented by a standard notation
without a prefixed sign, the sign being implied by the digits themselves; the
number is positive or negative according as the first (nonvanishing) digit is
greater or less than zero. Every real number has a unique representation apart
from those whose expansion ends in an infinite sequence of the digits (r-l)/2
or - (r -1)/2, each of which has two representations. If this notation were to
be used, a simple notation should be invented for the negative digits which sug-
gested their close relation to the corresponding positive digits. For typographical
simplicity we shall here denote the negative digits by placing primes on the
corresponding positive digits. The notation for the first nine positive and nega-
tive integers with r=3, 5,7,9 is as follows:

r -9 -8 -7 -6 -5 -4 -3 -2 -1

3 1'00 1'01 1'11' 1'10 1'11 1'1 ' 1'0 1'1 l'
5 2'1 2'2 1'2' 1'1' 1'0 t'l 1'2 2' l'
7 1'2' 1'1 ' 1'0 1'1 1'2 1'3 3' 2' l'
9 1'0 1'1 1'2 1'3 1'4 4' 3' 2' l'

674
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r 0 1 2 3 4 5 6 7 8 9
--------------------

3 0 1 11' 10 11 11'1' 11'0 11'1 101' 100
5 0 1 2 12' 11' 10 11 12 22' 21'
7 0 1 2 3 13' 12' 11' 10 11 12
9 0 1 2 3 4 14' 13' 12' 11' 10

In general the negative of any number is found by placing a prime on each un-
primed digit and taking it off each primed digit. Arithmetic operations with this
system arc considerably simplified. In the first place the symmetries introduced
by this notation make the addition and multiplication tables much easier to
learn. For the scale r=9 these tables are, respectively, as follows:

+ 4' 3' 2' l' 0 1 2 3 4

4' 1'1 1'2 1'3 1'4 4' 3' 2' l' 0
3' 1'2 1'3 1'4 4' 3' 2' l' 0 1
2' 1'3 1'4 4' 3' 2' 1' 0 1 2
l' 1'4 4' 3' 2' l' 0 1 2 3
0 4' 3' 2' 1' 0 1 2 J 4
1 3' 2' l' 0 1 2 3 4 14'
2 2' l' 0 1 2 3 4 14' 13'
3 l' 0 1 2 3 4 14' 13' 12'
4 0 1 2 3 4 14' 13' 12' 11'

4' 3' 2' 1' 0 1 2 J 4

4' 22' 13 11' 4 0 4' 1'1 1'3' 2'2
3' 13 10 13' J 0 3' 1'3 1'0 1'3'
2' 11' 13' 4 2 0 2' 4' 1'3 1'1
1' 4 3 2 1 0 l' 2' 3' 4'
0 0 0 0 0 0 0 0 0 0
1 4' 3' 2' l' 0 1 2 3 4
2 1'1 1'3 4' 2' 0 2 4 13' 11'
3 1'3' 1'0 1'3 3' 0 3 13' 10 13
4 2'2 1'3' 1'1 4' 0 4 11' 13 22'

The labor in learning the tables would appear to be reduced by a factor of
at least two from the corresponding r == 9 case in ordinary notation. There is
no need to learn a "subtraction table"; to subtract, one primes all digits of the
subtrahend and adds. The sign of the difference automatically comes out cor-
rect, and the clumsy device of "borrowing" is unnecessary. More generally, to
add a set of numbers, S0111C positive and some negative, all arc placed in a
column without regard to sign and added, e.g. (r =9):
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(1 ') (1) carried numbers.
1 3' l' 2
2' 3 1 4
4' l' 2 3
3 2' 3' 4
3 0 0 l'
l' 2' 1 3'

l' 4 1 0

This process may be contrasted with the usual method where the positive and
negative numbers must be added separately, the smaller sum subtracted from
the Jarger and the difference given the sign of the larger, that is, three addition
or subtraction processes and a sign rule, while with the symmetrical system one
standard addition process covers all cases. Furthermore, in such a sum cancella-
tion is very common and reduces considerably the size of numbers to be carried
in memory in adding a column; this follows Irom the fact that any digit cancels
its negative and these may be struck out from a column without affecting the
sum. If all digits are equally likely and independent, the sum in a column will
have a mean value zero, standard deviation vp(r2 - 1) / 12 where p is the num-
ber of numbers being added, while in the usual notation the mean value is p(r/2)
with the same standard deviation.

Multiplication and division may be carried out also by the usual processes,
and here again signs take care of themselves, although in these cases, of course,
the advantage of this is not so great.

We may note also that in the usual system of notation, when we wish to
"round off" a number by replacing all digits after a certain point by zeros,
the digits after this point must be inspected to see whether they are greater or
less than 5 in the first place following the point. In the former case the preceding
digit is increased by one, With the symmetrical system one always obtains the
closest approximation merely by replacing the following digits by zeros. N um-
bers such as 1.444 · · · = 2.4'4'4' · · · with two representations are exactly
half way between the two nearest rounded off approximations, and in this case
we obtain the upper or lower approximation depending on which representation
is rounded off. If we were using this notation, department stores- would find it
much more difficult to camouflage the price of goods with $.98 labels.

'vVe have assumed until now that the scale r is odd. If r is even, say 10, a
slightly unbalanced system of digits can be used; for example. 4'. 3', 2', 1',
0, 1. 2, 3. 4, 5. The dissymmetry introduced unfortunately loses several of the
advantages described above, e.g., the ease of negation and hence of subtraction,
and also the round off property.

A more interesting possibility is that of retaining symmetry by choosing for
"digits" numbers halfway between the integers. In the case r = 10 the possible
digits would be
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9' 7' 5' 3' l' 1 3 5 7 9
an =-, -, -, -, rr:» -, rr:» -, -,-,

222 2 222 2 2 2

and any number b can be expressed as

N

b == I: a"r".
-00

677

In this system the properties of positive-negative symmetry, automatic handling
of signs, and simple round off are retained. One curious and disadvantageous
feature is that the integers can only be represented as infinite decimals, and this
is possible in an infinite number of different ways. For example.

1 9' 9' 1 9' 9' 9' 1' 9 9 9
o = .- - - · · · = -0- - - · · · =: -.- - - • • • etc.

222 2 222 2 2 2 2

Symmetrical notation offers attractive possibilities (or general purpose com-
puting machines of the electronic or relay types. In these machines it is possible
to perform the calculations in any desired scale and only translate to the scale
ten at input and output. The use of a symmetrical notation simplifies many of
the circuits required to take care of signs in addition and subtraction, and to
properly round off numbers.



A Method of Power or Signal Transmission
to a Moving Vehicle*

Claude E. Shannon

Abstract

This note describes a circuit for power or signal transmission or both to an object which
may be placed anywhere on a surface in any orientation. The transmission is accomplished
without trailing wires or an overhead trolley system. The circuit may have applications in the
toy field for remotely controlled automobiles, in factories and warehouses for supplying power
to fork lifts and delivery trucks, and in other fields.

The general method has many variants. Perhaps the simplest is shown in Figure I. The
floor is covered with strips of conducting material connected alternately to the plus and minus
of the battery. The vehicle has four brushes rubbing on the floor. Three of these are located at
the vertices of an equilateral triangle, and the fourth is at the center of the triangle.

~ +

,..... -

J--- l-- +

~ -

~~ +

~'I"
flOOR

ric. 1

BRUSHES

VeHICLE

The altitude of the triangle is made greater than the width of the strips, and less than 1.5 times
this width. In this case it is easily seen that for any orientation of the vehicle, and any position
on the floor, at least one brush is contacting a positive strip and at least one brush contacts a
negative strip. If the triangle altitude is, say, 1.25 times the strip width there is a margin
sufficient to allow for insulating strips between the conducting strips, and to avoid short circuits
when a brush passes from one strip to the next.

* Bell Laboratories Memorandum, July 19, 1950.
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The brushes are connected as shown to eight rectifying elements. These might be, for
example, two selenium bridge rectifiers. It will be seen that there is always a forward path from
plus battery through the rectifiers, motor, and back to minus battery. All direct paths from plus
to minus pass through at least one rectifier in the reverse direction, and therefore do not cause
short circuits.

+ - + -

- + - +

-to - + -

- + - +

~ - + -

rIG. 2

The general scheme can be varied in many ways. In place of alternate strips, the floor can
be made a checkerboard or interlaced triangles, or other patterns (Figure 2). More brushes and
other arrangements of the brushes can be used. Those in Figure 3 give a larger margin for error
in positioning, or aJlow narrower conducting strips on the floor at the cost of more rectifiers.
The width of the conducting strips can be reduced as much as desired by using a sufficiently
large number of brushes. Figure 4 shows a brush arrangement for this. If n brushes are used
equally spaced along the arms of a three-pointed star, the ratio of conducting width to insulating
width can be reduced to about 4 / n. In this case the brushes along an ann can be connected
together to the same rectifier pair over a length of the ann not greater than the spacing d
between conducting segments. Thus as before only eight rectifiers are necessary. In the limit
one obtains a group of four continuous linear brushes and very narrow conducting strips.

•
•

•

•

•

•

r rc. 3

•

• •

•

Another possibility is that of going to an array of point contacts on the floor, say at the
comers of a checkerboard, and to use brushes which cover a sizable area. This would reduce
the possibility of accidental short circuits from metal dropped on the floor. The point contacts
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might even be recessed in the floor and drawn up magneticaJly when needed.

TO RECTIfiERS

riG••

C. E. Shannon

It may be noted that AC as well as DC may be used from primary power. The rectifiers
rectify the AC in their operation, so the motor could be a DC motor. When operated on DC,
signalling could be accomplished over the same two-wire circuit by various superimposed AC
frequencies, with separating filters on the vehicle.



Presentation of a Maze-Solving Machine*

Claude E. Shannon

This is a maze-solving machine that is capable of solving a maze by trial-and-error means,
of remembering the solution, and also of forgetting it in case the situation changes and the
solution is no longer applicable. I think this machine may be of interest in view of its
connection with the problems of trial-and-error learning, forgetting and feedback systems.

As you can see (Figs. 1 and 2) there is a maze on the top panel of the machine which has a
range of 5 x 5 squares. The maze can be changed in any desired manner by rearranging the
partitions between the twenty-five squares. In the maze there is a sensing finger, which can feel
the partitions of the maze as it comes against them. This finger is moved by two motors, an
east-west motor and a north-south motor. The problem facing the machine is to move the
finger through the maze to the goal. The goal is mounted on a pin which can be slipped into a
jack in any of the twenty-five squares. Thus you can change the problem any way you choose,
within the limits of the 5 x 5 maze. I will tum it on so you can see it, in the first place, trying
to solve the maze. When the machine was turned off, the relays essentially forgot everything
they knew, so that they are now starting afresh, with no knowledge of the maze.

Savage: Does that mean they are in a neutral position, neither to the right nor the left?

Shannon: They are in a kind of nominal position. It isn't really a neutral position but a
meaningless one.

You see the finger now exploring the maze, hunting for the goal. When it reaches the center
of a square, the machine makes a new decision as to the next direction to try. If the finger hits a
partition, the motors reverse, taking the finger back to the center of the square, where a new
direction is chosen. The choices are based on previous knowledge and according to a certain
strategy, which is a bit complicated.

Pitts: It is a fixed strategy? It is not a randomization?

Shannon: There is no random element present. I first considered using a probability
element, but decided it was easier to do it with a fixed strategy. The sensing finger in its
exploration has now reached the goal, and this stops the motors, lights a lamp on the finger, and
rings a bell. The machine has solved the maze. I will now run the finger, manually, back to the
starting point, and you will see that the machine remembers the solution it has found. When I
tum it on, it goes directly to the goal without striking the partitions or making side excursions
into blind alleys. It is able to go directly to the goal from any part of the maze that it has visited
in its exploration. If I now move the finger to a part of the maze that it has not explored, it will
fumble around until it reaches a known region. From there it goes directly to the goal.

Now I should like to show you one further feature of the machine. I will change the maze
so that the solution the machine found no longer works. By moving the partitions in a suitable
way, I can obtain a rather interesting effect. In the previous maze the proper solution starting
from Square A led to Square B, then to C, and on to the goal. By changing the partitions I have
forced the machine at. Square C to go to a new square, Square 0, and from there back to the
original square, A. When it arrives at A, it remembers that the old solution said to go to B, and
so it goes around the circle A, B, C, 0, A, B, C, D.... It has established a vicious circle, or a
singing condition.

* Transactions Sth Cybernetics Conference, Josiah Macy Jr. Foundation, 1952.
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Figure 2
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Gerard: A neurosis.

Shannon: Yes.

Savage: It can't do that when its mind is blank, but it can do it after it has been

conditioned?

Shannon: Yes, only after it has been conditioned. However, the machine has an
antineurotic circuit built in to prevent just this sort of situation.

Mead: After it has done it a number of times?

Shannon: After it has gone around the circle about six times, it will break out. The relay
circuit includes a counter which stops this behavior at the twenty-fourth count.

Frank: How many relays are there in it?

Shannon: All told, there are about seventy-five relays.

Savage: It doesn't have any way to recognize that it is "psycho"; it just recognizes that it
has been going too long?

Shannon: Yes. As you see, it has now gone back to the exploring strategy.

Teuber: Now, does it have to relearn the entire maze, or can it still utilize some form of it?

Shannon: No. As it stands, it can't utilize any information it had before.

Savage: But it is trying to utilize it, I suppose. It is moving as it would move.

Shannon: As a matter of fact, the old information is doing it harm.

Bigelow: I think it's getting to it.

Shannon: Yes, it is gradually working over toward the goal. I should like to spend the rest
of my time explaining some of the things which are involved in the operation of the machine.

The strategy by which the machine operates can be described as follows: There are two
modes of operation, which I call the' 'exploration strategy" and the' 'goal strategy. " They are
both quite simple. The exploration strategy is used when it is first trying to find the goal. For
each square in the maze, there is associated a memory, consisting of two relays. These are
capable of remembering one of four possible directions: north, east, south, or west. The
direction that is remembered for a square is the direction by which the sensing finger left the
square the last time it visited that square. Those are the only data the machine remembers about
the course of the finger through the maze. There are some other memory functions in the
computing part of the circuit, but these remembered directions are the data which allow it to
reproduce its path at a later time.

Now, let's call the remembered direction for a particular square, D, considered as a vector.
In exploration strategy, the machine takes the vector D and rotates it ,90° as the first choice
when it comes into a square. For example, suppose it left a square in the easterly direction at
the last visit. If it comes to that square again, it will try the northern direction as the first
choice. If it hits a barrier and comes back, it again rotates 90°, because it has just put this
northern direction into the memory, and advancing 90°, it tries the westerly direction, and so
on. The choices progress around counterclockwise, starting with the direction by which it left
the square last time - with one exception: it also remembers the direction by which it came into
the square at the current visit, and on the first rotation of the vector D, it skips that direction of
entrance. This is to prevent the path repeating too much. Before that feature was installed,
there was a tendency to explore up to a new square, go back through the entire maze, and then
go one square further, and so on; and it took a very long time to solve the maze. It required
about three times as long as it does now, with this skipping feature added.
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When it hits the goal, a relay operates and locks in, and the machine then acts according to
the goal strategy, which is also based on this vector D.

In the goal strategy, the machine takes as its first choice direction D, which is the direction
by which it left the square on its last visit. This is very simple to do, and it has many
convenient features for maze solving, because it cancels out all blind alleys and circular paths.
Since a blind alley must be left by way of the same square through which it was entered, the
direction D retained for that square will necessarily lead to the goal directly rather than by way
of the side excursion into the blind alley. In a similar way, if the machine follows a circular or
re-entrant path in exploring its way to the goal, the direction retained for the last fork in this
path must be that going to the goal rather than around the side loop. As a consequence, the
machine follows a fairly direct path to the goal after it has first found its way there.

The final feature of forgetting is obtained as follows: After reaching the goal, suppose we
move the sensing finger to a different point in the maze and start it operating. The machine
then starts counting the number of moves it takes, and if it does not reach the goal within a
certain specified number of moves, which happens to be twenty-four in this case, the machine
decides that the maze has been changed or that it is in a circular loop, or something of that sort,
and that the previous solution is no longer relevant. The circuit then reverts to the exploration-
type strategy which is mathematically guaranteed to solve any finite solvable maze.

There are a few other points about the machine which may be of some interest. The
memory is quite undifferentiated in the sense that I can take the group of wires leading from the
rest of the circuit into the memory, shift them over either in the north-south or east-west
directions, and the machine will still operate correctly, with no significant change, although the
data corresponding to a square are then stored in a different part of the memory.

Another point is that there are, of course, a large number of feedback loops in this system.
The most prominent is the feedback loop from the sensing finger through the circuit to the
driving motors and back to the sensing finger, by mechanical motion of the motors. Normally,
if you have a feedback loop and change the sign of the feedback, it completely ruins the
operation of the system. There is ordinarily a great difference between positive and negative
feedbacks. This maze-solving machine, however, happens to be such that you can change
either or both of the signs in the feedback connections, and the machine still operates equally
well. What it amounts to within the circuit is that the significance of right and left is
interchanged; in other words, the effect on the strategy if one of the feedback loops is changed
is that the advance of 90° counterclockwise becomes an advance of 90° clockwise. If both of
them are changed, the strategy is not altered.

Von Foerster: If there are two different ways to reach the target, certainly the machine is
only able to find one. Does the possibility point to its making a choice of the better way?

Shannon: No, it does not necessarily choose the best way, although the probabilities are in
favor of its choosing the shorter of two paths. Incidentally, the exploration strategy of this
machine will solve any maze whether it be simply or multiply connected. Some of the classic
solutions of the maze problem are satisfactory only in the case of simply connected mazes. An
example is the method of keeping your hand always on the right-hand wall. While this will
solve any simply connected maze, it often fails if there are closed loops.

Savage: This cyclical feature that you illustrated occurred because the machine was not then
in really searching condition?

Shannon: No, it was in the goal strategy rather than in the exploratory.

Savage: A goal strategy is to go the way you last went, but what are you to do if the attempt
to do that is frustrated?
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Shannon: Then it returns to the center of the square and advances 90° and tries that
direction. But it still remains in goal strategy.

Savage: I see. When it gets into the next square, it tries to go ahead in the accustomed
direction?

Shannon: That's right. The purpose of this is that it may have learned most of a maze in its
first exploration, but not quite all of it. If we put it into a square it has not visited, it explores
around by trial and error until it reaches a familiar square, and from there goes directly to the
goal. The previously unknown squares have by this process been added to its previous
solution.

Bigelow: You can then put new loops on any known path; it will learn those new loops
immediately .and not get into trouble. Is that right?

Shannon: That's right.

Bigelow: Because when you come back to the main stream, the search goes in the right
direction, if it recognizes that square.

Shannon: I am not sure I understand what you mean.

Bigelow: It forms a single-directional path. Now, then, if you introduce a new path which
brings it out of the known path into strange territory, back into the known path again -

Shannon: Such a side path is completely canceled when it has gone into the goal strategy.

Bigelow: But once you start it around that circuit, then the procedure is correct after the
starting point.

Shannon: If it is in goal strategy, yes, but not in exploratory.

Bigelow: What would you have to do to minimize running time - in order to make it learn
on repeated trials eventually to take the shortest possible path in a more complex maze?

Shannon: I think that would require a considerable amount of memory in the form of relays,
because of the need to store up a number of different solutions of the maze as well as additional
computing relays to compare and evaluate them. It surely could be done, but it would be more
difficult; it would mean a much more complicated machine than this.

Savage: And it would have to decide when to invest the effort to seek a new path. That is
really a very important problem in any kind of real human learning. If you can already peel a
potato, why should you take the trouble to find a better way to peel it? Perhaps you are already
peeling it correctly. How do you know?

Von Foerster: What happens if there is no goal?

Shannon: If there is no goal, the machine establishes a periodic path, searching for the goal;
that is, it gradually works out a path which goes through every square and tries every barrier,
and if it doesn't find the goal, the path is repeated again and again. The machine just continues
looking for the goal throughout every square, making sure that it looks at every square.

Frank: It is all too human.

Brosin: George Orwell, the late author of 1984, should have seen this. *

Von Foerster: And after that? For instance, if you put a goa] into the path after the machine
has established such a periodic motion, what happens then?

* Orwell, G.: 1984. New York, Harcourt, Brace & Co., 1949 and Signet Books, 1950.
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Shannon: When it hits the goal, the machine stops and changes into the goal strategy, and
from there on it goes to the goal as placed there. Incidentally, it is interesting to think of this -
if I can speak mathematically for a moment - in the following way. For each of the twenty-five
squares, the memory of the machine retains a vector field defined over the 5 x 5 maze. As the
sensing finger moves through the maze, it continually revises this remembered vector field in
such a way that the vectors point along possible paths of the maze leading to the point currently
occupied by the finger.

Teuber: If you rotate the field through 180°, would it continue to function?

McCulloch: Suppose you reverse the connections and leave the motor, so that you reverse
your direction of rotation; can it still find its way?

Shannon: Only if I reverse some switches within the machine which tell it what square it is
currently occupying. If I reverse the motors, I must change these switches to compensate.
Otherwise, it would think it was moving one way and put that in the memory and actually be
moving in a different direction.

Gerard: That would be like cross-suturing the motor nerves of animals and getting flexion
when you want extension.

Bigelow: Have you considered how difficult it would be to have a circuit which, instead of
forgetting everything, goes back to the origin and remembers what it did at the first square but
tries something else, say, the opposite search sequence? When that produces no new solution,
go back where it was, in the second square, but try the opposite, therefore asking for the
possibility of replacing each square in its memory as it goes systematically through. In other
words, this would require a very small addition of memory because it need only remember the
entire past pattern once, but then, having reached the state where goal behavior is no longer a
solution (which it knows by exceeding "N" trials), then, instead of erasing its entire thinking,
you have a switching technique where it goes back to the origin, and then tests each hypothesis
in tum.and finds the particular one to replace.

Shannon: I haven't considered that, but I think it would be rather slow, because there is a
great deal of backtracking in that procedure, back to the origin, as it tries out different
hypotheses.

Bigelow: If it knows how to get from the origin to the target, does it not always know how
to get from the target back to the origin, by a very simple reversal of the switches?

Shannon: No. You see, this vector field, if you like, is unique in going in the direction of
the vectors, but going backward, there are branch points, so it does not know where it came
from.

Savage: Does this vector field flow into the target from every point?

Shannon: Yes, if you follow the vectors you will get to the goal, but, going in reverse, you
may come to branch points from which you may go in any ofvarious directions. You can't say
where the sensing finger came from by studying the memory.

Savage: It is not organized around any particular initial point; and that is one of the features
of it, that once it has learned the maze, if you start it anywhere where it has been on its way to
the maze, it continues; if you start it where it hasn't been, it finds one of those places where it
has been, and then continues.

McCulloch: Like a man who knows the town, so he can go from any place to any other
place, but doesn't always remember how he went.



A Mind-Reading (?) Machines

Claude E. Shannon

This machine is a somewhat simplified model of a machine designed by D. W. Hagelbarger.
It plays what is essentially the old game of matching pennies or "odds and evens." This game
has been discussed from the game theoretic angle by von Neumann and Morgenstern, and from
the psychological point of view by Edgar Allen Poe in the "The Purloined Letter." Oddly
enough, the machine is aimed more nearly at Poe's method of play than von Neumann's.

To play against the machine, the player should guess out loud either "right" or "left."
The center button of the machine is then pressed and the machine will light up either the right
or left light. If the machine matches the player, the machine wins, otherwise the player wins.
The player should then move the key switch in the direction corresponding to the choice he
made. The machine will then register a win for the machine or the player, as the case may be,
by shooting a ball into the proper glass tube. The overall score against all players since the
machine was started is shown on the two counters visible through the front panel.

The Strategy of Operation

Basically, the machine looks for certain types of patterns in the behavior of its human
opponent. If it can find these patterns it remembers them and assumes that the player will
follow the patterns the next time the same situation arises. The machine also contains a random
element. Until patterns have been found, or if an assumed pattern is not repeated at least twice
by the player, the machine chooses its move at random.

The types of patterns remembered involve the outcome of two successive plays (that is,
whether or not the player won on those plays) and whether he changed his choice between them
and after them. There are eight possible situations and, for each of these, two things the player
can do. The eight situations are:

1. The player wins, plays the same, and wins. He may then play the same or differently.

2. The player wins, plays the same, and loses. He may then play the same or differently.

3. The player wins, plays differently, and wins. He may then play the same or
differently.

4. The player wins, plays differently, and loses. He may then play the same or
differently.

5. The player loses, plays the same, and wins. He may then play the same or differently.

6. The player loses, plays the same, and loses. He may then play the same or differently.

7. The player loses, plays differently, and wins. He may then play the same or
differently.

8. The player loses, plays differently, and loses. He may then play the same or
differently.

* Bell Laboratories Memorandum, March 18, 1953.
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Each of these corresponds to a different cell in the memory of the machine. Within the cell two
things are registered: (1) whether, the last time this situation arose, the player played the same
or differently; (2) whether or not the behavior indicated in (1) was a repeat of the same behavior
in the next preceding similar situation. Thus consider the situation win, same, lose. Suppose
that the last time this situation occurred in the game the player played "differently". Then
"differently" is recorded in the (1) part of this memory cell. If the preceding time this
situation arose the player also played' 'differently", the (2) part of the memory cell registers
this as a repeat. The machine will assume, should this situation arise again, that this is a
definite pattern in the player's behavior and will play correspondingly. If the player has not
repeated, the machine plays from its random element. The memory cells are always kept up to
date. A particular memory cell, for example, will change from one prediction to the opposite in
two repetitions of the corresponding situation.

A mathematical analysis of the strategy used in this machine shows that it can be beaten by
the best possible play in the ratio 3: I. To do this it is necessary to keep track of the contents of
all the memory cells in the machine. The player should repeat a behavior pattern twice, and
then when the machine is prepared to follow this pattern the player should alter it. It is
extremely difficult to carry out this program mentally because of the amount of memory and
calculation necessary.

The ball counter used in this machine for score keeping is an application of the conservation
of momentum principle. If a ball is struck against a stationary row of equal balls, the
momentum of the first ball is transferred down the line and the last ball in the row moves off
with the velocity of the original striking ball. In this counter the momentum is transferred
through a row of up to fifty balls!

The random element in the machine is actually a commutator rotating at about
10 revolutions per second. Two brushes separated by 1800 bear on this commutator. A copper
segment of the commutator contacts the brushes alternately. When the button is pressed and a
random choice is to be made, the first brush contacted by the commutator determines whether
the choice be "right" or "left". Basically, therefore, the randomness of the device depends on
the uncertainty of the interval between moves, the variation of which due to human variability
is typically large compared to the tenth of a second period of the commutator.



690
C. E. Shannon

MEMORY fOR
REPEATS

+

PLAYER
WINS

MACHINE
WINS

SCORE KEE PING CIRCUIT

V'~-
?-0-~

~,~ -
- '-00 -~~ _ ~s v.':-:

rNo-y--o~.,. S' WI?0- +

A """"'0' AN' MACHINE'S WI "<.--"""- _
_ "';"~PIt:., (HOICET-< Wl'~+

" 1' lIt ' ~2~1

, ,' H' ~ - 1'..-"""--- -
AL.. '" ?§-+

MEMORY PI P " H I~wo' ...;: -1'M- _
WRITE -IN ".-.-- ~o.......'!Z; Q
CIRCUm 6 :. ~:

{~ ~f~ ,,<?0->
+ - WI'~:

MEMOR Y READ -OUT C 1RCU IT~

+

" O'~
- +

"~ -?-G-i-
'tp+- ~WI r'W'--

I'll WI! '~i r::r
Ml ~+

, wr'~'1 .~ .,.

2 ' " ME MORY f OR
L.-_~_----<> 0---<> ------. PRE VI0US

.,6" - BEHAVIOR
~?EJ- T

'~"'"'1A ~w"~.~_M'rXrH
' . \ +

\ 1 ..r*--"y' - A A\ ; ' " )?EJ- +>yl.. TL \ I T. <, oW'- -
] L ~~T
IQ X;
t=-o PI~ ~ __ CURRENT SITUATION RELAYS",,1 s: rL( p; ~

'~
'~~l$ ID

+ +

SEQUENCING RELAYS

"MIND READING' MACHINE



The Potentialities of Computers-

Claude E. Shannon

In atomic energy it has been suggested that we have a bear by the tail. In the development
of computing machines I think we have something like a very active and rapidly growing cub
by the tail. While the advent of computing was by no means as spectacular and dramatic as that
of atomic energy, its end effects promise to be quite as important for the average man.

While the front pages of our newspapers have been carrying articles about the latest bomb
explosion, inside we find notes about mechanical' 'brains," the newest high speed calculators,
machines playing chess and the like. What are these large-scale computers, and what are their
capacities and limitations?

Historically, primitive computing machines such as the Chinese abacus can be traced back
almost as far as civilization itself. However, the first real attempt at a modem calculator goes
back only about a century to George Babbage, who, far ahead of his time, attempted to develop
a machine capable of carrying out a long series of calculations. Financial and technical
difficulties prevented the completion of Babbage's dream, and the art lapsed until just before
World War II. During the war, with the increased flexibility and speed of electronic devices, it
became possible to design modem large scale computers. Since the war the field has been
developing at a constantly accelerating rate.

Most of us are familiar with the adding machines used in banks and laboratories for
ordinary calculations. How do large-scale computers differ from these? In the first place they
are enormously faster - an electronic computer can add two numbers in one ten-thousandth of
a second. In a half hour it can perform calculations which would require a mathematician with
a desk computer a year to complete. In the second place, they have large internal memories in
which they can store data concerning the problem, intermediate results of their calculations and
final answers. Finally and perhaps most important, the machines are programmed. This means
that it is possible to write out in advance a long series of instructions telling the machine what
to do. When this set of instructions, known as the program, is fed into the machine, it faithfully
carries them out, one by one, at extremely high speed. The instructions enable the machine to
perform all the basic operations of arithmetic, addition, subtraction, multiplication and division
and usually various other mathematical operations. The instructions enable the machine to
store information in its memory and read it out at a later time. In addition, there are certain
very important instructions which enable the machine to make a choice or decision between
various lines of behavior. The choice is ordinarily determined by results that the machine will
have available only when the time comes to make the choice. In other words, the machine
makes a decision which the man who writes the program cannot exactly foresee, since he does
not have the data available when writing the instructions on which the decision is to be made.
These seemingly innocuous decision instructions can lead, by being compounded, to the

machine performing acts which the man who wrote the program foresaw only very vaguely or
perhaps not at all, acts akin to thinking, rational decisions, problem solving and learning.

* Bell Laboratories Memorandum, April 3, 1953.
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While it is literally true that these computers do only what we tell them to do, it is possible
to phrase what we tell them to do in such broad terms, involving so many ~ ~ ifs, ands and buts,"
that we can hardly say ourselves what we told them to do. It would in fact take a computing
machine to find out. Put another way, it is possible to instruct them in certain general principles
of behavior, so general that the specific outcome in various situations comes as a complete
surprise even to the man who wrote the instructions for the machine. Indeed, the potentialities
of programming are so great that we have at present only scratched the surface. Programs have
been set up by which machines erase and rewrite parts of their own programs and then follow
the instructions which they have written for themselves.

What can we expect in the development of computing machines in the next 20 or 30 years?
The computers are largely a result of a cooperation between two groups of scientists-
mathematicians and electronic engineers. The engineers construct the machines, and the
mathematicians write the programs and use them. We have, then, two main streams of research
relating to the hardware on the one hand and the logic on the other. With regard to the
engineering aspects, many promising new lines are being explored - one of the most
promising is the newly developed transistor which can perform most of the functions of the
ordinary vacuum tube used in radios and TV sets and, in enormous quantities, in computing
machines. The transistor has many advantages over the vacuum tube such as extremely small
size, long life and low power consumption. Another promising recent development is the
ferroelectric memory - a device which enables one to store information without power
consumption in a very small space. Devices such as these suggest that the computers of the
future may be extremely compact and use far less power than they do today. Other research is
being carried on toward speeding up the already fantastic speeds of the computers and it is quite
possible that in the near future they may operate )0 or even 100 times as rapidly as they do
today.

Now let us take a look at the type of research the mathematicians are doing to improve the
scope and use of computing machines. This work is aimed at the problems of finding out what
computers can do and making it easier to program them.

At the present time, the major use of computers has been in solving mathematical problems
involving a great deal of computation. These problems range from such pedestrian activities as
tabulating and classifying census figures to solving the nuclear equations arising in atomic
work. One of the most significant trends is that because of the high speed of these computers it
becomes possible to solve many problems which previously were considered beyond the realm
of practical calculation. As an example of this, one of the computers has been set up to solve
the equations required for- weather forecasting. Previous to the existence of high speed
computers it would have taken many months to solve the equations for tomorrow's weather.

While the solving of straightforward mathematical problems is the bread and butter work of
the computers, mathematicians are having a field day in exploiting the more general capabilities
of these machines. A look at some of the current research will perhaps suggest the general
trends we may expect in the future.

A frequently raised question and the cause of much friendly argument is ~ 'can computing
machines think?". The answer, of course, depends partly on what is meant by "think" and
also on whether you mean by "machines" computing machines we have today or machines we
expect to have in, say, twenty years. It is certainly possible to program computers in such a
way that they act very much as though they were thinking. For example, they can be set up to
play various games with a certain amount of skill, games of the complexity of bridge or chess.
A computer in England has recently been programmed to play a tolerably good game of
checkers, the program consisting of a set of general principles, not specific moves, which the
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machine applies in whatever situations may arise in the game. Some machines have been built
to play games skillfully enough to defeat the people who designed the machines, and here I
speak from personal experience.

Another line of research being actively studied today is the problem of language translation
by computing machine techniques. While still at a primitive level, it has already been
demonstrated that it is possible for suitably programmed computers to give a crude translation
from one language to another. The translations at present are faulty, containing many errors of
grammar and of meaning, but are still sufficiently good that it is usually possible to understand
the intended meaning of the original text. There is no doubt that refinements of the techniques
will lead to more and more polished translations, although we hardly expect the machines to
give an elegant rendition of, say, Goethe into English in the near future.

Another interesting line of research in the logic of computers is aimed toward making them
learn from experience. Here again, the results so far can hardly compare with the abilities of
human beings but are nevertheless highly suggestive. To cite some examples, a machine has
been developed which solves mazes. A tiny mechanical mouse blunders about in a complicated
maze, eventually, by trial and error, finding its way to the "cheese" in the comer. Placed in the
same maze a second time, the mouse remembers the proper path and runs directly to the cheese
with no mistakes. Its performance is considerably better than that of the average live mouse
placed in the same situation.

Still another computer has been programmed to make symbolic shopping tours. Certain
parts of its memory represent grocery stores, others hardware stores, and so on. The machine
must learn the whereabouts and the products carried by these stores in such a way as to do its
shopping efficiently. In this case, the original program of the machine is of a very general and
flexible nature. As the machine learns the properties of its environment, it in effect writes for
itself a set of much more specific instructions. This seems to me rather close to the manner in
which we suppose animals and man adapt to their environment.

An aspect of animal behavior which has sometimes been held to be unique to life forms is
the ability to reproduce. Is it possible for machines to duplicate this behavior? One of our
leading mathematicians, von Neumann, has studied this problem from the mathematical point
of view. Without actually constructing machines which do this, he has set up an abstract
mathematical model of certain machines which operate, or should I say "live," in a rather
generalized type of environment. One of those machines will collect parts from its
environment and assemble them to produce a second machine of the same type, which then
starts collecting parts to construct a third machine and so on ad infinitum. I hasten to add that
this fascinating but somewhat sinister type of machine is not yet in production.

These are just a few of the many directions of research in the potentialities of computers.
Dr. Ridenour will undoubtedly tell us in the next talk other more immediate and practical
applications of computing machine techniques. Perhaps, however, these few examples will
give you some feeling of the immense generality and flexibility of a modem high speed
computing machine.

In view of the seemingly limitless potentialities, are there any problems which are difficult
or impossible for computing machines to solve? On the abstract mathematical end, the English
mathematician, Turing, has given one answer. He has shown that there are certain classes of
problems of a very esoteric nature which it is impossible for any computing machine following
the present day pattern of organization to solve. A typical problem of Turing's type is to design
a machine which can tell, roughly speaking, whether any other machine presented to the first
machine will eventually give an answer to the problem proposed it. Turing's results
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unfortunately give but cold comfort to those of us who wish to find an element of superiority of
the human mind over the computing machine, for, as Turing points out, these problems are
most likely also unsolvable for a human being.

There is another quite different realm of human activity which it is extremely difficult to
duplicate by mechanical means. This is activity relating to artistic creation and aesthetic
evaluation. While perhaps not impossible for suitably programmed computers, it will certainly
be centuries rather than decades before machines are writing Shakespearean sonnets or
Beethoven symphonies. It is here, rather than in the field of reasoning and logical deduction
that man can continue to show a clear superiority.

Like many scientific advances, the development of computing machines has implications
for man, both good and evil. There can be no turning back. What Wiener has caJJed the
Second Industrial Revolution, in which machines take over many of the control functions now
performed by men, is already under way. There will be short range problems of technological
unemployment and sociological adjustment. These, however difficult they may seem at the
time, can in the long run be solved, as they were in the first Industrial Revolution. There will
be long range problems of a far more serious nature depending on man's ability to adjust to a
world in which his mental powers are somehow devalued. Will he relapse into a Huxleyan
Brave New World type of existence or will he be able to redirect his energies to higher cultural
and spiritual values?



Throbac 1*

Claude E. Shannon

Abstract

Throbac (THrifty ROman-numeral BAckward looking Computer) is a relay desk calculator
operating entirely in the Roman numeral system. It performs the four operations of addition,
subtraction" multiplication and division. The controls and method of operation are very similar
to the Marchant desk calculator.

Operation. The power supply unit is plugged into a llOV AC socket and the cord from the
calculator is plugged into anyone of the two-prong sockets on the power supply. When the
switch on the power supply unit is turned on, the computer is ready for operation.

Addition. To add a series of numbers, first clear the machine by pressing all three clear
buttons. Enter the first number on the keyboard and press the + button momentarily. The first
number will then appear on the lower or main accumulator dial. Clear the keyboard by means
of the Keyboard Clear button, enter the second number on the keyboard and press the + button
again. The sum of the first two numbers will then appear on the lower dial. Continue in the
same manner for all numbers to be added.

The limit of the lower dial is 79 (LXXIX). Should a sum exceed this limit it will be
reduced mod 80. Also, negative numbers will appear in terms of their complements mod 80"
thus 95 will appear as 15 (XV), -7 will appear as 73 (LXXIII).

The successive digits (letters?) of a number entered on the keyboard need not be adjacent.
For example, XVI can be entered with the X in the left-hand column, the V in the center
column and the I in the right-hand column. The machine will accept correctly almost any
reasonable notation for a number, not just the standard one. Thus 4 can be entered not only as
IV but also 1111 (as used on watch dials), IL is interpreted as 49 (XLIX), IIIIIV is interpreted as
o. Its rules of interpretation are as follows:

1. L always counts as +50.

2. X counts as +10 unless followed (not necessarily adjacently) by L, when it counts as
-10.

3. V counts as +5 unless followed by L when it counts as -5. (Note that in any
reasonably written Roman numeral V will not be followed by X.)

4. I counts as +I unless followed by V, X or L when it counts as -1.

Subtraction. Enter the minuend in the keyboard and transfer it to the lower dial by pressing
the + button. Clear the keyboard and enter the subtrahend there. Press the - button and the
difference will appear on the lower dial.

Multiplication. Before a multiplication he sure to press the clear upper button, even if nothing

* Bell Laboratories Memorandum, April 9.1953.
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is registered in the upper dial. This erases memory of the previous multiplication. Enter the
multiplicand in the keyboard. The multiplier is introduced digit by digit, starting with its
right-hand digit, in the three multiplier buttons on the extreme right of the panel. Thus to
multiply 7 by 8, press the Clear upper button, enter VII in the main keyboard and then press in
sequence I, I, I, V in the multiplier buttons. Wait for the machine to stop at each stage before
entering the next digit. The product will appear on the lower dial.

Division. Enter the dividend in the keyboard and transfer to the lower dial by pressing the +
button. Clear the keyboard and enter the divisor there. Press the + button. The quotient will
appear in the upper dial and the remainder in the lower dial. The limit of the quotient dial is 10
(the number of points on the stepping switch that was used). If the correct quotient is greater
than 10, only 10 will appear on the upper dial.

General Principles of the Circuit. The central part of the Throbac circuit is a relay counter
(see Fig. 1). The lowest section of this counter counts mod 5 and accumulates I's, The next
section counts mod 2 and accumulates V's; the final section counts mod 80 and accumulates
X's and L's. By entering this counter at appropriate points, L V, X or L can be added to the
number previously registered. When a reversing relay is operated, I, V, X or L can be
subtracted from the previous number. Contacts on the relays in this counter control the lights
of the lower dial, translating where necessary into standard Roman notation (thus 1111 in the
accumulator appears as IV on the dial).

A number entered in the keyboard is added into the accumulator by reading off the digits of
the number sequentially from right to left and adding them (or subtracting) according to the
rules of interpretation listed above. This sequence is controlled by a stepping switch. If in this
sequence of additions an L occurs, a relay operates and locks in. The operation of this relay
causes any I's, V's or X's thereafter to be subtracted. Other similar relays enforce the other
rules of interpretation. When the addition is complete these relays are all automatically reset.

Subtraction is performed similarly but with an inversion of the-add and subtract parts of this
routine.

Multiplication is performed by successive addition. Pressing the V button, for example,
causes the machine to add the contents of the keyboard into the accumulator five times. Here
again there is a rule of interpretation, that the I button adds unless X or V has already been
pressed. Since the multiplier is fed in from right to left this subtraction occurs only if the I is
followed in the Roman numeral by X or V.

Division is accomplished by successive subtraction. When the divide button is pressed, the
machine starts subtracting the contents of the keyboard from the number registered in the
accumulator. After each subtraction, provided that subtraction did not make the number in the
accumulator go negative, one unit is added into the upper dial. When the accumulator does go
negative, the subtraction has gone one unit too far. The machine adds back the contents of the
keyboard once to make up for this last subtraction and stops.
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Machine Aid for Switching Circuit Design"
('L.\l·J)l·: I·:. SH1\NN()Nt, l:ELLO\\·, lRI': AND .:I>W..\RI) F. 1\t()OREt, ASSOCIATE, IRE

Summorg-The desip of circuits composed of 1000cai elements
may be facilitated by auxiliary machinel. This paper deseribea one
such machine, made of relays, selector s.itches, ps diodel, ...d
lennanium dfodes. This machine (called the relay circuit analyzer)
has .s 'inputs both a relay contact drcult and the lpecllcatlons the
circuit is expected to satil'Y. The analyzer (I) verilel wbether the
circuit satides the .pedflcationl, (2) makel Iyltematlc attemptl to
simplify the circuit by remoYiq redundant contacts, and a110 (3) ob-
tain. mathematically riproU8 lower bounda for the numbeR and
types of contacts needed to ..till, the lpecllcationl. A lpecial
feature of the anal,zer il ita abUlty to take advaatap of circult
specificationI whieb are incompletely ..ted. The auziUary machine
method of doiq thele and Iimilar operationl il compared with the
method of codJ.nlthem on a leneral-purpose cllPtai computer.

INTRODUCTION

SOM E OPERATIONS which assist in the design of
relay circuits or other types of switching circuits
can be described in very simple form, and machines

can be constructed which perform them more quickly
and more accurately than a human being can. I t seems
possible that machines of this type will be useful to
those whose work involves the design of such circuits.

The present machine, called the relay circuit analyzer,
is intended for use in connection with the design of two
terminal circuits made up of contacts on at most four
relays. The principles upon which this machine is based
are not limited to two terminal networks or to four
relays, although' an enlarged machine would require
more time to operate. Each addition of one relay to
the circuits considered would approximately double
the size of the machine and quadruple the length of
time required for its operation. This type of machine is
not applicable to sequential circuits, however, so it will
be of use only in connection with parts of the relay cir-
cuits which contain contacts, but no relay coils.

OPERATION OF THE MACHINE

The machine, as can be seen from Fig. 1, contains
sixteen 3-position switches, which are used to specify
the requirements of the circuit. One switch corresponds
to each of the 24 = 16 states in which the four relays can
be put. Switch number two in the upper right hand
corner, for instance, is labeled W+X+Y'+Z, which
corresponds to the state of the circuit in which the re-
lays labeled lV, X, and Z are operated, and the relay
lalH·led Y is released.

The three positions of this switch correspond to the
requirements which can be imposed on the condition of
t he circuit when the relays arc in the corresponding

• I .,'c j'III.t1 d,I""ilit'.llioll: (J21.,n~.2X I{ l,::; t . Ori~dllal uumuscrint
""j"(·j\,·d I,y t lu- l nst itutc, :\by l8. If).',~; revised manuscript received
JUIIf'2'), t'Ht

t Bell Telephone Laboratories, IIlC., ~I urray Hill, N. J,
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state. Since any single relay contact circuit assumes
only one of two values (open or closed) the Inclusion of
a third value (doesn't matter, don't care, or vacuous,
as it has been called 'by various persons) merits some
explanation. If the machine, of which the relay circuit
being designed is to be a part, only permits these relays
to take on a fraction of the 2" combinations of which n
relays are capable, then it will not matter what the
circuit does in the excluded states. The user indicates
the optional nature of these requirements by placing
the corresponding switches in the "don't care" positions.
With these options, there is a wider range of circuits
satisfying the requirements, and hence more likelihood
that a circuit- with fewer contacts will suffice. The six-
teen 3-position switches thus permit the user not only
to require the circuit under consideration to have ex·
actly some particular hindrance function, but also
allow the machine more freedom in the cases where the
circuit need not be specified completely.

I n order to make a machine of this type to deal with
n relays (this particular machine was made for the case
n = 4), 2" such switches would be required, correspond-
ing to the 2" states n relays can assume. In each of these
states the circuit can be either open or closed, so there
are 22" functionally distinct circuits. But since each
switch has 3 positions, there are 32" distinct circuit re-
quirements specifiable on the switches, which in the
case n =4 amounts to 43,046,721. Thus, the number of
problems which the analyzer must deal with is Quite
large, even in the case of only four relays.

'[he left half of the front panel of the machine (see
Fig. 1) is a plugboard on which the circuit being ana-
lyzed can be represented. There are three transfers from
each of the four relays, W, X, Y, and Z brought out to
jacks on this panel, and jacks representing the terminals
of the network are at the top and bottom. Using patch
cords, it is possible to plug up any circuit using at
most three transfers on each of the four relays. This
number of contacts is sufficient to give a circuit repre-
senting any switching function of four variables.

I f the specifications for the circuit have been put
on the sixteen switches, and if the circuit has been put
on the plugboard, the relay circuit analyzer Is then
ready to operate.

With the main control switch and the evaluate-com-
pare switch both in the "evaluate" position, pressing the
start button win cause the analyzer to evaluate the cir-
cuit plugged in, i.e. to indicate in which of the states the
circuit is closed by lighting up the corresponding indi-
calor lamps.

Turning the evaluate-compare switch to the "com-
pare" position, the analyzer then checks whether the
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Fig. I-View of front panel of the relay circuit analyzer.

circuit disagrees with the requirements given on the
switches. A disagreement is indicated by lighting the
lamp corresponding to the state in question. If a switch
is set for closed and the actual circuit is open in that
state , or vice versa, a disagreement is indicated, but no
disagreement is ever registered when the switch is set
in the "don't care" position. regardless of the circuit
condition . The compare position, while it gives informa-
tion equivalent to that given in the evaluate position,
giv es it in a form more conven ient for noticing errors.

After a circuit has been found which agr ees entirely
wit h the requirements, the main control switch is then
turned to the "short test" posit ion and the start hutton
is pressed a~ain. The machine then determines whether
a n ~ ' of tlu contacts in th is circuit could have been
shOrled ou", wit l: the circuit still satisfying the require-

ments. The machine indicates on the lamps beside the
contacts which ones have this property.

It may be surprising to the reader that anyone would
ever need the assistance of a machine to find a contact
which could be shorted out without affecting its circuit.
While this is certainly true of simple examples, in more
complicated circuits such redundant elements are often
far from obvious (particularly if there are some states
for which the switches are in the "don't care" position,
since the simplified circuit may be functionally dif-
ferent from the original one, as long as it differs only in
the "don't care" state) . It is often quite d ifficult to sec
the simplification in these cases .

The analyzer is also helpful in case the circuit bcin~

analyzed is a bridge, because of the complicarions in-
volvcd in tracing out all paths in the hridg« . The circuit
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shown in Fig. 2 i~ an example of a circuit which was not
known to be ilH:fficicntly designed until put on the
analyzer. It determined in less than two minutes (in-
cluding the time required to plug the circuit into the
plugboard) that one of the contacts' shown can be
shorted out. How likely would a human being be to solve
this same problem in the same length of time?

After the short test has been performed, putting the
main control switch in the "open test" position permits
the analyzer to perform another analogous test, this
time opening the contacts one at a time.

Fig. 2-The relay circuit analyzer was able to simplify this circuit,
removing one contact, in less than two minutes total time. Can
you do as well?

These two particular types of circuit changes were
chosen because they are easy to carry out, and whenever
successful, either one reduces the number of contacts re-
quired. There are other types of circuit simplification
which it might be desirable to have a machine perform,
including various rearrangements of the circuit. These
would have required more time as well as more equip-
ment to perform, but would probably have caused the
machine to be more frequently successful in simplifying
the circuit. Using such techniques, it might be possible
to build a machine which could design circuits efficiently
starting from basic principles, perhaps by starting with a
complete Boolean expansion for the desired function
and simplifying it step by step. Such a machine would
be rather slow (unless it were built to operate at elec-
tronic speeds, and perhaps even in this case). and not
enough planning has been done to know whether such a
machine is practically feasible. However, the fact that
such a machine is theoretically possible is certainly of
interest. whether anyone builds one or not.

Another question of theoretical interest is whether a
logical machine could be built which could design an
improved version of itself, or perhaps build some ma-
chine whose over-all purpose was more complicated
than its own. There seems to be no logical contradiction
involved in such a machine, although it will require
great advances in the general theory of automata before
any such project could be confidently undertaken.

To return to the relay circuit analyzer, a final opera-
tion which it performs -is done with the main control
switch in the prOfJ' position. Pressing the start button
and moving the other 4-position switch successively
through the JV. X, Yand Z positions, then certain of the
eight lamps W, ~Y', X, X'. Y, Y'. Z, Z' will light up.
The analyzer has carried out a proof as to which kinds
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of contacts are required to synthesize the function using
the method of reduction to functions of one variable,
which will be explained in a forthcoming paper. The
analyzer here ignores whatever circuit has been plugged
in the plugboard. and considers only the function speci-
fied by the sixteen 3-position switches. If every circuit
which satisfied these specifications requires a back con·
tact on the W relay, the IV' light will go on, etc.

If, for instance, seven of the eight lights are on, any
circuit (or the function requires at least seven contacts,
and if there is, in fact, a circuit which uses just seven,
the machine has in effect, given a complete proof that
this circuit is minimal. Circuits for which the machine
can give such a complete proof are fairly common, al-
though there are also circuits (which can be shown to
be minimal by more subtle methods of proof) which this
machine could not prove minimal. An example is the
circuit of Fig. 2.) This can be simplified by the analyzer
to a circuit of nine contacts, but in the prOfJe position
the analyzer merely indicates that at least eight contacts
are necessary. It can be shown by other methods tha t
the 9-contact circuit is minimal. But at any rate, the
analyzer always gives a mathematically rigorous lower
bound for the number of contacts.

The small size and portability of this machine depends
on the fact that a mixture of relay and electronic circuit
elements were used. The gas diodes are particularly
suited for use where a small memory element having an
associated visual display is required, and the relays and
selector switches are particularly suited for use where
the ability to sequence and interconnect, using only a
small weight and space, is required. In all, the relay cir-
cuit analyzer uses only 24 relays, 2 selector switches,
48 miniature gas diodes, and 14 germanium diodes as
its logical elements.

It may be of interest to those familiar with general
purpose digital computers to compare this method of
solution of this problem on such a small, special-purpose
machine with the more conventional method of coding
it for solution on a high-speed general-purpose com-
puter. One basic way in which the two methods differ
is in the directness with which the circuits being
analyzed are represented. On a general-purpose com-
puter it would be necessary to have a symbolic descrip-
tion of the circuit, probably in the form of a numerical
code describing the interconnections of the circuit dia-
gram, and representing the types of contacts that occur
in the various parts of the circuit by means of a list of
numbers in successive memory locations of the com-
puter. On the other hand, the relay circuit analyzer rep-
resents the circuit in a more direct and natural manner,
by actually having a copy of it plugged up on the front
panel.

This difference in the directness of representation has
two effects. First. it would be somewhat harder to use
the general-purpose computer, because the steps of
translating the circuit diagram into the coded descrip-
tion and of typing it onto the input medium of the
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computer would be more complicated and lengthy than
the step of plugging up a circuit directly. The second
effect is in the relative number of logical operations
(and hence, indirectly, the time) required by the two
kinds of machines. To carry out the fundamental step
in this procedure of determining whether the given cir-
cuit (or some modification of it obtained by opening or
shorting a contact) is open or closed for some particular
state of the relays, requires only a single relay operate
time for the relay circuit analyzer. However, the carry-
ing out of this fundamental step on a general-purpose
digital computer would require going through several
kinds of subroutines many times. There would be several
ways of coding the problem, but in a typical one of
them the computer would first go through a subroutine
to determine whether a given contact were open or
closed, repeating this one for each contact in the circuit,
and then would go through another subroutine once for
each node ofthe network. Altogether this would prob-
ably involve tl.e execution of several hundred orders on
the computer, although by sufficiently ingenious coding
this might be cut down to perhaps 100. Since each order
of a computer takes perhaps 100 times the duration of a
single logical operation (i.e., a pulse time, if the corn-
puter is clock-driven), actually what takes 1 operation
time on one machine takes perhaps 10,000 on another.

Since 10,000 is approximately the ratio between the
speed of a relay and of a vacuum tube in performing
logical operations, this gain of about 10,000 from the
directness of the representation permits this relay
machine to be as fast at this kind of problem as a
general..pupose electronic computer.

This great disparity between the speeds of a gen-
eral-purpose and' of a special-purpose computer is not
typical of all kinds of problems, since a typical problem
in numerical analysis might only permit of a speed-up
by a factor of 10 on a special-purpose machine (since
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mult iplirnt ions and divisions nquin-rl in the prohh-m
usc up perhaps a tent h of t he I inu- of the prohlvm}.
However, it seems to be typical of cOl1lIJil1atorial proh-
lcrns that a tremendous gain in ~pc~c.:<.J is possible IJy the
use of special rather than general-purpose digital rom-
puters. This means that the gencrnl-purpose machines
are not really general in purpose, hut are spccializer] in
such a direction as to favor problems in analysis. I t is
certainly true that the so-called general purpose ma-
chines are logically capable of solving such combina-
torial problems, but their efficiency in such use is defi-
nitely very low. The problems involved in the design of
a general-purpose machine suitable for a wide variety
of combinatorial problems seem to be quite difficult,
although certainly of great theoretical interest.

CONCLUSIONS

An interesting feature of the relay circuit analyzer
is its ability to deal directly with logical circuits in
terms of 3-valued logic. There would be considerable
interest in techniques permitting easy manipulation on
paper with such a logic, because of its direct application
to the design of economical switching circuits. Even
though such techniques have not yet been developed,
machines such as this can be of value in connection
with 3-valued problems.

Whether or not this particular kind of machine ever
proves to be useful in the design of practical relay cir-
cuits, the possibility of making machines which can
assist in logical design procedure promises to be of value
to everyone associated with the design of switching cir..
cuits. Just as the slide rule and present-day types of
digital computers can help perform part of the routine
work associated with the design of linear electrical
networks, machines such as this may someday lighten
much of the routine work associated with the design of
logical circuits.
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.C..E. S?an~on fi~st ~ecame known for a paper in which he applied Boolean Algebra to relay
switching CtrcU1t~; this laid the foundation for the present extensive application of Boolean Algebra
to computer design. Dr. Shannon, who is engaged in mathematical research at Bell Telephone
Laboratories, is an authority on information theory. More recently he received wide notice for his
~ngenious m.a~e-solving mechanical mouse, and he is well-known as one of the leading explorers
into the exciting, but uncharted world of new ideas in the computer field.
. The Edito~s asked Dr. Shannon to write a paper describing current experiments, and specula-

ttons concerning future developments in computer logic. Here is a real challenge for those in
search of ~ field where creative ability, imagination, and curiosity will undoubtedly lead to major
advances In human knowledge.-The Editor

SummaTJ-This paper reviews briefly some of the recent de-
velopments in the fteld of automata and nonnumerical computation.
A .number of typical machines are described, includiDa lollc ma-
chines, lame-playing machines and leaminl machines. Some theo-
retical questions and developments are discussed, such as a com-
parison of computers and the brain, TurinC's formulation of comput-
ing machines and von Neumann's models of self-reproducing ma-
chines.

INTRODUCTION

SAMUE L BUTLER, in 1871. completed the manu-
script of a most engaging social satire, Ereuihon,
Three chapters of Erewhon. originally appearing

under the title "Darwin Among the Machines," are a
witty parody of The Origin of Species. In the topsy-
turvy logic of satirical writing, Butler sees machines as
gradually evolving into higher forms. He considers the
classification of machines into genera, species and vari-
eties, their feeding habits, their rudimentary sense or-
gans, their reproductive and evolutionary mechanisms
(inefficient machines force men to design more efficient
ones), tendencies toward reversion, vestigial organs,
and even the problem of free will in machines.

Rereading Erewhon today one finds "The Book of the
Machines" disturbingly prophetic. Current and pro-
jected computers and control systems are indeed as-
suming more and more the capacities and functions of
animals and man, to a far greater degree, in fact, than
was envisaged by Butler.

The bread-and-butter work of large-scale computers
has been the solution of involved numerical problems.
To many of us, however, the most exciting potentialities
of computers lie in their ability to perform non-numer..
ical operations-to work with logic, translate lan-
guages, design circuits, play games, co-ordinate sensory
and manipulative devices and, generally, assume com-
plicated functions associated with the human brain.

Non-numerical computation is by no means an un-
proven offspring of the more publicized arithmetic cal..
culation. The shoe is rather on the other foot. A hun-

• Decim.al classification: 621.385.2. Original manuscript received
by the Institute, July 17, 1953.

t Bell Telephone Laboratories, Murray Hill, N. J.
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dred years ago Charles Babbage was inspired in the
design of his remarkably prescient analytical engine by
a portrait woven in silk on a card controlled Jacquard
loom-a device then in existence half a century. The
largest and most reliable current information processing
machine is still the automatic telephone system. Our
factories are filled with ingenious and unsung devices
performing almost incredible feats of sensing, processing
and transporting materials in an shapes and forms. Rail-
way and power systems have elaborate control and pro-
tective networks against accidents and human errors.

These, however, are all special-purpose automata. A
significant new concept in non-numerical computation
is the idea of a general-purpose programmed computer-
a device capable of carrying out a long sequence of
elemen tary orders analogous to those of a numerical
computer. The elementary orders, however, will relate
not to operations on numbers but to physical motions,
operations with words, equations, incoming sensory
data, or almost any physical or conceptual entities.

This paper reviews briefly some of the research in non-
numerical computation and discusses certain of the
problems involved. The field is currently very active
and in a short paper only a few sample developments
can be mentioned.

THE BRAIN AND COMPUTERS

The brain has often been compared, perhaps over-
enthusiastically, with computing machines. It contains
roughly 1010 active elements called neurons. Because
of the all or none law of nervous action, neurons bear
some functional resemblance to our binary computer
elements, relays, vacuum tubes or transistors. The num-
ber of elements is six orders of magnitude greater than
our largest computers. McCullough has picturesquely
put it that a computer with as many tubes as a man
has neurons would require the Empire State building to
house it, Niagara Falls to power it and the Niagara
river to cool it. The use of transistors in such a com-
parison would improve the figures considerably, power
requirements coming down to the hundreds of kilowatt
range (the brain dissipates some 25 watts) and size re-
quirements (with close packing) comparable to an ordi-
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nary dwelling. It may also be argued that the increased
speed of electronic components by a factor of, say, 10'
might be partially exchangeable against equipment re-
quirements.

Comparisons of this sort should be taken well salted
-our understanding of brain functioning is still, in spite
of a great deal of important and illuminating research,
very primitive. Whether, for example, the neuron itself
is the proper level for a functional analysis is still an
open question. The random structure at the neural level
in number, placement and interconnections of the neu-
rons, suggests that only the statistics are important at
this stage, and, consequently, that one might average
over local structure and functioning before constructing
a mathematical model.

The similarities between the brain and computers
have often been pointed out. The differences are per-
haps more illuminating, for they may suggest the im-
portant features missing from our best current brain
models. Among the most important of these are:

1. Differences in size. Six orders of magnitude in the
number of components takes us so far from our
ordinary experience as to make extrapolation of
function next to meaningless.

2. Differences in structural organization. The appar-
ently random local structure of nerve networks is
vastly different from the precise wiring of artificial
automata, where a single wrong connection may
cause malfunctioning. The brain somehow is de-
signed so that overall functioning does not depend
on the exact structure in the small.

3. Differences in reliability organization. The brain
can operate reliably for decades without really seri-
ous malfunctioning (comparable to the meaning-
less gibberish produced by a computer in trouble
conditions) even though the components are prob-
ably individually no more reliable than those used
in computers.

4. Differences in logical organization. The differences
here seem so great as to defy enumeration. The
brain is largely self-organizing. It can adapt to an
enormous variety of situations· tolerably well. It
has remarkable memory classification and access
features, the ability to rapidly locate stored data
via numerous "coordinate systems." It can set up
stable servo systems involving complex relations
between its sensory inputs and motor outputs,
with great facility. In contrast, our digital com-
puters look like idiot savants. For long chains of
arithmetic operations a digital computer runs cir-
cles around the best humans. When we try to pro-
gram computers for other activities their entire
organization seems clumsy and inappropriate.

5. Differences in input-output equipment. The brain
is equipped with beautifully designed input organs,
particularly the ear and the eye, for sensing the
state of its environment. Our best artificial coun-
terparts, such as Shepard's Analyzing Reader for
recognizing and transcribing type, and the
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"Audrey" speech recognition system which can
recognize the speech sounds for the ten digits seem
pathetic by comparison. On the output end, the
brain controls hundreds of muscles and glands.
The two arms and hands have some sixty inde-
pendent degrees of freedom. Compare this with
the manipulative ability of the digitally controlled
milling machine developed at M.LT., which can
move its work in but three co-ordinates. Most of
our computers, indeed, have no significant sensory
or manipulative contact with the real world but
operate only in an abstract environment of num-
bers and operations on numbers.

TUIUNG MACHINES

The basic mathematical theory of digital computers
was developed by A. M. Turing in 1936 in a classic
paper "On Computable Numbers with an Application
to the Entscheidungsproblem." He defined a class of
computing machines, now called Turing machines, con-
sisting basically of an infinite paper tape and a comput-
ing element. The computing element has a finite number
of internal states and is capable of reading from and
writing on one cell of the tape and of moving it one cell
to the right or left. At a given time, the computing ele-
ment win be in a certain state and reading what is writ-
ten in a particular cell of the tape. The next operation
will be determined by the current state and the symbol
being read. This operation will consist of assuming a
new state and either writing a new symbol (in place of
the one currently read) or moving to the right or to the
left. It is possible for machines of this type to compute
numbers by setting up a suitable code for interpreting
the symbols. For example, in Turing's formulation the
machines print final answers in binary notation on al-
ternate cells of the tape, using the other cells for inter-
mediate calculations.

I t can be shown that such machines form an ex-
tremely broad class of computers. All ordinary digital
computers which do not contain a random or probabil-
istic element are equivalent to some Turing machine.
Any number that can be computed on these machines,
or in fact by any ordinary computing process, can be
computed by a suitable Turing machine. There are,
however, as Turing showed, certain problems that can-
not be solved and certain numbers that cannot be com-
puted by any Turing machine. For example, it is not
possible to construct a Turing machine which, given a
suitably coded description of another Turing machine,
can always tell whether or not the second Turing ma-
chine will continue indefinitely to print symbols in the
squares corresponding to the final answer. It may, at a
certain point in the calculation, relapse into an infinite
intermediate computation. The existence of mechan-
ically unsolvable problems of this sort is of great interest
to logicians.

Turing also developed the in teresting concept of a
universal Turing machine. This is a machine with the
property that jf a suitably coded description of any Tur-
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ing machine is printed on its tape, and the machine
started at a suitable point and in a suitable state, it will
then act like the machine described, that is, compute
(normally at a much slower rate) the same number that
the described machine would compute. Turing showed
that such universal machines can be designed. They of
course are capable of computing any computable num-
ber. Most digital computers, provided they have ac-
cess to an unlimited memory of some sort, are equiva-
lent to universal Turing machines and can, in principle,
imitate any other computing machine and compute any
computable number.

The work of Turing has been generalized and reformu-
lated in various ways, One interesting generalization is
the notion of A computability. This relates to a class
of Turing type machines which have the further feature
that they can, at certain points of the calculation, ask
questions of a second "oracular" device, and use the
answers in further calculations. The oracular machine
may for example have answers to some of the unsolvable
problems of ordinary Turing machines, and conse-
quently enable the solution of a larger class of problems.

LOGIC MACHINES

Boolean algebra can be used as a mathematical tool
for studying the properties of relay and switching cir-
cuits. Conversely, it is possible to solve problems of
Boolean algebra and formal logic by means of simple
relay circuits. '[his possibility has been exploited in a
number of logic machines. A typical machine of this
kind, described by McCallum and Smith, can handle
logical relations invo-lving up to seven classes or truth
variables. The required relations among these variables,
given by the logical problem at hand, are plugged into
the machine by means of a number of "connective
boxes." These connective boxes are of six types and
provide for the logical connectives "not," "and," "or,"
"or else," "if and only if," and "if-then." When the con-
nections are complete, starting the machine causes it to
hunt through the 27 = 128 combinations of the basic
variables, stopping at all combinations which satisfy
the constraints. The machine also indicates the number
of "true" variables in each of these states. McCallum
and Smith give the following typical problem that may
be solved on the machine:

It is known that salesmen always tell the truth and engi-
neers always tell lies. G and E are salesmen. C states that
D is an engineer. A declares that B affirms that C asserts
that D says that E insists that F denies tho), G is a sales-
man. If A is an engineer, how many engineers are there?

A very suggestive feature in this machine is a selec-
tive feedback system for hunting for particular solutions
of the logical equations without an exhaustive search
through all possible combinations. This is achieved by
elements which sense whether or not a particular logi-
cal relation is satisfied. If not, the truth variables in-
volved in this relation are caused to oscillate between
their two possible values. Thus, variables appearing in
unsatisfied relations are continually changing, while
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those appearing only in satisfied relations do not change.
If ever all relations are simultaneously satisfied the
machine stops at that particular solution. Changing
only the variables in unsatisfied relations tends, in a
general way, to lead to a solution more rapidly than
methodical exhaustion of all cases, but, as is usually the
case when feedback is introduced, leads to the pos-
sibility of continual oscillation. McCallum and Smith
point out the desirability of making the changes of the
variables due to the feedback unbalance as random as
possible. to enable the machine to escape from periodic
paths through various states of the relays.

GAME PLAYING MACHINES

The problem of designing game..playing machines is
fascinating and has received a good deal of attention.
The rules of a game provide a sharply limited environ-
ment in which a machine may operate, with a clearly
defined goal for its activities. The discrete nature of
most games matches well the digital computing tech-
niques available without the cumbersome analog-digital
conversion necessary in translating our physical en-
vironment in the case of manipulating and sensing
machines.

Game playing machines may be roughly classified
into types in order of increasing sophistication:

1. Dictionary-type machines. Here the proper move
of the machine is decided in advance for each pos-
sible situation that may arise in the game and
listed in a "dictionary" or function table. When
a particular position arises, the machine merely
looks up the move in the dictionary. Because of
the extravagant memory requirements, this rather
uninteresting method is only feasible for excep-
tionally simple games, e.g., tic-tac-toe,

2. Machines using rigorously correct playing for-
mulas. In some games, such as Nim, a complete
mathematical theory is known, whereby it is pos-
sible to compute by a relatively simple formula,
in any position that can be won, a suitable winning
move. A mechanization of this formula provides a
perfect game player for such games.

3. Machines applying general principles of approx-
imate validity. In most games of interest to hu-
mans, no simple exact solution is known, but there
are various general principles of play which hold
in the majority of positions. This is true of such
games as checkers, chess, bridge, poker and the
like. Machines may be designed applying such
general principles to the position at hand. Since
the principles are not infallible, neither are the
machines, as indeed, neither are humans.

4. Learning machines. Here the machine is given only
the rules of the game and perhaps an elementary
strategy of pIa y, together with some method of
improving this strategy through experience.
Among the many methods that have been sug-
gested for incorporation of learning we have:

a) trial-and-error with retention of successful



706

and elimination of unsuccessful possibilities;
b) imitation of a more successful opponent;
c) "teaching" by approval or disapproval, or by

informing the machine of the nature of its mis-
takes; and finally

d) self-analysis by the machine of its mistakes
in an attempt to devise general principles.

Many examples of the first two types have been con ...
structed and a few of the third. The fourth type, learn ...
ing game-players, is reminiscent of Mark Twain's com ...
ment on the weather. Here is a real challenge for the
programmer and machine designer.

Two examples of the third category, machines ap...
plying general principles, may be of interest. The first
of these is a machine designed by E. F. Moore and the
writer for playing a commercial board game known as
Hex. This game is played on a board laid out in a
regular hexagon pattern, the two players alternately
placing black and white pieces in unoccupied hexagons.
The entire board forms a rhombus and Black's goal is to
connect the top and bottom of this rhombus with a
continuous chain of black pieces. White's goal is to con ...
nect the two sides of the rhombus with a chain of white
pieces. After a study of this game, it was conjectured
that a reasonably good move could be made by the fol-
lowing process. A two-dimensional potential field is set
up corresponding to the playing board, with white
pieces as positive charges and black pieces as negative
charges. The top and bottom of the board are negative
and the two sides positive. The move to be made cor-
responds to a certain specified saddle point in this field.

To test this strategy, an analog device was constructed,
consisting of a resistance network and gadgetry to lo-
cate the saddle points. The general principle, with some
improvements suggested by experience, proved to be
reasonably sound. With first move, the machine won
about seventy per cent of its games against human op-
ponents. It frequently surprised its designers by choos-
ing odd-looking moves which, on analysis, proved sound.
We normally think of computers as expert at long in-
volved calculations and poor in generalized value judg-
ments. Paradoxically, the positional judgment of this
machine was good; its chief weakness was in end-game
combinatorial play. It is also curious that the Hex-player
reversed the usual computing procedure in that it solved
a basically digital problem by an anlog machine.

The game of checkers has recently been programmed
into a general-purpose computer, using a "general prin-
ciple" approach. C. S. Strachey used a method similar to
one proposed by the writer for programming chess-an
investigation of the possible variations for a few moves
and a minimax evaluation applied to the resulting posi-
tions. The following is a sample game played by the
checker program with notes by Strachey. (The white
squares are numbered consecutively, 0-31, from left to
right and top to bottom. N umbers in parentheses indi-
cate captures.)

While obviously no world champion, the machine is
certainly better than many humans. Strachev points
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out various weaknesses in the program, particularly in
certain end-game positions, and suggests possible im-
provemen ts,

LEARNING MACHINES

The concept of learning, like those of thinking, con ..
sciousness and other psychological terms, is difficult to
define precisely in a way acceptable to the various inter..
ested parties. A rough formulation might be framed
somewhat as follows. Suppose that an organism or a ma-
chine can be placed in, or connected to, a class of en-
vironments, and that there is a measure of "success" or
"adaptation" to the environment. Suppose further that
this measure is comparatively local in time, that is, that
one can measure the success over periods of time short
compared to the life of the organism. If this local meas-
ure of success tends to improve with the passage of
time, {or the class of environments in question, we may
say that the organism or machine is learning to adapt to
these environments relative to the measure of success
chosen. Learning achieves a quantitative significance in
terms of the broadness and complexity of the class of
environments to which the machine can adapt. A chess
playing machine whose frequency of wins increases dur-
ing its operating life may be said by this definition to
be learning chess, the class of environments being the
chess players who oppose it, and the adaptation meas-
sure, the winning of games.

A number of attempts have been made to construct
simple learning machines. The writer constructed a
maze-solving device in which an arbitrary maze can be
set up in a fi ve-by-five array of squares, by placing
partitions as desired between adjacent squares. A per-
manently magnetized "mouse," placed in the maze,
blunders about by a trial and error procedure, striking
various partitions and entering blind alleys until it
eventually finds its way to the "food box." Placed in
the maze a second time, it will move directly to the food
box from any part of the maze that it has visited in its
first exploration, without errors or false moves. Placed
in other parts of the maze, it will blunder about until it
reaches a previously explored part and from there go
directly to the goal. Meanwhile it will have added the
information about this part of the maze to its memory,
and if placed at the same point again will go directly
to the goal. Thus by placing it in the various unexplored
parts of the maze, it eventually builds up a complete
pattern of information and is able to reach the goal di-
rectly from any point.

If the maze is now changed, the mouse first tries the
old path, but on striking a partition starts trying other
directions and revising its memory until it eventually
reaches the goal by some other path. Thus it is able to
forget an old solution when the problem is changed.

The mouse is actually driven by an electromagnet
moving beneath the maze. The motion of the electro-
magnet is controlled by a relay circuit containing about
110 relays, organized into a memory and a computing
circuit, somewhat after that of a digital computer.
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MACHINE

11-15
7-11
8-12

12-21 (16)
9-14 ! b

6-20 (16, 9) c
2- 7 d
5- 8
8-13 e
4-13 (8)
1- Sf

15-19
5- 9
0- 5!h

11-25 (22, 15)
13-17
9-18 (14)

18-23
23-27
5- 8 i
8-13

19-23
23-26j
27-31 (K)
7-10

10-15
3-10 (7)

10-14
15-19
31-27 m
27-31 m
31-26 n
19-23
26-31 P

STRACHEY

23-18
21-17
20-16 a
25-16 (21)
18- 9 (14)
27-23
23-18
18-14
17- 8 (13)
14- 9
9- 6
6- 1 (K)
1- 6?g
6-15 (10)

30-21 (25)
21-14 (17)
24-21
26-22
22-17
17-14
14- 9
9- 6

31-22 (26)
6- 2 (K)
2- 7

21-16 ?k
16- 9 (13)
9- 6
6- 2 (K)
2- 6
6--10

10-17 (14)
29--25
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Notes:
a) An experiment on my part-the only deliberate offer I made.

I thought, wrongly, that it was quite safe.
b) Not foreseen by me.
c) Better than 5-21 (9. t 7).
d) A random move (zero value). Shows the lack of a constructive

plan.
e) Another random move of zero value. Actually rather good.
f) Bad. Ultimately allows me to make a King. 10-14 would

would have been better.
g) A bad slip on my part.
h) Taking full advantage of my slip.
i) Bad. unblocks the way to a King.
;) Sacrifice in order to get a King (not to stop me Kinging). A

good move, but not possible before 19-23 had been made by
chance.

k) Another bad slip on my part.
m) Purposeless. The strategy is failing badly in the end game.
n) Too late.
p) Futile. The game was stopped at this point as the outcome

was obvious.
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The maze-solver may be said to exhibit at a very
primitive level the abilities to (1) solve problems by
trial and error, (2) repeat the solutions without the
errors, (3) add and correlate new information to a par-
tial solution, (4) forget a solution when it is no longer
applicable.

Another approach to mechanized learning is that of
suitably programming a large-scale computer. A. E.
Oettinger has developed two learning programs for the
Edsac computer in Cambridge, England. In the first of
these, the machine was divided into two parts, one part
playing the role of a learning machine and the second
its environment. The environment represented ab-
stractly a number of stores in which various items might
be purchased, different stores stocking different classes
of items. The learning machine faced the problem of
learning where various items might be purchased. Start-
ing off with no previous knowledge and a particular
item to be obtained, it would search at random among
the stores until the item was located. When finally suc-
cessful, it noted in its memory where the article was
found. Sent again for the same article it will go directly
to the shop where it previously obtained this article. A
further feature of the program was the introduction of
a bit of "curiosity" in the learning machine. When it
succeeded in finding article number j in a particular
shop it also noticed whether or not that shop carried
articles j - 1 and j +1 and recorded these facts in its
memory.

The second learning program described by Oettinger
is modeled more closely on the conditioned reflex be-
havior of animals. A stimulus of variable intensity can
be applied to the machine in the form of an input in-
teger. To this stimulus the machine may respond in a
number of different ways indicated by an output in-
teger. After the response, it is possible for the operator
to indicate approval or disapproval by introducing a
third integer at a suitable point. When the machine
starts operating, its responses to stimuli are chosen at
random. Indication of approval improves the chances for
the response immediately preceding; indication of dis-
approval reduces this chance. Furthermore, as a par-
ticular response is learned by conditioning it with ap-
proval, the stimulus required for this response decreases.
Finally, there is a regular decay of thresholds when no
approval follows a response.

Further embellishments of programs of this sort are
limited only by the capacity of the computer and the
energy and ingenuity of the program designer. Unfor-
tunely, the elementary orders available in most large-
scale computers are poorly adapted to the logical re-
quirements of learning programs, and the machines are
therefore used rather inefficiently. It may take a dozen
or more orders to represent a logically simple and fre..
quently used operation occurring in a learning routine.

Another type of learning machine has been con-
structed by D. W. Hagelbarger. This is a machine de-
signed to play the game of matching pennies against a
human opponent. On the front panel of the machine are
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a start bu tton, two Jights marked + and -, and a key
switch whose extreme positions are also marked + and
-. To play against the machine, the player chooses +
or -, and then pushes the start button. The machine
will then light up one of the two lights. If the machine
matches the player, that is, lights the light correspond-
ing to the choice of the player, the machine wins; other-
wise the player wins. When the play is complete, the
player registers by appropriate movement of the key
swi tch the choice he made.

The machine is so constructed as to analyze certain
patterns in the players' sequence of choices, and at-
tempt to capitalize on these patterns when it finds them.
For example, some players have a tendency if they have
won a round, played the same thing and won again, to
then change their choice. The machine keeps count of
these situations and, if such tendencies appear, plays
in such a way as to win. When such patterns do not ap-
pear the machine plays at random.

I t has been found the machine wins about 55-60 per
cen t of the rounds, while by chance or against an op-
ponent that played strictly at random it would win only
50 per cen t of the time. 1t appears to be quite difficult
for a human being to produce a random sequence of
pluses and minuses (to insure the 50 per cent wins
he is entitled to by the theory of games) and even more
difficult to actually beat the machine by leading it on
to suspect patterns, and then reversing the patterns.

A second penny-matching machine was designed by
the writer, following the same general strategy but using
a different criterion to decide when to play at random
and when to assume that an apparent behavior pattern
is significant. After considerable discussion as to which
of these two machines could beat the other, and fruitless
attempts to solve mathematically the very complicated
statistical problem involved when they are connected
together, the problem was relegated to experiment. A
third small machine was constructed to act as umpire
and pass the information back and forth between the
machines concerning their readiness to make a move and
the choices made. The three machines were then plugged
together and aJlowed to run for a few hours, to the ac-
companiment of small side-bets and loud cheering.
Ironically, it turned out that the smaller, more precipi-
tate of the two machines consistently beat the larger,
more deliberate one in a ratio of about 55 to 45.

A still different type of learning machine was devised
by W. Ross Ashby who christened it the Homeostat.
Homeostasis, a word coined by Walter B. Cannon, re-
lates to an animal's ability to stabilize, by feedback,
such biological variables as body temperature, chemical
concentrations in the blood stream, etc. Ashby's device
is a kind of self-stabilizing servo system. The first model
of the Homeostat contained four interconnected servos.
The cross-connections of these servos passed through
four stepping switches and resistors connected to the
points of the steppers. Thus the effect of unbalance in
the other three loops on a particular loop depended on
the values of the resistors being contacted by the stepper
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associated with that loop. When anyone of the servos
was sufficiently out of balance, a corresponding limit
relay would operate and cause the corresponding step-
ping switch to advance one point. Now normally. a
servo system with four degrees of freedom and random
cross- and self-gain figures will not be stable. If this
occurred, one or more of the stepping switches would
advance and a new set of resistors would produce a new
set of gain figures. If this set again proved unstable, a
further advance of the steppers would occur until a
stable situation was found. The values of the resistors
connected to the stepping switches were chosen by ran-
dom means (using a table of randon numbers). Facilities
were provided for introducing many arbitrary changes
or constraints among the servos. For example, their con-
nections could be reversed, two of them could be tied
together, one of them held at a fixed value, etc. Under
all these conditions, the mechanism was able to find a
suitable stable position with all the servos in balance.
Considering the machine's goal to be that of stabilizing
the servos, and the environment to be represented by
the various alterations and constraints introduced by
the operator, the Homeostat may be said to adapt to its
environment.

Certain features of the Homeostat are quite attrac-
tive as a basis for learning machines and brain models.
It seems in certain ways to do a bit more than was ex-
plicitly designed into it. For example, it has been able
to stabilize under situations not anticipated when the
machine was constructed. The use of randomly chosen
resistors is particularly suggestive and reminiscent of
the random connections among neurons in the brain.
Ashby, in fact, believes that the general principle em-
bodied in the Homeostat, which he calls ultra-stability,
may underlie the operation of the animal nervous sys-
tem. One of the difficulties of a too direct application
of this theory is that, as Ashby points out, the time
required for finding a stable solution grows more or
less exponentially with the number of degrees of free-
dom. With only about 20 degrees of freedom, it would
require many lifetimes to stabilize one system. At-
tempts to overcome this difficulty lead to rather in-
volved conceptual constructions, so involved that it is
extremely difficult to decide just how effectively they
would operate. Our mathematical tools do not seem
sufficiently sharp to solve these problems and further
experimental work would be highly desirable.

SELF-REPRODUCING MACHINES

In Ereuihon the reproduction process in machines was
pictured as a kind of symbiotic co-operation between
man and machines, the machines using man as an inter-
mediary to produce new machines when the older ones
were worn out. Man's part is akin to that of the bee in
the fertilization of flowers. Recently von Neumann has
studied at an abstract level the problem of true self-
reproduction in machines, and has formulated two dif-
ferent mathematical models of such "machines."

The first of these may be pictured somewhat as £01-
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lows. "Machines" in the model are constructed from a
small number (of the order of twenty) types of ele-
mentary components. These components have relatively
simple functions, for example, girders lor structural pur-
poses, elementary logical elements similar to simplified
relays or neurons for computing, sensing components
for detecting the presence of other elements, joining
components (analogous to a soldering iron) for fastening
elements together, and so on. From these elements, vari-
ous types of machines may be "constructed." In particu-
lar, it is possible to design a kind of universal construc-
tion machine, analogous to Turing's universal comput-
ing machine. The universal constructing machine can
be fed a sequence of instructions, similar to the program
of a digital computer, which describe in a suitable code
how to construct any other machine that can be built
with the elementary components. The universal con-
structing machine will then proceed to hunt for the
needed components in its environment and build the
machine described on its tape. If the instructions to the
universal constructing machine are a description of the
universal constructing machine itself, it will proceed to
build a copy of itself, and would be a self-reproducing
machine except for the fact that the copy is not yet
supplied with a set of instructions. By adding to the uni-
versal machine what amounts to a tape-copying device
and a relatively simple controlling device, a true self-
reproducing machine is obtained. The instructions now
describe the original universal machine with the addi-
tion of the tape reproducer and the controlling device.
The first operation of the machine is to reproduce this
entity. The controlling device then sends the instruction
tape through the tape reproducer to obtain a copy,
and places this copy in the second machine. Finally,
it turns the second machine on, which starts reading its
instructions and building a third copy, and so ad in-
finitum.

More recently, von Neumann has turned from this
somewhat mechanical model to a more abstract self-
reproducing structure-one based on a two-dimensional
array of elementary "cells." Each cell is of relatively
simple internal structure, having, in fact, something like
thirty possible internal states, and each cell communi.
cates directly only with its four neighbors. The state of
a cell at the next (quantized) step in time depends only
on the current state of the cell and the states of its four
neighbors. By a suitable choice of these state transitions
it is possible to set up a system yielding a kind of self-
reproducing structure. A group of contiguous cells can
act as an organic unit and operate on nearby quiescent
cells in such a way as to organize a group of them into
an identical unit.

This second model avoids many of the somewhat
extraneous problems of locating, recognizing and posi-
tioning components that were inherent in the first
model, and consequently leads to a simpler mathemati-
cal formulation. Furthermore, it has certain analogies
with various chemical and biological problems, such as
those of crystal and gene reproduction, while the first
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model is more closely related to the problem of large
scale animal reproduction.

An interesting concept arising from both models is the
notion of a critical complexity required for self-repro-
duction. In either case, only sufficiently complicated
"machines" will be capable of self-reproduction. Von
Neumann estimates the order of tens of thousands of
components or cells to obtain this property. Less com-
plicated structures can only construct simpler "ma-
chines" than themselves, while more complicated ones
may be capable of a kind of evolutionary improvement
leading to still more complicated organisms.

CHALLENGE TO THE READER

We hope that the foregoing sampler of non-numerical
computers may have stimulated the reader's appetite
for research in this field. The problem of how the brain
works and how machines may be designed to simulate
its activity is surely one of the most important and
difficult facing current science. Innumerable questions
demand clarification, ranging from experimental and
development work on the one hand to purely mathe-
matical research on the other. Can we design significant
machines where the connections are locally random?
Can we organize machines into a hierarchy of levels, as
the brain appears to be organized, with the learning of
the machine gradually progressing up through the hier-
archy? Can we program a digital computer so that
(eventually) 99 per cent of the orders it follows are
written by the computer itself, rather than the few per
cent in current programs? Can a self-repairing machine
be built that will locate and repair faults in its own
components (including components in the maintenance
part of the machine)? What does a random element add
in generality to a Turing machine? Can manipulative
and sensory devices functionally comparable to the
hand and eye be developed and coordinated with com-
puters? Can either of von Neumann's self-reproducing
models be translated into hardware? Can more satis-
factory theories of learning be formulated? Can a rna-
chine be constructed which will design other machines,
given only their broad functional characteristics? What
s a really good set of orders in a digital computer for
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general purpose non-numerical computation? How can
a computer memory be organized to learn and remem-
ber by association, in a manner similar to the human
brain?

We suggest these typical questions, and the entire
automata field, as a challenge to the reader. Here is
research territory ripe for scientific prospectors. It is
not a matter of reworking old operations, but of locat-
ing the rich new veins and perhaps in some cases merely
picking up the surface nuggets.
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Realization of All 16 Switching Functions
of Two Variables Requires 18 Contacts-

Claude E. Shannon

Ahstract

Eighteen contacts are necessary and sufficient to simultaneously realize all 16 switching
functions of two variables.

In 1949 the writer gave a switching circuit realizing the 16 Boolean functions of two
variables using 20 contacts. Recently a student in the M.LT. Switching Course found a circuit
(Fig. I) requiring only 18 contacts. We will prove that this is minimal - it is not possible to
realize these 16 functions with 17 or fewer contacts.

Suppose there were such a circuit K using 17 or fewer contacts. The circuit K would have
16 terminals on the right corresponding to the 16 functions of two variables and a common
terminal A on the left. The open circuit terminal (hindrance I) need not be connected in any
way to terminal A. All the other 15 terminals must have paths (in general through contacts) to
A, since each of the remaining switching functions are closed for certain states of the relays x
and y. Thus the 15 terminals are nodes of a connected network. Each of these terminals is a
different node since otherwise two of the terminals would correspond to the same switching
function. Hence the network K has at least 15 distinct nodes. By assumption it has not more
than 17 branches. Now in a connected network the branches B, nullity N, and number of nodes
V are related by Euler'sformulaN = B - V + 1. SinceB ~ 17,V~ 15 we obtain

N $; 3 .

We will show by another argument that the nullity N ~ 4, thus giving a contradiction and
proving that the assumption that the network K contains 17 or fewer elements is impossible.

The nullity of K is the number of independent closed circuits or meshes in K (or more
precisely in the linear graph associated with K, obtained by replacing each contact in K by a
branch). The nullity of a network may be obtained by determining how many branches must be
cut (each cutting operation being made so as to open at least one closed circuit) in order to
leave no closed circuits in the network. In Figure I the nullity is 4 corresponding to the closed
circuits C I, C 2, C 3, C 4· By cutting, for example, the four branches B 1, B 2, B 3, B 4 all closed
circuits are eliminated.

We will show that there exist at least four independent meshes in our assumed network K,
and in fact in any network realizing the four particular functions:

* Bell Laboratories Memorandum. Nov. 17. 1953.
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II = (x + y)(x ' + .v' ) ~

.f2 = (X + YI ) (X I + y) ,

I ,

= X Y
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Let us suppose that in K these four functions are realized at nodes N l' N 2 ~ N 3, N 4 ~ respectively.

Consider the node N I of K giving the function (x + y) (x' + y'). The branches coming
into this node may be divided into two classes: branches labeled x or y and branches labeled x'
or y'. There is at least one member of the first class since otherwise there would be no
connection from this node to the common terminal A when both x and yare closed. Thus it is
possible to go from the node in question via a branch of the first class to A along elements of
the network. Similarly the second class is not empty (otherwise the node would not be closed
to A when both x and yare not operated) and there is a path from the node to A starting through
a branch of the second class.

.r

,
.r

y

x

y'

,
.r

y

.x

x

Figure 2

Now separate this node into two nodes, according to the two classes of branches, as typified
in Figure 2. This will open a closed circuit of K (because of the two distinct paths from N 1 to A
whose existence we have established) and hence reduce the nullity of K by I. A similar process
will be applied to the three other nodes N 2, N 3 and N 4. Each of these separations will reduce
the nullity by I. This will show that the original nullity was at least 4, proving the desired
result.

We must first show that the separating process we have applied to node N I has not affected
the switching functions at the other three nodes. In the first place, functions j'l and j'2 are
disjunctive, so no operating path for f2 can pass through N I (otherwise there would be states of
the relays with both f) andf2 closed). Hence this separation does not alter the realization of f2
at node N 2.

Also the separation does not alter the realization of xy at node N 3' For this would mean that
a previous operating path through N I to N] no longer exists. Such a path must have passed
through an x and a y' or through an x' and a y. But, if this were so node N I would be closed to
A either in the .ry state or else in the x' )' state of the relays. This is impossible since then N I

would not have represented the function (x + y)(x' + y").

Exactly the same argument shows that we have not changed the realization of x' y' at
terminal N 4 by the separation process.

Consequently we have, after the separation, a network realizing the functions
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/2 = (X + y' )(X' + y) ,

1'3 = xy ,

f I I

.4 = X Y ,

C.E.Shannon

at nodes N 2, N J, N 4, respectively and with a nullity one Jess than that of the original network
K.

We now perform a similar operation at N 2, separating the node into two nodes
corresponding to branches x or y' and x' or y. By an identical argument this reduces the nullity
by one, and does not affect the realization at nodes N J and N 4 of xy and x' y':

Now proceed to node N J which represents xy. Here again we divide the branches into two
classes: x or y' and x' or y. The node is then separated into two nodes. By essentially the same
argument this reduces the nullity by one. Also this separation will not affect the realization at
N 4 of x I y I. For if there were an operating path to N 4 through N 3 which has been broken by
this separation it must have passed through either x and')' in series or x' and y' in series. In the
first case /4 should not be closed, and in the second case 13 should not be closed, and hence
neither of these assumed paths is possible.

Finally going on to N4, we divide the branches into the classes x or y and x' or y".
Separating the node into two nodes again reduces the nullity by one. In total we have reduced
the nullity by four and since the nullity cannot be negative, the original nullity must have been
at least four. This contradicts the original calculation of at most three for the nullity and proves
the theorem.



A Relay Laboratory Outfit for Colleges*

Claude E. Shannon and D. W. Hagelbarger

Abstract

An experimental relay kit suitable for use in a college laboratory course in switching is
described. Circuit diagrams are given for several circuits that have been set up on the machine.
It is suggested that if such a kit were developed and made available to colleges, it would
materially aid our long-range policy toward cultivating switching engineers.

An important perennial problem facing the Bell Telephone Laboratories and, in fact, the
entire Bell System is that of recruiting a sufficient number of switching engineers. Until
recently practically no colleges gave courses dealing with this subject, and even now the
number is very small. Many engineering graduates are hardly aware of switching as an
important branch of electrical engineering, and one with any training in the techniques is a rare
gift indeed. It has been necessary first to sell graduate engineers the idea of switching as a
career, and then to train them almost from the ground up.

Bell Laboratories has not been unaware of this problem and has taken several important
steps toward its solution. The publication of The Design of Switching Circuits by Keister,
Ritchie and Washburn has made available an excellent textbook for use in a switching course.
The recent survey course for professors in Digital Control Techniques should also stimulate
interest in the field and encourage colleges to offer courses in switching. The development of
large-scale computing machines has "glamorized" the field of switching and digital devices to
a considerable extent. A number of colleges now offer courses in computing machines which
at least touch on the subjects of switching and relay circuits.

This memorandum proposes another supplementary attack on the same problem. An
important adjunct to any engineering course is a related series of lecture-room and laboratory
experiments. Most colleges, even if prepared to give a course in switching, do not have
available suitable relay and switch gear for such experiments. It is suggested here that a
laboratory switching outfit be developed and made available to colleges. This outfit would
consist of about thirty relays and associated switch gear (pushbuttons, indicating lights,
stepping switches, dial mechanisms, etc.) mounted on a panel with terminals brought out to a

plugboard. By means of patch-cords, these components could be connected up to form a wide
variety of switching circuits. The apparatus would be accompanied by a laboratory manual
describing many experiments and typical circuits that could be set up, starting with the simplest
combinations of relays and switches, and working up to rather involved functional circuits.

Used as laboratory equipment, students would gain valuable experience in actually setting
up, observing and trouble shooting physical apparatus. In addition, the output should prove a
useful lecture aid; the instructor could set up simple circuits for demonstrations in his lectures.

We feel that a relay plugboard of this sort would also be useful to other groups. It is
extremely difficult to design relay circuits completely free of logical errors. If such an outfit

* Bell Laboratories Memorandum. Jan. 10. 1954.
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were available to relay circuit designers, they could easily make a final check of the logic of
their circuits by setting them up on the plugboard. In a way, such an apparatus is analogous, for
relay circuits, to the AC and DC network boards widely used in the study of power systems.

It is, of course, not possible at this stage to give an accurate cost estimate of such an outfit.
However, existing switch gear usually runs some ten dollars per relay. Using this figure for
thirty relays and doubling the figure to account for the other components, the chassis and the
patch-cords, we arrived at $600 as a rough estimate, which .is probably not off by more than a
factor of two. The cost could be reduced by making the outfits in kit form - assembly and
wiring to be done by the users. Cost might also be cut by the use of salvage relays from old
equipment. This would surely be a more desirable destination for used relays than the Nassau
Smelting and Refining Co. In any case, it would seem a good long-range investment for the
Laboratories to supply such equipment to colleges at cost or, possibly, free of charge.

The Experimental Model To tryout the idea of a plugboard relay outfit, an experimental
model has been constructed (see Figures 1 and 2). (I)

This model contains the following components:

24 relays, each with four transfer contacts and each with a permanent series resistance to +
battery (for shunt-down purposes as in W-Z pulse dividers).

2 "minor" switches, each having three decks and ten positions. These selector switches have
an operate coil which advances the swingers one step for each pulse, and a reset coil which
returns the wipers to normal, There is also an off-normal switch.

) slow pulse source.

1 telephone dial mechanism.

4 message registers.

30 pushbuttons and switches.

30 indicating lamps and sockets.

200 patch-cords of assorted lengths.

All terminals of all components, apart from the lamps, buttons and dial, are connected
permanently to jacks of the plugboard. The lamps, buttons and dial have cords attached with
plugs on the ends. These components are mounted on the front operating panel in a manner
appropriate to the circuit being set up and the plugs from them are plugged into the jacks of the
plugboard.

The selection of equipment in the experimental model is, of course, subject to modification
as we gain experience. It is possible, with this amount of equipment, to design a wide variety
of interesting relay circuits. At a basic level all of the fundamental circuits - series, parallel,
shunt-down, pulse dividers, symmetric functions, trees, counters, preference chains, etc. - can
be demonstrated. At a more advanced level, functional circuits of some complexity can be
designed. Some examples are described briefly in the next section.

( I) Editors' note. Figures J and 2 are actually photographs of Model 2, rather than the version described in this

Memorandum (see Commentary).
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Figure 1

· 1

I

Figure 2
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In the experimental model, banana plugs are used on the patch-cords. They are so
constructed that each plug has a jack at its top end. This allows the plugs to be stacked - any
number of connections can be made to the same point.

It is quite easy to set up a circuit on the plugboard. A convenient method is to have two
people, one working on the circuit diagram, calling off connections and noting which ones are
complete, and the other working at the plugboard. Circuits involving up to five relays can be
set up in ten minutes or less. The most involved circuits possible on the machine, using most of
the contacts on most of the equipment, can be set up in less than two hours. It would require
several days to set up the same circuits with ordinary soldered connections.

This experimental relay board was exhibited to the professors attending the recent course in
Digital Control Techniques and received considerable favorable comment. A number of them
felt the need for laboratory experiment and indicated a definite interest in obtaining such
equipment.

The Laboratory Manual The laboratory manual accompanying the outfit should contain
specifications of the components, a description of how circuits are set up on the machine, a
series of carefully selected experiments and circuits that can be carried out on the machine, and
a number of design problems for the student to solve.

With the equipment available, many interesting circuits can be constructed. The following
short list will give some idea of the capacities of the machine.

1. Perpetual calendar. (See appendix.) The telephone dial acts as input, the names of
months being written opposite appropriate holes. Any date from 1752 to 2099 may
be dialed into the machine, e.g., September 17, 1953. The machine then indicates the
corresponding day of the week by lighting one of the group of seven lamps.

2. Dial-pulse register. The board is wired to act as a small dial-pulse register, similar to
those used in an automatic office.

3. Nim-playing machine. The machine plays the game of Nim with three piles of up to
seven lights in each pile, winning whenever this is possible.

4. Adding circuit. The board can be wired to act as a binary adder similar to those used
in computing machines, receiving its input from two sets of pushbuttons and
displaying the output on a set of lights. It is also possible to set up a decimal adder
with the telephone dial as input.

5. Tic-rae-toe machine. The board can be set up to play Tic-tac-toe against a human
opponent, receiving its input from pushbuttons and indicating its move with lights. It
will always win if possible, otherwise draw.

6. Automatic elevator. A circuit can be designed for controlling an automatic elevator
with four floors and memory of buttons that have been pressed.

7. Miniature telephone exchange. A model exchange with four subscribers can be set
up, embodying many of the principles of large offices.

8. Tower of Hanoi. The standard circuits for solving this puzzle can be set up easily on
the plugboard.

9. Penny-matching machine. A simplified model of the penny-matching machine circuit
can be set up on the machine.
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JO. Morse encoder. Twenty-six buttons labeled A, B, ... , Z are available. If one of
these is pressed, the machine produces the corresponding Morse code, the output
appearing on a light and a buzzer.

J J. Morse decoder. (See appendix.) A key is available as input and twenty-six labeled
lights as output. If the key is operated (at proper speed) the machine decodes this
signal.

It takes a week or more to design and trouble-shoot a circuit of the complexity of those
listed above. Writing a good laboratory manual for the outfit would probably require a man
year of work.

Relay Plugboards for Hobbyists The idea of a flexible relay outfit has a possible application,
on a smaller scale, for children or adult hobbyists interested in experimenting with relay and
switching circuits. Because of cost considerations, this problem is entirely distinct from the
type of outfit described above. In another memorandum this problem is discussed, and an
inexpensive three-relay board is described.

Appendix 1. Perpetual Calendar

This circuit (see Fig. 3) indicates on what day of the week any date (Gregorian calendar)
falls. It covers the period from 1752 to 2099. The input is a telephone dial with month labels
added according to Table I. The date is dialed in the order:

Nov. 23, 1953 AD.
When the dialing is completed a lamp corresponding to the day of the week lights. The circuit
gives the correct day except for the months of January and February 1800 and 1900. (I)

Table I

Possible Values of Letters in Date

Month Jan Feh Mar Apr May June July Aug Sept Oct Nov Dec

M 0 3 3 6 4 6 2 5 0 3 5

Mtleap 6 2
year)
D, 10D I (mod 7) D2 CIC? N(C,C 2 ) Y, Y2

0 0 0-9 17 4 0-9 0-9

3 18 2

2 6 19 0

3 2 20 6

For purposes of discussion we will consider the date to be written:

I I J This is because the circuit assumes that 1800 and 1900 were leap years. They were not since 1800and 1900are not

divisible by 400. A few additional relays could correct this.
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where the letters can have the values given in Table I. The day of the week is given by the
equation:
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where

(mod 7)

721

E

36
2356

123456
012456
0156

04

Sun = 0, Mon = 1, ... , Sat = 6 .

The circuit solves this equation as follows. The dial pulses are followed by stepping switch
number one (STI). While the dial is being wound up for the next digit, the previous digit
(stored on STl) is connected through the appropriate translating network to a fast mod 7 adder.
ST2 counts the returns to normal of the dial, keeping track of what part of the date is being
dialed and controlling the translating networks.

The detailed description will be given by describing the function of each of the relays. The
heart of the circuit is the fast mod 7 adder. Relays E, L, G, N, J and Q form 3 WZ pairs. The
digits 0 through 6 are binary coded. E and L are the 22 digit, G and N the 2 J digit and J and Q
the 2° digit. Closing one and only one of the adding relays (R, P, M, K, H or F) and putting a
minus pulse on the pulse lead will add 1, 2, 3, 4, 5 or 6 (mod 7) to the number in E, G and J.
Removing the minus pulse lets L, Nand Q follow E, G and J. The circuit was designed by
preparing Table II. The entries indicate for which adder outputs the E, G and J (W relays)
relays should be pulsed when it is desired to add the number which is the row label. For
example, the entry in column Grow 3 indicates that when 3 is to be added the G relay is to be
pulsed only when the adder reads 0 or 2. Table III gives circuits which are closed for the values
given in Table II. The final circuit was obtained by combining the circuits of Table III with
contacts on the adding relays. For instance, if relay K is operated the circuits of row 4 Table III
are connected between the pulse lead and the coils of relays E, G and J.

Table II

Values of Adder Output for Which W Relays Should Change

Numbers W Relays
to be added J G

I 012345 1356
2 56 012346
3 0123 02
4 3456 35
5 01 123456
6 123456 0246

The machine is cleared with the pushbutton P.B. After clearing relays D and Care
operated. All other relays are not. Winding up the dial operates relay B; stepping ST2 to its #1
position and resetting ST1. When the dial is released relay 0 follows the dial pulses, stepping
ST 1 to the dialed position. Relay C is released at the beginning of the first dial pulse. After the
last dial pulse one of the adding relays (F, H, K, M, P, R) is closed through the top deck of STI
(unless Oct. was dialed in which case none is closed since we wish to add zero). When the dial
reaches its normal position relay B releases, placing a minus pulse on the pulse lead and adding
a number, corresponding to the month dialed, to the mod 7 adder. Releasing relay B causes
relay C to operate and hold, then relay O. If Jan. or Feb. were dialed relay D is locked up and
holds until the machine is cleared.

A similar action occurs as each part of the date is dialed. As the dial is wound up STI
resets and ST2 steps one connecting the proper translating networks between the decks of ST 1
and the adding relays. The dial pulses are followed by STI and when the dial returns to normal
a pulse is put on the pulse lead which causes the mod 7 adder to add the appropriate number.
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Relays S, W, X, Y, Z and A are operated by ST2 and make changes in the translating networks.
Relays T, U and V are used in calculating the leap year correction and the fractional parts of the

largest integer in 54° Y I + ~ Y2. If Y I is even U locks up. If Y I Y2 is a leap year T locks up.

If Y I is odd and Y2 == 3 or 7 V locks up. The correction is added when the A of AD is dialed.
Dialing the D steps ST2 and lights the correct day of the week lamp through a tree on relays E,
G and J.

Table III

Circuits on Z Relays which are
Closed for Combinations Given in Table II

Adding
Relay

No. to
Be Added J

W Relays

G E

R

p 2

M 3 -oL'o- -oQ'O--GL'o-

K 4 CL:J- -C:J-oQO- t:,3-
H 5 -oN'O--oL'o- t:3- -oN'o-

F 6 t:B- -oQ'o- -oQ'O--oN'o-
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Appendix 2. Number Display Circuit

The circuit shown in Figure 4 was designed at the request of J. Karlin. It is set up for
displaying groups of five random numbers taken from a punched tape. The numbers can be
displayed in two forms, either decimal (one digit in a vertical column of ten is lighted) or
binary (four vertical lamps give the binary representation of the number). The purpose of this
circuit is to test experimentally the relative ease of reading these two types of presentation, the
rate of improvement in the binary case, etc.

The first four holes of the tape carry random numbers punched in binary form. The fifth
hole is always punched and is used for control purposes. The two stepping switches are driven
in parallel and are used chiefly to steer the random numbers from the tape into twenty memory
relays. When the key is pressed the stepping switches are reset to their initial position and the
memory relays released. When the key is released, a local buzzing circuit involving relay X
and the fifth hole of the tape advances the steppers and the tape step-by-step until five rows
have been read into the memory relays. The contact networks on the relay control the ten lights
in each column, translating the binary into the decimal representation.

Appendix 3. The Morse Decoder

This circuit decodes the dots and dashes of International Morse into its component letters,
which are displayed in a panel of lights. A telegraph key may be operated at speeds ranging
from five to forty words per minute. Two switches are set corresponding to the rate of
transmission. The machine lights up successively lamps corresponding to the letters of the
signal.

The circuit is shown in Figure 5. The machine "copies" one letter behind the transmission;
a letter is displayed while the next one is being transmitted. There are two sets of memory
relays which are used alternately to register the dots and dashes of the successive letters. These
are the relays A, B, C, D and S, T, U, R. A received dot corresponds to a memory relay
released, a received dash to the relay being operated. The letter "C" (_. - .), for example,
would be registered in the ABeD group as A and C operated, Band D released. The number of
dots and dashes in a letter corresponds to the final position of the associated stepping switch. If
"C' is registered in the ABeD group, the stepping switch will stop opposite D at the fifth
level. If" K" (_. _.) were registered, the relays would be in the same states but the stepping
switch would have stopped at the fourth level opposite C.

The circuit has two timing elements. The first measures the length of closure of the key and
decides between dots and dashes. The second measures periods when the key is open and
decides between spaces within a letter and spaces between letters. These two subcircuits are
essentially identical. The dot-dash discriminator, for example, is constructed of three relays.
When the key is closed" these start going through a sequence of seven states. The signal that a
dash has occurred (rather than a dot) can be made to correspond to any of these states. Early
states correspond to short dots and dashes and rapid sending. Later states in the sequence
correspond to a longer discriminating time and slow sending. Similar considerations apply to
the "key open" measuring device. Receiving a dash corresponds to a ground on the line
leading to the stepper wipers going into the memory relays. A space between letters operates
relay Q which pulses the WZ pair of relays Land M. This pair of relays determines which of
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the two sets of memory relays and associated steppers is currently registering the transmitted
letter (the other set of memory relays will be connected to the panel of display lights).

When a Jetter is transmitted, each dot or dash advances the registering stepper one notch.
Whether it is a dot or a dash is recorded in the memory relay at each position. When the end of
the Jetter occurs, relay Q will operate, advancing the LM pair, which in tum connects the
second stepper for registering the next letter and allows the first set to control the indicating
lights and display the letter just received.
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PREFACE

C. E. Shannon and J. McCarthy

Among the most challenging scientific questions of our time are
the corresponding analytic and synthetic problems: How does the brain
function? Can we design a machine which will simulate a brain? Speculation
on these problems, which can be traced back many centuries, usually re-
flects in any period the characteristics of machines then in use. Descartes,
in DeHomine, sees the lower animals and, in many of his functions, man as
automata. Using analogies drawn from water-clocks, fountains and mechanical
devices common to the seventeenth century, he imagined that the nerves trans-
mitted signals by tiny mechanical motions. Early in the present century,
when the automatic telephone system was introduced, the nervous system was
often likened to a vast telephone exchange with automatic switching equip-
ment directing the flow of sensory and motor data. Currently it is fash-
ionable to compare the brain with large scale electronic computing machines.

Recent progress in various related fields leads to an optimistic
view toward the eventual and not too remote solution of the analytic and
synthetic problems. The fields of neuro-anatomy and neuro-physiology,
using powerful tools from electronics in encephalographic studies, have
illuminated many features of the brain's operation.

The development of large scale computers has led to a clearer
understanding of the theory and design of information processing devices.
Programming theory, still in its infancy, is already suggesting the tremen-
dous potential versatility of computers. Electronic computers are also
valuable tools in the study of various proposed nlodels of nervous systems.
Often such models are much too complex for analytic appraisal, and the only
available method of study is by observation of the model in operation.

On the mathematical side, developments in symbolic logic, recursive
function theory and Turing machine theory have led to deeper understanding
of the nature of what is computable by machines. Neighboring fields of
game theory and information theory have developed concepts relating to the
nature and coding of information that may prove useful 1n automata research.

The problem of giving a precise definition to the concept of
"thinking" and of deciding whether or not a given machine is capable of
thinking has aroused a great deal of heated discussion. One interesting
definition has been proposed by A. M. Turing: a machine 1s termed capable
of thinking if it can, under certain prescribed conditions, imitate a human
being by answering questions sufficiently well to deceive a human questioner
for a reasonable period of time. A definition of this type has the advan-
tages of being operational or, in the psychologists' term, behavioristic.
No metaphysical notions of consciousness, ego and the like are involved.
While certainly no machines at the present time can even make a start at
satisfying this rather strong criterion, Turing has speculated that within
a few decades it will be possible to program general purpose computers in

such a way as to satisfy this test.



Automata Studies 729

A disadvantage of the Turing definition of thinking is that it is
possible, in principle, to design a machine with a complete set of arbitrar-
ily chosen responses to all possible input stimuli (see, in this volume, the
Culbertson and the Kleene papers). Such a machine, in a sense, for any
given input situation (including past history) merely looks up in a
"dictionary" the appropriate response. With a suitable dictionary such a
machine would surely satisfy Turing's definition but does not reflect our
usual intuitive concept of thinking. This suggests that a more fundamental
definition must involve something relating to the manner in which the ma-
chine arrives at its responses--something which corresponds to differenti-
ating between a person who solves a problem by thinking it out and one who
has previously memorized the answer.

The present volume is a collection of papers which deal with vari-
ous aspects of automata theory. This theory is of interest to scientists in
many different fields and, correspondingly, among the authors are workers
who are primarily logicians, mathematicians, physicists, engineers, neurolo-
gists and psychologists. The papers include some which are close to pure
mathematics; others are essentially directed to the synthesis problem and
some relate largely to philosophic questions. There is also a certain amount
of overlap, the same problem being handled from somewhat different points of
view by different authors.

The papers have been divided into three groups. The first group
consists of papers dealing with automata having a finite number of possible
internal states. In the usual quantized model of this type, the automaton
has a finite number of inputs and outputs and operates in a quantized time
scale. Thus, such a device is characterized by two functions of the current
state and input, one function giving the next state and the other the next
output. Although seemingly trivial at this level of description, many inter-
esting problems arise in the detailed analysis of such machines. Indeed, it
should be remembered that essentially all actual physical machines and even
the brain itself are, or can be reasonably idealized to be, of this form.

Neurophyslologists have proposed a number of models for the neuron
and Kleene, in his paper, investigates the capabilities and limitations of
automata constructed from these idealized components. von Neumann, using
similar components, allows the possibility of statistically unreliable oper-
ation and shows that under certain conditions it is possible, with unreliable
components, to construct large and complex automata with as high a reliabil-
ity as desired. In'Culbertson's paper a simple oonstruction is given for
an idealized neural network which will react in an arbitrary prescribed man-
ner for an arbitrary lifetime. In all of these papers the notion of univer-
sal components plays a significant role. These are components which, roughly
speaking, are sufficiently flexible to form devices capable of acting like
any machine. Minsky considers the problem of universality of components
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and finds conditions which ensure this property. In a paper- of a. somewhat
different type, Moore studies what can be learned about finite state auto-
mata by expertments performed on the inputs and outputs of the machine
(without direct observation of its interior).

The second group of papers deals with the theory of Turing machines
and related questions, that is to say, with automata having an unlimited
number of possible states. The original Turing machine (since then, recast
in many different forms) may be described as follows. Let there be glven a
tape of infinite length which is divided into squares and a finite list of
symbols which may be written on these squares. There 1s an additional mech-
anism, the head, which may read the symbol on a square, replace it by another
or the same symbol and move to the adjoining square to the left or right.
This 1s accomplished as .follows: At any given time the head is in one of a
finite number of internal states. When it reads a square it prints a new
symbol, goes into a new internal state and moves to the right or left de-
pending on the original internal state and the symbol read. Thus a Turing
machine is described by a finite list of quintuplets such as 3, 4, 3, 6, R
which means: If the machine is in the third internal state and reads the
fourth symbol it prints the third symbol, goes into the sixth internal state
and moves to the right on the tape. There is a fixed initial internal state
and the machine 1s supposed to start on a blank tape. One of the symbols
represents a blank square and there may be given a state in which the machine
stops.

Turing gave a convincing argument to the effect that any precisely
defined computation procedure could be carried out by a machine of the type
described above. He also showed that the Turing machines can be enumerated
and that a universal machine could be made which, when it read the number o~

any Turing machine, would carry out the computation that that machine would
have carried out were it put on a blank tape. His final result was to show
that there did not exist a Turing machine which when confronted with the
number of another machine would dec1de whether that machine would ever stop.

Any of the present automatic electronic computers is equivalent to
a universal Turing machine if it is given, for example, a means of asking
for more punched cards and for the return of cards it has already punched ,
In Shannon's paper 1t is shown that a un!versal Turing machine can be con-
structed with only two internal states, or alternatively, with only two
tape symbols. Davis gives a general definition of a universal Turing machine
and establishes some results to make this definition appear reasonable.
McCarthy discusses the problem of calculating the inverse of the function
generated by a Turing machine, after some argument to the effect that many

intellectual problems can be formulated in this way. Finally, De Leeuw,
Moore, Shannon and Shapiro investigate whether machines with random elements
can compute anything uncomputable by ordinary Turing machines.
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The third section of the book contains papers relating more di-
rectly to the synthesis of automata which will simulate in some sense the
operation of a living organism. Ashby discusses the problem of designing
an intelligence amplifier, a device which can solve problems beyond the
capacities of its designer. Ma.cKa.y, dealing with the same general problem,
suggests means for an automaton to symbolize new concepts and generate new
hypotheses. Uttley studies from a still different point of view the problem
of the abstraction of temporal and spatial patterns by a machine, that Is,
the general problem of concept formation.

It gives us pleasure to express our gratitude to all those who
have contributed to the preparation of this volume. The work was supported
in part by the Princeton Logistics Project sponsored by the Office of Naval
Research. Professor A. W. Tucker, directing this project, has been most
helpful. H. S. Bailey, Jr. and the staff of the Princeton University Press,
particularly Mrs. Dorothy Stine and Mrs. Jean Muiznieks have been efficient
and cooperative. Thanks are also due Dr. Julia Robinson for help with the
reviewing and Mrs. E. Powanda for secretarial services.

JOM McCarthy
Claude Shannon
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A UNIVERSAL TURING MACHINE WITH TWO INTERNAL STATES

Claude E. Shannon

INTRODUCTION

In a well-known paper 1
, A. M. Turing defined a class of computing

machines now mown as Turing machines. We may think of a Turing machine as
composed of three parts -- a control element, a reading and writing head,
and an infinite tape. The tape is divided into a sequence of squares,
each of which can carry any symbol from a finite alphabet. The reading head
will at a given time scan one square of the tape. It can read the symbol
written there and, under directions from the control element, can write a
new symbol and also move one square to the right or left. The control ele-
ment is a device with a finite number of internal "states." At a given time,
the next operation of the machine is determined by the current state of the
control element and the symbol that is being read by the reading head. This
operation will consist of three parts; first the printing of a new symbol in
the present square (which may, of course, be the same as the symbol just
read); second, the passage of the control element to a new state (Which may
also be the same as the previous state); and third, movement of the reading
head one square to the right or left.

In operation, some finite portion of the tape is prepared with a

starting sequence of symbols, the remainder of the tape being left blank
(L, e ., registering a particular "blank" symbol). The reading head 1s placed
at a particular starting square and the machine proceeds to compute in ac-
cordance with its rules of operation. In Turing'S original formulation
alternate squares were reserved for the final answer, the others being used
for intermediate calculations. This and other details of the original defi-
nition have been varied in later formulations of the theory.

Turing showed that it is possible to design a universal machine
which will be able to act like any particular Turing machine when supplied
with a description or that machine. The description is placed on the tape
of the universal machine in accordance with a certain code, as is also the
starting sequence of the particular machine. The universal machine then
imitates the operation of the particular machine.

Our main result 1s to show that a universal Turing machine can be
constructed using one tape and having only two internal states. It will also
be shown that it 1s impossible to do this with one internal state. Finally
a construction is given ror a universal Turing machine with only two tape
symbols.

Turing, A. M., "On Computable Numbers, with an Application to the
Entscheidungsproblem," Proc. of the London Math. Soc. 2 - 42 (1936),
pp. 230 - 265.
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THE TWO-STATE UNIVERSAL TURING MACHINE

C. E. Shannon

The method of construction is roughly as follows. Given an arbi-
trary Turing machine A with an alphabet of m letters (symbols used on
the tape, including the blank) and n internal states, we design a machine
B with two internal states and an alphabet of at most 4mn + m symbols.
Machine B will act essentially like machine A. At all points of the tape,
except in the position opposite the reading head and one adjacent position,
the tape of B will read the same as the tape of A at corresponding times
in the calculation of the two macllines. If A is chosen to be a universal
Turing machine, then B will be a universal Turing machine.

Machine B models the behavior of machine A, but carries the
information of the internal state of A via the symbols printed on the tape
under the reading head and in the cell of the tape that the reading head of
A will next visit. The main problem is that of keeping this state informa-
tion up to date and under the reading head. When the reading head moves,
the state information must be transferred to the next cell of the tape to
be visited using only two internal states in machine B. If the next state
in machine A is to be (say) state 17 (according to some arbitrary number-
ing system) this is transferred in machine B by "boill1cing" the reading
head back and forth between the old cell and the new one 17 times (actually
18 trips to the new cell and 17 back to the old one). During this process
the symbol printed in the new cell works through a kind of counting sequence
ending on a symbol corresponding to state 17, but also retaining information
as to the symbol that was printed previously in this cell. The bouncing
process also returns the old cell back to one of the elementary symbols
(which correspond one-to-one with the symbols used by machine A), and in
fact returns it to the particular elementary symbol that should be printed
In that cell when the operation is complete.

The formal construction of machine B is as follows: Let the
symbol alphabet of machine A be All A2 , ••• , Am' and let the states be
Sl' 32 , ... , Sn· In machine B we have m elementary symbols corresponding
to the alphabet of the A machine, B

1
, B

2
, ••• , Bm. We further define

4mn new symbols corresponding to state symbol pairs of machine A together
with two new two-valued indices. These symbols we denote by Bi · x y where, J, ,
i = 1, 2, .•• , m (corresponding to the symbols), j = 1, 2, ... , n (cor-
responding to the states), x = + or (relating to whether the cell of
the tape is transnlitting or receiving information in the bouncing operation)
and y = R or L (relating to whether the cell bounces the control to the
right or left).

The two states of machine B will be called a and ~. These
two states are used ror two purposes: First, on the initial step of the
bouncing operation they carry information to the next cell being visited as
to whether the old cell is to the right (0) or left (~) of the new one.
This is necessary for the new cell to bounce the control back 1n the proper
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direction. After the initial step this information is retained in the new
cell by the symbol printed there (the last index y). Second, the states ex
and ~ are used to signal from the old cell to the new one as to when the
bouncing operation is complete. Except for the initial step of bouncing,
state ~ will be carried to the new cell until the end of the bouncing opera-
tion when an a is carried over. This signifies the end of this operation
and the new cell then starts acting as a transmitter and controlling the
next step of the calculation.

Machine B is described by telling what it does when it reads an
arbitrary symbol -and 1s in an arbitrary state. What it does consists of three
parts: printing a new symbol, changing to a new state, and moving the reading
head to right or left. This operation table for machine B is as follows.

symbol; state-'" symbol; state; direction

B1; ex -... B · (); R (1 1, 2, ·.. , m) (1 )i,l,-,R'

Bi ; t3 B . 0; L (1 1, 2, ·.., m) (2)i,l,-,L'

(1 1 J 2, ·.., m )
B1· ; f3 -+- Bi , ( j+' ), - , x; cx; x ( j 1, 2,

• • • J
n - 1 ) (3 ),J,-,X (x = H, L )

(1 = 1, 2, ·.. , m)
B1· ; a or a --+- Bi (.) j 13; x ( j = 2, ... , n ) (4 ),J,+,X , J-1 ,+,x (x = H, L )

B · ex or f3 --... B1; 0:; x (i = 1, 2, ... , m) (5)L, ,+ ,x' (x = H, L )

So far, these operations do not depend (except for the number of
symbols involved) on the operation table for machine A. The next and last
type of operation 1s formulated in terms of the operation table of the ma-
chine being modeled. Suppose that machine A has the operation formula

.R
(6) Ai; Sj --...Ak; Si' L ·

Then machine B is defined to have

B1· ; a --"'l\: t R; a . R,J,-,x , '+'L a ' L

where if the upper letter (R) occurs in (6) the upper letters are used in
(7) and conversely.

To see how this system works, let us go through a cycle consisting
of one operation of machine A and the corresponding series of operations
of machine B.

Suppose that machine A 1s reading symbol A, and is in state 37,
and suppose its operation table requires that it print A8, go into state
34 and move to the right. Machine B will be reading (by inductive as-
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sumption) symbol B}, 7 r: , x (whether x is R or L depends on preceding
operations and 1s irrelevant to those which follow). Machine B will be

in state a. By relation (7), machine B will print Ba 4 H' go into
J , + ,

state (3, and move to the right. Suppose the cellon the right contains
A13 in machine A; in machine B the corresponding cell will contain B13-
On entering this cell in state ~, by relation (2) it prints B13,1,-,L'
goes 1n~ state a, and moves back to the left. This 1s the beginning of
the transfer of state information by the bouncing process. On entering the

left cell, it reads B8, 4 , +,R and by relation (4) prints Ba , 3, +, R' goes
to state ~ and moves back to the right. There, by relation (3), it prints
B goes into state a and returns to the left. Continuing in this13,2,-,L'
manner, the process 1s summarized in Table I.

The operations indicated complete the transfer of state information
to the right cell and execution of the order started in the left cell. The
left cell has symbol Ba registered (corresponding to Aa in machine A)
and the right cell has symbol B13,4,-,L registered, with the reading head
coming into that cell with internal state a. This brings us back to a situ-
ation stmilar to that assumed at the start, and arguing by induction we see
that machine B models the behavior of machine A.

To get machine B started in a manner' corresponding to machine A,

its initial tape is set up corresponding to the initial tape of A (with Ai
replaced by Bi ) except for the cell initially occupied by the reading head.
If the initial state of machine A is Sj and the initial symbol in this

cell is Ai' the corresponding cell of the B tape has Bi,j,-,R(or L)
registered and its internal state is set at a.

B13,4,-,L

B13,2,-,L

B- ",l,-,L

S~bol 1n right cellState

~

ex

f3

a

t3

a

f3

ex

ex

Table I

B8,3,+,R
~

B8,2,+,R
?>

B8,1,+,R
It

B8,4,+,R

Symbol In lert cell

B3,7 , - ,x -----__~..- _



A Universal Turing Machine with Two Internal States

IMPOSSIBTI.ITY OF A ONE-STATE UNIVERSAL TURING MACHINE

737

It will now be shown that it is impossible to construct a universal
Turing machine using one tape and only one internal state.

Suppose we have a machine satisfying these conditions. By register-
ing a suitable "description number" of finite length on part of t he tape
(leaving the rest of the tape blank), and starting the reading head at a suit-
able point, the machine should compute any computable number, in particular
the computable irra.tional numbers, e.g., .[2. We will show that this 1s
impossible.

According to Turing's original conception, 1'2 would be computed
in a machine by the machine printing the successive digits of .[2 ( say, in
binary notation) on a specified sequence of cells of the tape (say, on alter-
nate cells, leaving the others for intermediate calculations). The following
proof assumes .[2 to be calculated in such a form as this, although it will
be evident that modifications would take care of other reasonable interpreta-
tions of "calculating J"2."

Since ~2 is irrational, its binary digits do not, after any finite
point, become periodic. Hence if we can show that with a one-state machine
either (1) all but a finite number of the cells eventually have the same symbol
registered, or (2) all but a finite number of the cells change indefinitely,
we will have proved the desired result.

Assume first a doubly infinite tape -- an infinite number of blanks
each side of the description number .for .[2. When the reading head enters a.

blank cell it must either stay there indefinitely or eventually move out either
to right or left. Since there 1s only one state, this behavior does not de-
pend on previous history of the computation. In the firRt ca.se, the reading
head will never get more than one removed from the description number and all
the tape except for a finite segment will be constant at the blank symbol.
If it moves out of a blank symbol to the left, either the left singly infinite
section of blank tape is not entered in the calculation and therefore need not
be considered, or if it is entered, the reading head from that time onward con-
tinues moving to the left leaving all these preViously blank cells register-
ing the same symbol. Thus the tape becomes constant to the left of a finite
segment and blank to the right of this segment and could not carry .[2. A
similar situation arises ir it emerges to the right from an originally blank
cell. Hence the doubly infinite tape is no better than the singly infinite
tape and we may assume from symmetry a singly infinite tape to the right of
the description number.

Now consider the follOWing operation. Place the reading head on
the first cell of this infinite blank strip. The machine will then compute
for a time and perhaps the reading head will be transferred back out of this
strip toward the description number. If so, replace it on the first cell of
the now somewhat processed blank tape. If it returns again off the tape,
again replace it on the first cell, etc. The number of times it can be placed
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on the first cell in this fashion will be called the reflection number of the
machine and denoted by R. This will be either an integer 1, 2, 3, ... ,

or 00.

Now consider placing the reading head at its appropriate start for
the description number to compute /'2. After a certain amount of computation

the reading head will perhaps emerge from the description number part of the

tape. Replace it on the last cell of the description number. Again after a
time it will possibly emerge. Continue this process as long as possible. The
number of times it emerges will either be an integer 0, 1,2, 3, ... , or 00.

This number, S, we call the reflection number for the J'2 description.
If S is finite and R (possibly (0) > S, the reading head after

a finite time will be trapped in the part of the tape that originally con-
tained the description number. Only a finite amount of the blank tape will
have been changed and the machine will not have calculated J'2.

If both Rand S are infinite, the reading head will return in-
definitely to the description number part of the tape. The excursions into
the originally blank parts will either be bounded or not. If they are bounded,
only a finite amount of the blank tape will have been changed as in the pre-
ceding case. If the excursions are unbounded, all but a finite segment of
tape will be operated on by the reading head an unlimited number of times.

Since there is only one state and a finite alphabet of tape symbols, the
symbol registered 1n a cell visited an unl~ited number of times must either
come to a constant (the same for all these cells) or else change cyclically
an infinite number of times. In the first case, all the originally blank
tape becomes constant and cannot represent ~2. In the second case all the
blank tape is continually changing and cannot be the computation of anything.

If R ~ S, the reading head eventually moves into the original
blank part or the tape and stays there. In this case it can be shown that
the symbols in the originally blank part become constant. For either it moves
to the right out of the fi~st blank cell into the second blank cell at least
R times, or not. If not the reading head is trapped ill what was the first
blank cell after a finite time, and all but a finite amount of tape remains
constant at the blank s~~bol. If it does move out R times it will not re-
turn to the first originally blank cell since R is the reflection number
for blank tape. This first cell will then have registered the result of op-
erating on a blank 2R times (R coming in from the left and R from the
right). The second originally blank cell will eventually register the same
constant symbol, since the same argument applies to it as to the £irst. In
each case the machine works into the same tape (an infinite series of blanks)
and enters the same number of times (R). This exhausts the cases and com-
pletes the proof.
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It 1s also possible, as we will now show, to construct a machine,

C, which will act like any given Turing machine A and use only two symbols

and 0 on its tape, one of which, 0 say, is the symbol for a blank
square. Suppose, as before, a given machine A has m tape symbols and n
internal states. Let l be the smallest integer such that m is less than

tor equal to 2 • Then we may set up an arbitrary association of the m sym-
bols used by machine A with binary sequences of length l, letting however
the blank symbol of machine A correspond to the sequence of t zeroes.
Basically, the machine C will operate with binary sequences; an elementary
operation in machine A will correspond in machine C to stepping the read-
ing head to the right I - 1 squares (storing the read information in its
internal state) then-stepping back to the left I, - 1 squares, writing the
proper new symbol as it goes, and finally moving either to the right or td
the left t squares to correspond to the motion of the reading head of
machine A. During this process, the state of machine A 1s also, of course,
carried in machine C. The change from the old state to the new state oc-
curs at the end of the reading operation.

The formal construction of machine C is as follows. Corresponding

to states 3 1 , 32 , ••• , Sn of machine A we define states T" T
2

, ... , Tn in
machine C (these will occur when machine C is at the beginning of an op-
eration, reading the first symbol in a b1na~y sequence of length l). For
each of these T1 we define two states Ti O and Til. If machine C is
in state Ti and reads symbol 0, it moves to the right and goes into
state Ti O. If it reads a 1, it moves to the right and goes into state
Til. Thus, after reading the first symbol of a bina.ry sequence, these two
states remember what that symbol was. For each of these there are again two
states Ti OO' Ti 01 and Ti 10 and Till. If the machine is in the state
Ti O for example and reads the symbol 0 it goes to the state Ti OO and
similarly for the other cases. Thus these states remember the initial state
and the first two symbols read 1n the reading process. This process of con-
structing states is continued for l - 1 stages, giving a total of (2£ - l)n
states. These states may be symbolized by

Ti,x1 ,x2 , • • • ,xs
i = 1, 2, ..• , n; x j = 0, '; s = 0, 1, ... , l - 1.

If the machine is in one of these states (s < t - 1) and reads 0 or 1,

the machine moves to the right and the 0 or , appears as a further index
on the state. When s = t - 1, however, it is reading the last binary symbol
in the group of t. The rules of operation now depend un the specific rules
of machine A. Two new sets of states somewhat sJ.milar to the T states
above are defined, which correspond to writing rather than reading:

R and L
l'X 1 ,x2 ' · • · ,xs i,x1 ,x2 , · · · ,xs
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A sequence xl' X2 ' ... , Xl_ 1' Xl corresponds to a ~ymbol of machine A.
Suppose that when machine A 1s reading this corresponding symbol and is in
state i it prints the symbol corresponding to the binary sequence
Y1' Y2' ... , Y'-l' Y" goes to state j and moves (say) right. Then we de-
fine machine C such that when in state Ti x x x' and reading

, l' 2'···' /,-1
symbol x" it goes into state R. , prints Yl and moves

J'Yl 'Y2'··· 'Yl-l
to the left. In any of the states R (or L ),

1'Y1'Y2'···'Y5 i'Y1'Y2'···'Y8
machine C writes Ys' moving to the left and changes to state
Hi (or Li ) · By this process the binary se-

, y 1 ' Y2' • • • , ys-l ' y 1 ' Y2' • • • , ys-1
quence corresponding to the new symbol is written in place of the old binary
sequence. For the case s= 1, the writing of Y1 completes the writing
operation of the binary sequence. The remaining steps are concerned with
moving the reading head J, steps to the right or left according as the ma-
chine 1s in an R sta.te or an L state. This is carried out by means of
a set of Ui s and Vis (1 = 1,2, ... , nj s = 1, 2, •.• ,t - 1). In state
Rix the machine writes Xl' moves to the right, and goes into state U11.1
In each of the U states it continues to the right, printing nothing and
going into the next higher indexed U state until the last one is reached.
Thus Ui s produces motion to the right and state Ui s + 1 (s < t - 1).

Finally Ui £ _ 1 leads, after motion to the right, to Ti, completing the
cycle. In a similar rasblon, Lix leads to motion to the left and state

1
Vi 1; Vis gives motion to the left and Vi s + 1 (s < t - 1); finally,
Vi t - 1 gives motion to the left and Ti.

The initial tape for machine C is, of course, that for machine A
with each symbol replaced by its corresponding binary sequence. If machine
A is started on a particular symbol, machine C will be started on the
left-most binary symbol of the corresponding group; if machine A is
started in state 3i, C will be started in state Ti•

Machine C has at most n(l + 2 + 4 ... + 2
l- 1)

= n(2£ - 1) T
states, similarly at most n(2 t - 2) R states and n(2 t

- 2) L states,
and finally 2n(t - 1) U and V states. Thus altogether not more than

t t302 + n(21 - 7) states are required. Since 2 < 2m, this upper bound
on the number of states is less than 6mn + n(2 1 - 7), which in turn 1s
certainly less than 8rnn.

The results we have obtained, together with other intuitive con-
siderations, suggest that it is possible to exchange symbols for states and
vice versa (within certain limits) without much change in the product. In

going to two states, the product in the model given was increased by a factor
of about 8. In going to two symbols, the product was increased by a factor
of about 6, not more than 8. These "loss" factors of 6 and 8 are probably
in part due to our method of microscopic modeling -- i.e., each elementary
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operation of machine A is modeled into machine B. If machine B were
designed merely to have the same calculating ability as A in the large,
its state-symbol product might be much more nearly the same. At any rate
the number of logical elements such as relays required for physical realiza-
tion will be a small constant (about 2 for relays) times the base two logar-
ithm of the state-symbol product, and the factor of 6 or 8 therefore implies
only a few more relays in such a realization.

An interesting unsolved problem 1s to find the minimum possible
state-symbol product for a universal Turing machine.



COMPUTABILITY BY PROBABILISTIC MACHINES

K. de Leeuw, E. F. Moore, C. E. Shannon, and N. Shapiro

INTRODUCTION
The following question will be considered in this paper: Is there

anything that can be done by a machine with a random element but not by a
deterministic machine?

The question as it stands is, of course, too vague to be amenable
to mathematical analysis. In what follows it must be delimited in two re-
spects. A precise definition of the class of machines to be considered must
be given and an equally precise definition must be given of the tasks which
they are to perform. It is clear that the nature of our results will depend
strongly on these two choices and therefore our answer 1s not to be inter-
preted as a complete solution of the originally posed informal question.
The reader should be especially cautioned at this point that the results we
obtain have no application outside the domain implied by these choices. In
particular our results refer to the possibility of enumeration of infinite
sets and the computation of infinite sequences. They yield no information
of the type that would be wanted if finite tasks were being considered; for
example, the relative complexity of probabilistic machines which can perform
a given finite task and their relative speeds.

This difficulty 1s implicit in any situation where mathematics is
to be applied to an informally stated question. The process of converting
this question into a precise mathematical form of necessity will highlight
certain aspects. Other aspects, perhaps of equal or greater importance in
another situation may be completely ignored.

The main body of the paper consists of definitions, examples, and
statements of results. The proofs are deferred to the appendix since they
consist in the most part of more or less elaborate constructions which are
not absolutely essential for an understanding of the results.

Readers acquainted with recursive function theory will readily see
that the results of this paper are actually results in that theory and can
easily be translated into its terminology. In the light of this, the proofs
of the results take on a dual aspect. They can be considered to be complete

1proofs, assuming the intUitively given notion of an effective process; or
they can be considered to be indications of how the theorems, if they were

For discussion of effective processes, see [9J or [2]. The reader who 1s
not familiar with the notion of an effective process is advised to con-
sult one of these before proceeding further. Effective processes are
also discussed in (1 J, (7], and [8].
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stated formally in the language or recursive function theory, could be proved
formally using the tools of that theory. This formalization is not carried
out in the paper since it would detract from the conceptual content of the
proofs. However, if should be clear to anyone familiar with recursive func-
tion theory that the formalization can be carried out.

PROBABILISTIC MACHINES VS. DETERMINISTIC MACHINES
In this section we will first develop a precise definition of a

class of computing machtries . These machines will have an input and an output.
The input will be an infinite sequence of binary digits which may be supplied
in two different ways: Either as a fixed sequence (physically we may think
of an infinite prepared tape) or as the output of a binary random device
(with probability p of producing a 1). In this latter case we have a
probabilistic machine. We will next formulate a precise class of tasks that
we wish such machines to perform, namely, the enumeration with positive proba-
bility of sets of output symbols. The key result of the paper, Theorem 1,

is then applied to answer our question. The answer is given in Theorem 2.

What it states is that if the random device has a probability p, where p
is a computable real number (that is, a real number such that there is an

effective process for finding any digit of its binary expansion), any set
that can be enumerated by a probabilistic machine of the type considered can
be enumerated by a deterministic machine. This does not occur if p is a
non-computable real number. Similar results are obtained if the sequential
order of the output symbols is taken into consideration. The situation is
summarized in Theorem 3.

We shall think of our machines as objects that accept as input a

tape printed wit}1 a's and ,. s and puts forth as output a tape on which
it may print using a finite or countably infinite selection of output sym-

bols s1' s2' s~ ... (These symbols may be configurations rormed from some
finite alphabet.) The machine shall be assumed to have some initial state
in which it is placed before any operation is started; (as, for example, a

desk calculator must be cleared before a computation). Another requirement
that we can reasonably require a machine to satisfy is the following: There

1s an effective procedure whereby one can determine what the sequence of out-
put symbols (Sj' ... , sJ. ) on the output tape will be if the machine is

1 r
presented with the input sequence of ors and 1 's (a

l
, ••• , an) in its

initial state. This output sequence will be denoted by f(a 1, ... an).
Since we shall be interested only in the relationshio between innut and out-
put In machines we can abstract away their interior and take this require-
ment as a definition. (Even though an abstract definition is given at this
point, we shall continue to speak of machines in concrete terms.)

DEFINITION: A machine is a function that, for every n, to each n-tuple
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of 0'5 and 1 's (a
"

... , an)' associates some finite sequence
f(a

"
..• , an) = (SJ. I ••• , Sj ) consisting of elements from some fixed

1 r
set S such that the following two conditions are satisfied.

1. f(a 1 1 ••• , an) 1s an initial segment of
f( 8 1 , ••• , an' ... , 8 n+m) if (8.1 , ••• , an) is
an initial segment of (all ... ' an' ... , an+m).

2. f is a computable function, that ls, there 1s an
effective process 2 such that one can determine
f(a 1 , ••• , an) if (a 1 , ••• , an) Ls given.

This definition is extended to infinite sequences as follows:
If A (a

"

a 2 , a 3, ... ), rCA) is the sequence which has as initial seg-
ments the f(a 1 , ••• , an).

The operation of the machine can be thought of informally as follows:
If it is supplied with input (a l , ••• , an)' it looks at a 1 and prints the
sequence of symbols r(a

l
) on its output, it looks at a

2
and prints

symbols after f(a,) on the tape to obtain the sequence f(a
1

, a
2

) , ••• ,

it looks at an and prints symbols after f(a
1

, ••• , 8 n_
1)

on the tape
to obtain the sequence fCa l , •.• , a l' a) and then stops.n- n

At this point several concrete examples of objects that are machines
will be given. These are to serve two purposes, to illustrate the concept
or machine introduced and to be referred to later to illustrate new concepts
that a.rise. The examples need not all be rea.d at this point.

MACHINE NO.1: The output symbols of this machine are to be ordered pairs
of integers (a, r). For each input symbol a the machine prints the out-
put symbol (a, r) if a was the r t h input symbol on the input tape. In
other words, f(a" ... , an) = «a

"
1),. (a2 , 2), .•. , (an' n ) }.

MACHINE NO.2: Let g be an'integral valued function of positive integers
which 1s computable, that ls, there 1s an effective process for finding

g(n) if n is given. Let the machine print the output symbol (r, g (r»
thafter it has scanned the r input symbol. In this case f(a" ... , an) =

(1, g(l », (2, g(2», ... (n, g(n») and the output is independent of the
input. This machine and Machine No. 1 are extreme cases. NO.2 1s oblivious
of the input and No. 1 essentially copies the input onto the output tape.
Note that No. 2 would not be a machine according to our definition if the
function g were not computable, for in this case there would be no effective
process for determining what the output would be if the input were given.

MACHINE NO.3: Let the machine print the symbol 0 as soon as it comes to

2 For discussion of effective processes, see [9] or (2). The reader who is
not familiar with the notion of an effective process 1s advised to consult
one of these before proceeding further. Effective processes are also dis-
cussed in [1], [7], and [8).
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the first zero 1n the input sequence. Otherwise it 1s to do nothing. Then
f(a" ... , an) = (0) if one of the a j is a zero. Otherwise the machine
prints nothing. This eventuality will be denoted by the "empty sequence,"
( .), and we have f( 1, ••• , 1) = (.).

MACHINE NO.4: Let f(a
l

, ..• , an) = (a l ) . The machine merely copies the
first input symbol onto the output tape and then prints nothing.

MACHINE NO.5: Let the machine print the output symbol r if the maximum
length or a string of l's that the machine has observed is r. For ex-
ample J f( 1) = (1 ), f ( 1, 0) = (1, 1), r (1, 0, 1) = (1, 1, 1),

rt i , 0,1,1) = (1,1,1,2).

MACHINE NO.6: Let h( r, a ) be a computable integral valued function whose

domain is the positive integers. The machine prints nothing \ll1til it comes
to the first 1 in the input; if this 1 is the first input symbol it never
prints anything; if this 1 has occurred after r zeroes, it prints the
symbol (1} h (r, 1». After the next input the machine prints (2, her, 2»,
after the next (;, her, 3» etc. Let the function ~ with r fixed be
defined by ~(s) = her, s). Then what this machine actually does is to
compute the function ~ if it is presented with an initial string of r
zeroes followed by a 1.

MACHINE NO.1: This machine 1s .given by feat' ... , an) = «1, r 1),
(2, r 2) , ... , (q, r q » where the integer r s is obtained as follows: Look
at the first 100s digits of (a l , ••• , an). Let Ps be the proportion of
digits that are l's. Let r s be the sth digit in the binary expansion of

the number ps. q 1s the greatest s such that 100s < n. A construction
similar to this is used in the proof of part of Theorem 1 •

Although the action of a machine is defined only for finite input
sequences, it is clear what one of our machines would do if it were fed an
infinite input sequence A = (a

1
, a

2
, a

3
, ... ) and had available an infinite

output tape on which it could print. Its action 1s determined by the fact
that we know what its output will be for all finite input sequences. TI1US

the machine associates to each infinite input sequence an output sequence
which mayor may not be infinite. For example, if Machine No. 1 is fed an
infinite tape on which only l's are printed, the output sequence will be

«1, 1), (1, 2), (1, 3), ... ). Machine NO.3 gives no output (the empty
sequence (. » and Machlne No. 4 the output sequence (1) when presented
with the same input.

We wish to consider the set of symbols that occur on the output
tape of a machine that 1s supplied with some infinite input sequence A.
(For example, if the output sequence is (1, 1,.1, ... ) the set of symbols
consists of the symbol 1 alone while 1f the output sequence is
(1, 3, 5, 7, ... ) the set of symbols 1s the set of all odd integers.) Thus
the machine associates to each input sequence A some set of output symbols
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sequence A = (a" a 2 , ••• )

the nth element in the sequence

This set will be called A'.
1s an erfective process by means

A for every n. The following
although their proofs are al-

which it enumerates. (We do not wish to consider here the order in which
the set is enumerated or whether or not it 1s enumerated without repetitions.
This will be done later when computation of sequences is considered.)

For example, Machine No. 1 associates to any infinite input sequence
A = (a1 , a

2
, ••• ) the set of output symbols consisting of all (sn' n) as

n runs over the positive integers. Machine NO.2 associates any input
sequence to the set of all (n, g(n» as n runs over the positive integers.
Machine NO.3 associates to the input sequence consisting of all 1 's the
empty set. To the same input Machine No. 5 associates the set of all positive
integers.

DEFINITION: A machine supplied with the infinite input sequence
A = (a1 , a 2 , S3' ••. ) will be called an A-machine. It will be said to
A-enumerate the set of output symbols that it prints. A set of symbols is
called A-enumerable if there is an A-machine that A-enumerates the set.

The sets that are A-enumerable if A is the sequence consisting
of all 1 's are usually referred to as recursively enumerable sets. We
shall call them l-enumerable sets and an A-machine shall be called a
l-machine if A consists entirely of 1 's.

One can associate to each infinite
the set of all pairs (n, an) where an is
A and n runs over all positive integers.
A sequence A 1s called computable if there
of which one can determine the nth term of
three lemmas will be proved in the appendix,
most immediate.

LEMMA 1. The sequence A
if the associated set A'

is computable if and only
is l-enumerable.

LEMMA 2. If A is a computable sequence, any A-enumerable
set Is l-enumerable (and conversely).

LEMrllA 3. If A is not a computable sequence, there
exist sets that are A-enumerable but which are not
l-enumerable.

Lemma ~ together with the fact that non-computable sequences exist
will be important later.

We now wish to attach a random device to a machine in order to
construct a probabilistic machine. If one has a device that prints 0'8

and 1 's on a tape, 1 '8 occurring with probability p and O'a occurring
with probability 1 - P (0 < p < 1) and each printing being independent of
the preceeding printings, the output of the device can be used as the input
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tape of a machine. The combination of the random device and the machine will
be called a p-mactune.

The question asked in the Introduction of whether there are probab-
ilistic machines that are more general than deterministic machines can now
be narrowed down to the more specific question: Can everything done by a
p-machine be done by a l-machine? (In the next section, it will be shown
that there is little loss of generality in considering the rather narrow
class of p-machines within the larger class of all conceivable probabil-
istic machines. We shall see that a large class of probabilistic machines
are equivalent (in a sense that will be defined) to 1/2-machines, and many
of their properties can be deduced from the properties of 1/2-machines.)

We must further restrict our question since it 1s clear that no
precise answer can be given till we have a precise defininition of the task
that the machines are to perform.

The task that the machines in this paper shall be set to perform
is that of enumerating sets. This job is not as specialized as it at first
may seem. For examp.l.e, a machine can compute a function by enumerating
symbols ttf(n) = m"; or can decide the truth or falsity of a statement about
positive integers by enumerating symbols like "P(n) is true" and "P(n)
1s false"; or can compute the binary expansion of a real number by enumer-
ating symbols like "the nth digit of r is a".

We already have a definition of what 1s to be meant by a set of'
symbols being 1-enumerable. Namely, a set is 1-enumerable if there is a
machine that has that set as its total output if a tape with all 1's is
fed in as input. It is necessary to have some definition of enumerabillty
to apply to p-machines so that a comparison can be made between them and
l-machines.

Two definitions will be proposed, p-enumerable sets and strongly
p-enumerable sets. Our original informal question will have been reduced
to the two precise questions: Is every p-enumerable set l-enumerable?
Is every strongly p-enumerable set 1-enumerable?

It remains to give the two definitions: If one has a given
p-mac~ne, one can assign to each set of possible output symbols its proba-
bility of occurrence as total output or that machine. This is the probabil-
lty that that set will be precisely the set of symbols that occur on the
output tape of the mac~e if it is started in its initial position, the
random device connected and allowed to run forever. This probability is,
of course, zero for most sets. Several examples will be given, calling upon
the machines that we have used before. We shall assume that they have been
attached to a random device with p = 1/2 and thus have become 1/2-machines.
Machine No.1 prints any set with zero probability. It should be pointed
out that finite sets cannot occur and that is the reason they have zero prob-
ability. However, there are infinite sets that ~ occur as output but never-
theless do so with zero probability. One should not forget the distinction
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between occurrence with probability zero and tmpossibllity of occurrence.
Machine No.2 prints the set of all (n, a(n» with probability 1 (and
actually with certainty). Machine NO.3 has as output the set consisting
of the symbol 0 alone with probability , but not with certainty. Ma-
chine No. 5 has as output the set of all positive integers with probability
1, but not certainty; since an infinite sequence of O's and l's contains
arbitrarily long runs of l's with probability 1, but not certainty.
Machine No.6 puts out the set of all (n, her, n» with r fixed and n
running over all positive integers with probability 2-r. In other words,
the machine computes the function h.r (which was defined by h.r (n) = her, n )
with probability 2-r .

DEFINITION: For some fixed p, a set S of symbols will be called
strongly p-enumerable if there 1s a p-machine that produces that set of
output symbols in any order with non-zero probability.

The previous examples showed that the following sets are strongly
1!2-enumerable: The set of all (n, g(n» the set consisting of 0 alone,
the set consisting of all positive int~gers and the set of all (n, h(r, n»
with r fixed.

It is clear how a p-machine could be used to give information
about some strongly p-enumerable set S that it produces with positive
probability. One would operate the p-rnachine having confidence that the
set it enumerates is S 1n accordance with the probability of S occurring
as output. So long as S has some positive probability, the p-machine
could be used with some measure of confidence. If the probability of S
occurring as output were zero, one would have no confidence in the machine's
ability to enumerate precisely S. However, it might have a high probability
of being right for any particular output symbol and still enumerate S with
zero probability. So that this situation can be considered, a weaker defini-
tion will be given below.

There exists a definite probability that a given p-machine M
will eventually print some given output symbol. Let SM be the set of all
output symbols that M eventually will print with probability > 1/2. For
example, let the machines that have been considered as examples be connected
to a random device with p = 3/4, so that they become 3/4 machines. ~

for Machine NO.1 Is the set of all (n, g(n», for Machine NO.3 1s the
set consisting of 0 alone, for Machine No.4 is the set consisting of 1

alone, for Machine NO.5 1s the set of positive integers and for Machine No.6
is the empty set.

If a p-machine M is started, the probability Is > 1/2 that
it will eventually print any given element of 3M, while the probability is
~ 1/2 that it will print any given element not in ~. Thus it 1s clear how
a machine M could be used to give information about SM. One would operate
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the machine having a certain degree of confidence that any particular element
of ~ will eventually occur as an output symbol and that any particular
element not in 3M will not occur as output. However, the set SM l~self

might occur with probability zero, in which case, one would have no confidence
that the machine will enumerate precisely ~. (It is clear that all this
remains true if a number greater than 1/2 is used in the definition of 3M•
All of the following results remain valid in this case.)

DEFINITION:
machine M

A set of symbols S will be called
such that S is precisely ~.

p-enurnerable if there is a

The condition that a set be p-enumerable is quite weak and we
have thought of no weaker definition that would still ensure that there be
a p-machine that give some information about each element of the set. One
should note that a p-machine p-enumerates exactly one set while it may
strongly p-enumerate many or no sets.

Superficially strong p-enumerab1lity seems a much stronger con-
cept that p-enumerability, and indeed it will be shown that a strongly
p-enumerable set is p-enumerable. A bit deeper and perhaps unexpected is
the converse result which implies actual equivalence of the two concepts.

To formulate the key result of the paper, which will be used to
answer the two basic questions that we have enunciated, one more definition
1s needed. Let p be a real number, 0 < p < 1. Then ~ is to be the
infinite sequence of a's and 1'8 (a

l
, a

2
, a~, ..• ) where a is the

th J n
n digit of the binary expansion of the real number p. That is,

P = .a1a2a3 · • • • Since ~ is an infinite sequence of a's and 1 'a, it
can be used as input to machines and we shall speak of ~-machines,

~-enumerability, etc.
For any number p between 0 and 1, there are now three con-

cepts, ~-enumerabillty, p-enumerability and strong p-enumerability. The
first 1s a strictly deterministic notion while the othera are probabilistic.

The key result is:

THEOREM 1: Let S be a set of symbols and p a
real number, 0 < p < 1. The following three state-
ments are equivalent:

1. 3 is ~-enumerable

2. 3 is p-enurnerable
3. S Is strongly p-enumerable.

A proof of this theorem is given in the appendix but a sketch of
the proof will be given after it is shown that this theorem gives tmmediate
answera to our two questions.
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First, let p be a non-computable real number between 0 and 1.

It is known that such exist and in fact almost all (in Lebesgue measure)
numbers are non-computable. The non-computability of p is equivalent to
the non-computability of ~. Then, according to Lemma 3, there exists a

set S that Is ~-enumerable but which Is not l-~numerable. This set,
because of Theorem 1, Is a set which 1s both p-enumerable and strongly
p-enumerable but 1s not 1-enumerable. Thus, if one admits random devices
that will print the symbol with a probability that is not a computable
real number, one can construct p-machines that will "enumerate" sets that
are not 1-enumerable.

The situation 1s entirely different if p is a computable real
number (in particular if it is 1/2). This is equivalent to ~ being a
computable sequence. Theorem 1 shows that any set which 1s p-enumerable
or strongly p-enumerable is ~-enumerable. Since ~ is computable,
Lemma 2 shows that the set must be l-enumerable. Thus a p-enumerable
or strongly p-enumerable set must be l-enumerable. The conclusion is that
if P is restricted to be a computable real number (or in particular is 1/2),
a machine with a random device cannot "enumerate" anything that a determin-
istic nmchine could not.

Both cases can be summarized in:

THEOREM 2: If p is a computable real number, any
p-enumerable or strongly p-enumerable set is al-
ready l-enumerable. If p is not a computable
real number, there exist p-enumerable and strongly
p-enumerable sets that are not l-enumerable.

An indication of how Theorem 1 will be proved 1s given at this

point. The proof proceeds by demonstrating statement 3 implies statement 2

implies statement 1 implies statement 3. This chain of implications gives
the equivalence.

That , implies 2 is proved by ahowlng that if one has a p-machine
that has output S occurring with positive probability one can construct a
new machine which has output S occurring with probability > 1/2. Then
every element of S occurs with probability > 1/2 and any element not in
S occurs with probability < 1/2 so that S is p-enumerable. Thus any
strongly p-enumerable set 1s p-enumerable.

That 2 implies 1 is proven as follows: Let a p-machine M

be given. We wish to construct an ~-mach1ne that ~-enumerates the set
3M. Let us assume that we have an infinite tape on which ~ is printed.
By the use of larger and larger initial segments of the infinite sequence
~, one can compute lower bounds, which are arbitrarily good, for the prob-
ability of the truth of statements of the form "By the time n inputs from
the random device have occurred M will have printed the symbol s . " M
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actually does print s with probability > 1/2 if and only if there is an
n such that the above statement is true ·with probability > 1/2. This in
turn occurs only if some one of the arbitrarily good lower bounds (that we
can compute using initial segments of ~) for the probability of the above
statement being true is > 1/2. One can compute successively (using larger
and larger initial segments of ~) all of the lower bounds for the proba-
bilities for every n and every s. As soon as one comes to a lower bound
that is > 1/2, the corresponding symbol s is written down. One sees that
the set of symbols thus enllinerated is 3M and the enumeration has been ac-
complished by a process which is actually an ~-machine. Thus, any set
which is p-enumerable is also ~-enumerable.

1 implies 3 is proved as follows: A p-machine is constructed
which computes with probability > 1/2 the binary expansion of the real
number p. That is, the output of the machine is, with probability > 1/2,
the set of all (n, an) where an is.the nth digit in the binary expansion
of p. The machine that does this is a modification of Machine NO.7. If
the output of this p-machlne is used as input of another machine M, the
consequent output will be, with probability > 1/2, exactly what the output
of M would be if it were supplied as input the sequence ~. If S 1s
any ~-enumerable set and M a machine that ~-enumerates it, the com-
posite machine constructed above 1s a p-machine that strongly p-enumerates
S. Thus, any ~-enumerable set is strongly p-enumerable. This proves that

implies 3 and the sketch of the proof of Theorem 1 is complete.
The question that will be considered now is whether the same re-

sults are obtained if one considers the sequential order of the outputs of
the machines instead of only the totality of output s~nbols. It will be
shown that this situation can be reduced to a particular case of the results

that we have already obtained.

DEFINITION: An infinite sequence of symbols S = 8" S2' s3 ... is called

A-computable if it occurs as the output, in the given order, of some A-
machine. It 1s l-computable if A consists entirely of l'S. S 1s
strongly p-computable if there 1s a p-machine that puts it out, in the
given order, with positive probability. S is p-computable if there 1s
a p-macldne that has as its nth output symbol the nt n symbol of S
with probability > 1/2.

It will be shown that the exact analog of Theorem 2 holds for
these new concepts.

Let S be a sequence of symbols (sl' 8 2 , 9 3 , ... ). S' 1s to
denote the set of all pairs (n, sn) where n runs over all positive
integers. The follOWing lemmas will be proven in the appendix but are im-

mediate consequences of the definitions.
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LEMMA 4: S

if S' is a
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is a. l-computable sequence if' and only
1-enumerable set.

LEMMA 5: If S is strongly p-computable, S' will
be strongly p-enumerable. If S is p-computable,
S' will be p-enumerable.

Applying the preceding two lemmas and Theorem 2 one gets

LEMMA 6: Let p be a computable real number (in
particular 1/2). Then any p-computable or strongly
p-computable sequence is already l-computable.

PROOF: Let the sequence S be p-computable or strongly p-computable.
Then 3' is either p-enumerable or strongly p-enumerable because of
Lemma 5. By Theorem 2, S I is 1-enumerable. By Lemma 4, S MUS t be
1-computable.

This settles the case where p is a computable real ntUnber. If
p 1s not computable, the proof of Theorem 1, given in the appendix, shows
that there is a sequence that 1s p-computable and strongly p-computable
but not 1-computable. (This sequence is the binary expansion of p.) Com-
bining the two cases, one has the following analog of Theorem 2 for the
computability concepts.

THEOREM 3: If p is a computable real number, any
p-computable or strongly p-computable sequence is

already 1-computable. If p 1s not computable,
there exists a p-computable and strongly p-computable
sequence that 1s not l-computable.

As a special case of this one has the result that a 1/2-rnachine
cannot print out anyone particular non-computable sequence with positive
probability.

A MORE GENERAL CLASS OF MACHINES

In this section, a generalization or the result that Theorem 2

gives for p a computable number will be given. A wide class or probabil-
istic machines, the computable-stochastic-machines or c-s-machines, which
are not covered by our previous definitions, will be defined. A concept or
equivalence for probabilistic machines will be proposed. It will be shown
that anyone of the new class of machines defined 1s equivalent to a 1/2-

machine and as a consequence of Theorem 2, one will have that any set enum-
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erated by a machine of this class must already be l-enumerable. Further-
more, there is an effective process such that if one is supplied with the
description of a machine in the class one can find a description of a 1/2-

machine equivalent to it and a description of a l-mac~tne that l-enumerates
the same set that it enumerates.

To simplify the presentation, in this section, only one definition
of enumerability, that corresponding to p-enumerability, is considered
while the stronger definition corresponding to strong p-enumerability is
ignored. It can be shown that the same results hold for the strong definition.

First, the class of stochastic machines will be defined. A
stochastic machine 1s to be an object having a countable set of states

Xl' X2 ' X3' ... , a distinguished initial state Xo' and a countable col-
lection of output symbols 8

1
, 8

2
, s3 .... It is to be supplied with a

rule that gives the probability that the machine will be next in state xp
and print output symbol Sq if it has passed successively through states
Xo' X

j 1
, , X

j n
so far. This probability will be denoted by

p(X
j 1

, , X
jn;

xp; Sq). (The rule need not give an effective procedure

for computing the pts.)

To any p-machine M one can associate a stochastic machine in
the above sense. The states of the associated stochastic machine are to be
finite sequences of O's and l's (a

l
, ... , an) where the initial state

1s to be the "empty" sequence (.). (What we are actually going to do here
1s say the "state" a p-machine is in·the input sequence that it has re-
ceived. These may not correspond to the :internal states it may have if it
is a concrete machine but determine them completely. The probability of
going from state (a l , ••• , an) to (a1 , ••• , an' 1) is p and from
(a 1 , ••• an) to (a l , ••• , an' 0) is 1 - p. The associated stochastic
machine prints on arrival in state (a1 , ••• , an' an+ 1 ) the same thing that
the p-machine prints on receiving the (n + 1 )st input symbol a 1 aftern+
having received (a 1 , ••• , an). Thus the stochastic machine is completely
specified. It shall be referred to as the stochastic. machine associated
with the p-machine M. Thus, p-machines can be identified with special
cases of stochastic machines.

When p is a computable number, it is easily seen that the asso-
ciated machine has the following special property: The function P 1s
computable; that Is, there 1s an effective process such that if one is given
a positive integer m, the states X. , ... , X. and Xp' and the output

Jl I n
symbol Sq' one can compute the first m digits of the binary expansion of
the number p(Xj , ' ... , X

j n
: xp; Sq). We shall call stochastic machines

having this special property computable stochastic machines or c-s-machines.
As a direct consequence of the definitions, one has
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lEMMA 7: The stochastic machine associated with a
p-machine 1s a a-a-machine if and only if p 1s
a computable real number.

The remainder of this section is devoted to showing that the re-
sult stated in Theorem 2 for p-machines with p a computable number is
also valid for the much wider class of c-a-machines. That Is, any set that
can be enumerated by a c-s-machine is already l-enumerable.

With stochastic machines and p-machines, one can speak of the

probability of the machine eventually printing the output symbols
s. , ... , s. (as before we spoke of the probability of a p-machine even-

J, I n
tually printing a single symbol s). Since we are having our machines enumer-
ate sets, any two machines that eventually do the same thing with the same
probability can be considered to be identical from the point of view of even-
tual output. Thus, the following definition will be made:

DEFINITION: Two objects which are either stochastic machines or p-machines

will be said to be equivalent if for any finite set of symbols Sjl' ... , Sjn'

they have the same probability of eventually having that set included 1n
their output. If the machines are M

1
and M

2
, this will be denoted by

M
1

-. M2 -

For example, a p-machine and its associated stochastic machine
are equivalent.

One recalls that a p-machine is said to p-enumerate a set of
symbols if every element in that set occurs as an output symbol with probabil-
ity > 1/2 and any output symbol not in the set occurs with probability
~ 1/2. The definition can be used directly for stochastic machines and
c-s-maclrlnes. If M 1s a stochastic machine, 3M will be the set of all
output symbols that occur with probability > 1/2, in agreement with the
previous notation for p-machines. ~ is the set of symbols that M enum-
erates. As an immediate consequence of the definition of equivalence one
has the fact that if M1 -. M

2
, then ~M = 3M. That is, two equivalent

machines enumerate the same set. 1 2

DEFINITION: A set S 1s c-s-enillllerable if there is a c-s-machine M
such that S ~.

The question that we want answered now is the following: Is every
c-s-enumerable set l-enumerable? The answer is a consequence of the fol-
lOWing which 1s proved in the appendix.

THEOREM 4: Every c-s-machine is equivalent to a
1/ 2 machine.
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Thus, if M is a
is also enumerated by some
be l-enumerable. Thus

755

c-s-machine, the set ~ that M enumerates
1/2-machlne. According to Theorem 2, 3M must

THEOREM 5: Any

l-enumerable.
c-s-enumerable set is already

This is the result that we set out to obtain that any set which
can be enumerated by a c-s-machine can be enumerated by a l-machine.

The proof of Theorem 4 actually yields more than has been stated.
It might have occured that the proof only demonstrated the existence of a
1/2-machine equivalent to any c-s-machine but gave no effective means of
finding one. This, however, is not true and it does yield an effective

frocess.

TI~OREM 4: (Supplement) There is an effective process
such that if one is supplied with a description of a
c-s-machine, one can produce a description of a 1/2-

machine equivalent to it.

Thus, if one is given a description of a c-s-machine, M
1

, there
is an effective process for finding a description of a 1/2-machine M2
such that 3M = 3M. This does not yet give an effective extension of

1 2
Theorem 5. What is needed in order to obtain that is the following effective
extension of a part of Theorem 1 •

THEOREM 1: (Supplement) There is an effective process
such that if one 1s supplied with a description of a
p-machine M (with p a computable number), one
can produce a description of a l-machine that
1-enumerates the same 3M that M p-enumerates.

Combining the supplements of Theorem 1 and Theorem 4, one has

THEOREM 5: (Supplement) There Ls an effective process
such that if one is supplied with a description of a
c-s-machine that c-s-enumerates a set S, one can
produce a description of a l-machine that l-enumerates S.

The results at the end of the preceding section about computability
of sequences remains valid for c-s-machines. One defines in the obvious
way c-s-computable sequences. The proofs of Lemmas 4, 5, and 6 are valid
in this case and it follows that any c-s-computable sequence 1s already
l-computable.
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APPENDIX

LEMMA 1: The sequence A
if the associated set AI

is computable if and only
is l-enumerable.

PROOF: Assume that the sequence· A = (a 1 , a
2

, a
3

, ••• ) is computable. De-
fine a machine by means of feb"~ ... , bn ) = «1, a ,), ... , (n , an». Since
A is computable, this actually defines a machine. The machine 1-enumerates
the set AI. To prove the converse, assume that the set A' is l-enumerable.
Then there exists a. l-machine whose total output is the set of all symbols
(n, an)' but perhaps not occurring in the proper order. To determine an'
the output tape of the machine is observed until a pair occurs whose first
entry is the number n. This is certain to eventually happen. The second
entry of this pair will be an. Thus, there is an effective process for
determining an and A as a computable sequence.

LEMMA 2: I.f

A-enumerable
A is a computable sequence, then any
set 1s l-enumerable (and conversely).

PROOF: Let the machine M enumerate the set S if the computable sequence
A = (a

"
a

2
, a 3, ... ) 1s used as input. Because of Lemma 1 there is a

l-machine that has as output the set of all (n , an). This output can be
converted in an effective manner into the sequence (a

"

a2 , 8
3

, ••• ) and
used as input by M. The composite object 1s a l-machine that l-enumer-
ates S. It is clear that the converse 1s true, that any 1-enumerable set
is A-enumerable. This 1s true because a l-machine that l-enumerates a
set S can be converted into a machine with input, that is oblivious to
that input, and will enumerate S given any input.

lEMMA 3: If A is not a computable sequence, there
exists sets that are A-enumerable but which are not
l-enurnerable.

PROOF: The set A' is such a set.

The concept of "random device" will now be formalized. Let D be
the set of all infinite sequences, A = (a

l
, a

2
, a 3, ... ), of O's and

l's. Let C(a1 , ••• , an) be the subset of D consisting o.f all sequences
starting with (a

"
•.. , an). D shall be considered to be a measurable

space [5] whose measurable sets are the a-ring [5] generated by the sets
C(a

"
... , an)· Let M be a machine (n precise definition has already

been given) and S the set of possible output symbols of M. Let % be
the set of all finite or infinite sequences, T e ( Sj l ' Sj2' ••• ), whose

elements are in S. % will be considered to be a measurable space whose
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S, then (Ul, the set consisting of
RS. Thus, one can in all cases speak

having some set U as output.
RS consisting of all sets that contain

measurable sets are the o-ring generated by the C(8. , ... , s. ) and
J 1 I n

the finite sequences. Let RS be the set of all subsets of S. Let

E (j" ... , jn; k" ... ,~) be the subset of RS consisting of all sub-
sets of S that contain the 3. and do not contain the Sk. RS shall

Jr --r
be considered to be a measurable space whose measurable sets are the a-ring
generated by the sets E.

The machine M associates to each infinite input sequence in D

some output sequence in %. This determines a. function f M: D ~ %.
One also has the mapping qS: % --+ RS that takes a sequence into the set
of its entries. The composite map 9gfM will be denoted by ~. If A
is in D, ~(A) is the set that will be enumerated by M if A is used
as input.

The following is an immediate consequence of the definitions.

LEMMA: The maps f M, qs' and ~ are measurability
preserving.

Let p be a real number, 0 < p < ,. D can be considered to be
the sample space of a random device which prints .. , 's with probability p

and O's with probability , - p. That ls, D is the space of all possible
events that can occur if inrinitely many independent operations of the ran-
dom device are observed. There 1s associated to each p, in a natural
ma.nner, a measure ~ on D which assigns to each measurable subset of D
the probability that the random device will print an infinite sequence in
that subset. 3 Thus I!J> induces in the usual way probability measures on

the spaces % and RS • Every measurable subset E of % is assigned
probability I!J> (fM1 (E» and every measurable subset F of RS is as-

signed probability I!J> (hM1 (F». These induced measures will be referred

to as roM, p and sometimes as ~. It shall always be clear from the
context which measure is being used.

The significance of the measures mM, p 1s clear: If E is a
measurable subset of %' IlM,p (E) is the probability of the output sequence
of M being in E i£ M is operated as a p-machinej if F is a measur-
able subset of RS' ItM,p (F) is the probability that the set of output
symbols that M will enumerate is an element of F if M is operated as

a p-ma.chine.
If U is some subset of

U alone, 1s a measurable subset of
of the probability of a p-machine
E( j l' ... , jn;) 1s the subset of

:3 For a discussion of this, see [3].
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all the s .. Since E(jl 1 ••• , jn;) is measurable, one can in all cases
Jr

speak of the probability that a p-machine will eventually print some finite
set uf output symbols.

The proof of Theorem 1 will now be given. First 3 implies 2

will be proven: If a set S is strongly p-enumerable it must be p-enumerable.
Let M be a machine that strongly p-enumerates the set S, that

is, has S as its total output with positive probability if used with a
random device having probability p of printing 1 's. It will be sufficient
to find a new machine M' that has S as output with probability > ~ if
used with a random device having probability p. This machine M' will
also p-enumerate the set S. For every element of Swill OCClW with
probability > ~ and every element not in S will occur with probability

1
< 2'

Machines M(b1 J ••• , bn ) will be constructed which are described
as follows: The output of M(b

"

••• , b n ) in response to input (a
l

, ... , am)
is the same as the output of M corresponding to input
(b 1 , ••• , bn , 8 1 , ••• J am)' Thus, M(b 1 , ••• , bn) acts in its initial
state as if it were M and had already received an input of (b" ... , bn ) .
It is intuitively rather compelling that if the set S occurs as output of
M with non-zero probab1lity, that there will be machines M(b1 J •• eJ bn)
whose output Is S with probability arbitrarily close to ,. (Such an

M(b
1

, e •• , On) could be taken as M' and the proof of j implies 2 would
be complete.) That this actually does occur is seen as follows: Let DS
be hM-

1 «(3», that is the subset of D consisting of all sequences that
will give the set S as output when supplied as input to M. Since M pro-
duces S with non-zero probability ~(DS) > O. Recall that C(b" ... , bn )
1s the subset or D consisting or all sequences that have initial segment
(b 1 , ••• , b n ) . The probability that S will occur as output of

M(b 1 , ••• , b n > is ~(DSC(bl' ••. , bn»/~(C(b" ••• , b n » . Thus, our task

will be completed if sequences (b" •.• , b n ) can be found such that

~(DSC(b" ... , bn»/rnp(C(b 1 , ••• , bn» is arbitrarily close to 1. Actu-
ally, more than this is true.

LEMMA:

in D.
Let B = (b ,., b 2 , b

3,
... > be some sequence

Then

exists and is equal to for every point of DS
and is equal to 0 for every point not in DS' ror
all BinD except for a set of measure o.

This lemma will be proven by setting up a measure preserving
correspondence between the space D, supplied with the measure ~, and
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the unit interval I, supplied with Lebesgue measure; and applying the fol-
lowing result about Lebesgue measure m, which is the precise correlate of
the above lemma.

METRIC DENSITY THEOREM: 4 Let F be a measurable
subset of I, x a point of I and In(x) a de-
creasing sequence of intervals whose intersection
is x. Then

Lim m(Ffiln(x»/m(In(x»
n~ClO

exists and 1s equal to 1 for x in

for x not in F, for all points x
a set of measure zero.

F and 0

except for

00

The correspondence is set up as follows:
map given by

Let f: D~ I be the

if A = (a1 , a 2 , a 3, ... ). Every infinite sequence is taken into that real
number which has the sequence as a binary expansion. The map f 1s onto
and 1s 1 - 1 except for a countable set of points. The map f and the

1measure It» induce a measure rnp on I. If p were 2' mp would be
ordinary Lebesgue measure and f would be the correspondence wanted. If

1P is not 2' another step must be performed. Let g: I ~ I be given by
g(x) = rnp (Ix) where Ix 1s the closed interval from 0 to x. It is
clear that g has the following properties: It is 1 - 1, onto, monotone
and bLcontLnuous . Let h: D~ I be the composite map of rand g. h
is the correspondence wanted. It has the following properties:

No.1: I.f E is a measurable subset of D, h(E) as a Lebesgue measur-

able subset of I and mth (E» =~ (E).
No.2: Let B = (b

"
b2 , b3, ... ) be a sequence in D. Then

h(e(b
"

... , bn » 1s an interval containing the point h(B) of I.
It is clear that since the mapping h has these properties, a

statement corresponding to the Metric Density Theorem is true for ~ on D,
and that the lemma stated is included in this statement.

Thus 3 implies 2 is proven. Actua.ll~T slightly more has been
proven. What has been shown 1s that if there is a. p-machine too t has a
set S as output with non-zero probability, there are p-machines that have
S as output with probability arbitrarily close to 1. It should be noted
that the proof is non-constructive and no effective process is given for
finding such machines.

4 For a proof see Vol. 1, page 190 of [6].
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Next 2 implies will be proven: Ir a set S is p-enumerable,
it must be ~-enumera.ble.

Let p be any real nwnber, 0 < p < 1. Let M be any p-ma.chine .
To prove that 2 implies 1, it will be sufficient to construct a machine
that· ~-enumerates ~, which is the set that M p-enumerates.

Let n be a positive integer. Let s be a possible output symbol
of M. Let q(n, s) be the probability that M has printed the symbol s
by the time n input symbols have been scanned. Note that
q(n, s) < q(n + 1, s) and

Lim q(n, s )
n --. 00

is the probability of s being eventually printed. SM is the set of all
s such that

1Lim q(n, s) > 2.
n --+ 00

Thus, 8M is the set of all s such that there exists some n with
q(n, s) >~, Let Bn,s be the set of all input sequences (b l , "" bn)
of length n which will, when supplied as input to M, produce an output
containing s. The probability of an element of Bn / s occurring as the
rirst n outputs or the random device is precisely q(n, s). Let
q(b 1 J ••• , bn} be the probability of the sequence (b 1 , ••• , bn) occurring
as output of the random device. q(b

1
, ••• , bn > = pr(l - p)t, where r 1s

the number of b's that are 1 and t is the number of b's that are o.
q(n, s) = E q(b 1 , ••• , bn > where the summation 1s over all sequences in
Bn, s ' Let the binary expansion of the real number P be · a 1 a

2
a, ...

Le t d ' -Ul, APm = • a 1 a 2 ••• 8 m an Pm = • a 1 8 2 ••• am + 2 • Pm ~ P ~ Pm·
lower bound for q(b l , "" bn) 1s P~ (I - p~)t, This will be denoted by
~ (b 1 , ••• , bn). Let ~ (n, s) = E ~ (b 1 , ••• , bn) where the summation
is over all sequences in Bn,s; ~ (n, s) is a lower bound for q (n, s).
Since Pm ~ Pm+l and P~ ~ P~+l' ~ (b 1 , ••• , bn > ~ ~+1 (b 1 , ••• , bn >
for all sequences and ~(n, s) ~ ~+l(n, s). Since Pm ~ p and
p~ ~ P, ~ (b 1 , ••• , bn' ~q (b 1 , ••• , bn > for all sequences and
<lm (0, s) ~ q (n, s). Thus 8M, which is the set of all s such that
there exiats some n with q(n, s) >~, is also the set of all a auch
that exist same m a.nd some n with Clm(n, B) > ~ •

Now it is clear from the construction that if one were presented
a tape on which the sequence ~ were printed, one could compute successively
in ~ effective manner all of the rational numbers ~(n, a), for every
positive integral nand m and every possible output symbol s. If one
writes down the symbol s each time aome ~(n, 5) occurs that is >~,

the set that is enumerated is precisely 3M and the process by means of
which it is enumerated is an ~-mach1ne.
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Next 1 implies 3 will be proven: If a set S is ~-enumerable,

it must be strongly p-enumerable.
The case of p having a terminating binary expansion must be

treated separately. In this case ~ 1s computable. Then if a set S is

~-enumerable, it is 1-enumerable because of Lemma 2. Thus, a machine,
which is oblivious of input, and which enumerates S, given any input, can
be constructed. If the output of a random device having probability p of
printing 1 is used as input for the machine, it enumerates S. Thus, S
1s strongly p-enumerable.

A machine M will now be constructed which has the following
property: 5 Let P be a real number, 0 < p < 1, which does not have a
terminating binary expansion. If the output of a random device that prints
1 with probability p is fed into M, the output tape of M will, with
probability > *, be printed with the binary expansion of p. (The ~

1s not significant. It can be replaced, uniformly in all that follows, by
any X with ~ < X < 1).

Let N be a machine that ~-enumerates the set S. If the output
tape of the machine M, supplied with a random device having probability p,
is used as input to N, the composite object has as output, with probability
>~, the set S. The composite object will be a p-machine and will
strongly p-enumerate the set S. Thus, any ~-enumerable set will be
shown to be strongly p-enumerable if M can be constructed. If this
can be done, the two cases, p terminating and p not terminating, will
have been covered, so that it is sufficient to construct the machine M.

Let (c 1 , c
2

' c
3

, .•. ) be a computable sequence of rational numbers
such that 0 < c j < 1 and

M will be constructed so that it operates as follows: It scans the input
from the random device having probability p , and computes the proportion

of 1 's that one has at the end of each output. It waits till it is cer-
taln6 with probability > c 1 what the rirst binary digit of p must ~e to
have produced the proportion of 1 's observed. Then it prints this digit
on its output tape. It forgets the proportion it has observed so far and
starts computing the proportions of l's that it next receives from the
random device. It waits till it is certain with probability > c

2
what

the first two binary digits of p must have been to have produced the pro-

5

6

We are indebted to Hale Trotter at this point for the suggestion that led
to the following construction.

Most of the complications of the rest of the proof will be to show that
this certainty can be obtained, uniformly in p, even for those arbi-
trarily close to terminating binary numbers.
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Recall that ~ is the mea-
l's with probability p.

portion of l's observed. It then prints the second digit of the two that
it has on the output tape and starts again. Proceeding in this manner, it
prints on its output tape the correct binary expansion of p with probability

00

> IT c. 3
j",l J > li" •

The precise construction is as follows. Let X be the nthn
coordinate function on D. That is, if A = (a1 , 8 2 , a 3, ... ), Xn(A) an.
D is now being considered as the set of all possible output sequences of a
random device.

n

L X j
j=l

1s the number of l' s that have occurred during the first n operations of
the device and

n

Yn = ft L Xu
j =1

is the proportion of l's that have occurred.
sure on D that is used if the device prints

Define the function f as follows:

rem, q, n, r) '" "s. {A: I Yn(A) - qJ2
m I > r/2

n
}

2m

for all positive integers m and n, all q = 1, ••• , 2m - 1 and all
r = 1, ••• , 2n - 1. This is the probability or a random device, hnving
p = 9......, printing out a sequence of n symbols which has its proportion of

2
m

l's deViating from -* by more than ~. One easily sees that
2 2

f(m, q, n, r) is a rational number and that the function f is a computable
function. Note that f(m, q, n, 2

n ) = 0 so that if the function gem, q, n)

is defined to be 2~ [the least r such that (r(m, q, n, r) < 1 -m
cm

2 )]
5.2 .n

the function 1s well defined. Since the sequence of om has been chosen
to be a computable sequence of rational numbers, the function g is a
computable function which takes on only rational values.

LEMMA: Lim gem, q, n) = 0
n~ao

PROOF: The theorem on page 144 of [4] shows, if one takes x n 1/ 3/{pq)1/2,

that

= 0



Lim gem, q, n) = 0
n--+oo
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this implies, taking
that

that 1gem, q, n) = 0 (~)
n
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and in particular

The operation of the machine can now be described as follows: It
1 (1 1') d taccepts an input sequence A = a

1
, a 2, a" ... from a ran om device. I

, ( 1 ( 1)computes, in order, all of the numbers Y
1

(A ), Y2 A), Y, A , ....
As soon as it comes to an n such that IYn(A') - ~ I > gel, 1, n) (we shall
see that this will occur with probability 1) it prints on its output tape

the first binary digit of the number Yn(A). We shall see that this digit
will be with probability > c , the first digit of the number p. It then

accepts a new input sequence A2 = (a~, a~, a~, ... ) from the random device.
It computes in order the numbers Yn (A2 ) and the numbers g{ 2, 1, n),
g(2, 2, n) and g(2, 3, n). As soon as it comes to an n such that
IYn (A) - ~ I > g(2, q, n) for q = 1, 2, 3, it writes the second binary
digit of Yn (A2 ) on the output tape. It will be the second digit of p
with probability > c

2
• At the rnt h stage the machine works in a similar

m (m m m) tmanner. It accepts an input sequence ~ = a" 8 2 , 8
3

, •.. , compu es
the numbers Yn (Am) and when it reaches an n such that

I Yn (~) - 9m I > gem, q, n) for all q = " ••• , 2
m - 1, it prints the

2
mt h digit of Yn (Am) on its output tape. This digit will be the mt h

digit of the number p with probability > c. Thus the machine prints
m 3

all the digits of P with probability > ITCm > ~ •

It remains to verify that the roth digit printed is the mt h

digit of p with probability > cm. Define the function Urn on D a.s
follows: If A 1s a sequence in D, let Urn (A) = Yr (A), where r 1s
the least n such that f Y (A) - ~m r > gem, q, n) for all

n 2
q = 1, ••• , 2m - 1, if such an integer n exists. Let Urn (A) be undefined
if such an n does not exist. If the sequence A occurs as output of the
random device and is used by the machine, according to the rules of opera-
tion that have been given, to determine the mth digit of p, the result
will be correct if and only if Urn (A) 1s defined and ~ ~ U (A) < q+m'

2 - m 2
where q is such that -S < p <~. (Note that there will be no result if

2m = 2m

Urn (A) is undefined.) The probability that Urn (A) is undefined will first
be determined. Urn (A) is undefined if and only if for each n there is some
q such that I Yn (A) - ~ I ~ gem, q, n). According to the lemma proved,

Lim gem, q, n) = 0,
n~ 00

so that there is some single ~ such that for all

I Yn (A) - ~ I ~ g(m,~, n). But then

Lim Yn (A)
n--+ co

n sufficiently large
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Lim Y
n

(A) :: p.
n~oo

Because of the strong Law or Large Numbers [4], ror every A except a set
of rnp-measure zero,

is not between .s
2m

p < .9m. A procedure
2p> q;1 • Because of the

2
is defined, the set E is seen to be a disjoint union or
where the proportion of l's in the b j 1s between

~ and q~, _ Thus, ~ (E) < m~ (E) .
22 m

But "a, (E) ,., "s, { A : Urn (A) defined 80 ;m ~ Um (A) < ;~1 }/m9...-

2m 2m 2
m

(A : Um (A) defined). Urn (A) Is defined only if there is some n such

that I Yo (A) - ?n I > gem, q, n ) . Thus, m~ ( A : Urn (A) defined]

2°

manner in which Um
sets C(b

1
, ••• , br).s and ~.

2m 2m

(one should recall that C(b
1

, , br) is the subset of D consisting of all

sequences that have (b
1

, ••• , br > as initial segment. For any (b
1

, ••• , br),
let B be an infinite sequence that has the r-tuple as initial segment.
Then E is the disjoint union of the C(b" ... , br) where the (b 1 , ••• , br)
as such that for each s less than r there is som~ t, t = 1, ••• , 2m - 1,

such that I Y (b) - t m , ~ gem, t, s) while I Yr (B) - t m I > gem, t, r)
5 2 - 2

for all t and ~ < U (B) < ~.) Since p < 9m',
2m = n 2m 2

rnp (c (b" , b
r)

) < m~ (c (b
l

, , br) ) if the proportion of "s

2m
in (b

1
, ••• , br > is between

Since p does not have a terminating binary expansion, it is not equal to
any of the ~ so that II]J (A: Urn (A) undefined) :: o.

2
Since the probability that Urn is undefined is zero, the probabil-

ity that Um(A) has its first m digits correct is 1 minus the probabil-
ity that it has an incorrect digit among the first m. Thus, it is suf-
ficient to compute the latter. It is

E~ { A : Urn (A) defined 80 ~ ~ Urn (A) < q:~ }where the sum is over all

q such that it 1s not true that -Sm ~ p < q+m' . Each of these terms will
2 - 2

be estimated separately and shown to be < --' (1 - c). It will then follow= 2m m
that the sum is ~, - em and that the probability of the mt h digit of
Um(A) being correct 15 > cm. Thus, all that remains to conclude the
proof 1s the estimation. Take anyone of the sets

{ A : U (A) defined & -S < U (A) < .9a!.l} such that p
m 2m = m 2m

and q+~. Call this set E. It will be assumed that
2

similar to that which follows covers the case

00

< L m~ {A
n=l 2n
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Thus, each term is shown to be

It should be pointed out again that the ~ could be replaced by
any X satisfying ~ < X < 1 and that the construction Is the same f'or
all p that do not have a terminating binary expansion. Thus., the following
is true. For any E there is a machine ME such that if ME is used as
a. p-mach1ne, the output is the binary expansion of p, with probability
greater than 1 - E, for any p not a terminating binary.

The proof of Theorem 1 is completed.

because of the definition of gem, q, n).
1-C

< ---!!! and the proof is complete.
=: 2m

LEMMA 4: S

if S' Is a

is a l-computable sequence if and only
l-enumerable set.

PROOF: Same as Lennna 1.

LEMMA 5: If
be strongly
S' will be

S is strongly p-computable, S' will
p-enumerable. If S 1s p-computable,
p-enumera.ble.

PROOF: Let M be a machine. Modify the M to form the machine M' as
follows: If the output of M in response to some input is (Sj,' ,,', Sjn)'

the response of M' to the same input is to be (', Sj,)' ", (n, Sjn) ).

M' is a machine and if M strongly p-computes the sequence S, M'
strongly p-enumerates the set S'. If M p-computes the sequence S,
M' p-enumerates the set S'.

Let M be a stochastic machine. Let G be the set of all

sequences X '" (Xj , ' X
j 2

, X
j 3

" , , ) whose elements are names of states of M,

Let C (X
j 1, ',', X

jn
) be the set of all sequences that have (X

j 1
, "" X

jn
)

as initial segment. G is to be considered as a measurable space whose mea-
surable SUbsets are to be the a-ring generated by the C (X

j 1
, "" X

jn
) .

The underlying stochastic process of the machine gives rise in a natural
manner to a measure m on G which associates to each measurable subset
the probability that the machine will pass through a sequence or states in
that subset. 7 Let S be the set of possible output symbols of M. %
and RS are as before the set of all sequences of elements of S and the
set of all subsets of S, respectively. We have the map ftJi: G~ %
which associates to each infinite sequence of states the output sequence
that will be printed if the machine passes through that sequence of states.
This combined with the natural map gs : % --+ RS' which takes a sequence

7 For a discussion of this, see [3].
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into the set of elements that occur in it, gives rise to the composite map
~ : G ~ RS• If X is in G, ~ (X) is the set of symbols that will be

enumerated if the machine passes through the sequence of states X. The
map ~ and the measure m on G induce a measure on RS which will be
denoted by 11M • If E 1s a measurable subset of RS' lIM (E) = m (11M' (E) )
is the probability that the machine will enumerate e. set in E.

Let E (j" ••• , jn; k" ...'~) be the subset of RS consisting
of all subsets of S that contain Sjl' ... , Sjn and do not contain

skI' •.. , s~. (Either n or m may be zero.) Two stochastic machines

M, and M2
same set 3

mM (E (j 1 '
2

have been defined to be equivalent,
of possible output symbols and mM

••• I jn;) ). 1

M, - M
2

, if they have the

(E (j" ••. , jn;) ) =

LEMMA: If M, - M2 , mM
sets of the form E (j,~

and ~ agree on all

• • • I jn; 2k " •.• , ~).

PROOF: The proof proceeds by induction on m. It is true for m =, be-

cause E (j l' ••• , jn;) = E (j l' ••• , jn' k 1) + E (j l' ••• I jn; k ,) where
the sum is disjoint. 11M1 and 11M

2
agree on the first two sets and thus

must agree on the third. The induction from m - 1 to m proceeds 1n a
stmilar manner since E (j" .•. , jn; k 1 l ••• , ~-1)

E (j" ••• , jn' ~; k" .•. I kin-l) + E (j 1 I ••• , jn; k" ... , ~-1' ~) I

the sum being disjoint. ~ and mM agree on the first two and therefore
must agree on the third. 1 2

The set or all subsets of Rs or the form
E (j" ••• , jn i k 1 1 ••• '~) is a ring of sets and generates the a-ring of
sets. Thus, if' ItM and mM agree on the ring, they' agree on all mea-

l 2
surable subsets of RS [5, p. 54]. The converse is trivially true. Thus,
we have.

lEMMA: M, -. M
2

if and only if mM = mM ·
1 2

This shows that mM =~ could have been taken as definition
1 2

of equivalence instead of the weaker statement.
In order to prove Theorem 4, that every stochastic machine is

equivalent to a ~ -machine, a reduction step must be made. The underlying
stochastic process of a stochastic machine will be reduced 1n the usual way
to a markorr process.

DEFINITION: A stochastic machine is markoff if:

NO.1: P (X
j 1

, ... , X
jn

_l, X
jn

; Xp ; Sq) is independent of

X. I ••• , X. .
J 1 I n - 1
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NO.2: For every ~ there is only one S q such tha. t

P (X
j 1,

... , X
jn;

~; Sq) is non-zero.

That 1s, not only 1s the underlying stochastic process a markoff
process but the symbol printed on arrival in any state depends deterministically
on that state, and depends only on that state.

LEMMA: Every stochastic machine M is equivalent
. to a stochastic machine M' which 1s markorr. If
M 1s a c-a-machine, M' can be chosen to be a
c-s-machine.

PROOF: The usual trick of converting a stochastic process into a markoff
process by considering it to be in "state" (X

j 1
, ... , X

j n
) if it has

passed successively through the Xj , ... , Xj works in this case. The
1 n

states of M' are to have names (x. , ... , X. ; Sr). The probability of
J, I n

M' going from state (X j , ·, ... , X
jn

; sr) to state (X j , ' ... , Xjn , ~; Sq)
and printing the symbol Sq on arrival is P (Xj , ' ... , X

j n
; ~; Sq), and

all other probabl1ities are zero. M' is a markoff machine and M - MI.

If M 1s a c-a-machine, M' is a1ao a c-a-machine. Also, it 1s clear
that an effective process has been furnished which will supply the description
of MI if a description of M is given.

Thus, our attention may be restricted to c-s-machines that are
markoff. A simplification in the notation can be made. The states of a
markoff c-s-machine can be assumed to be named by the positive integers
and P(n, m) will be used to denote the probability of moving from the
nth state to the mt h state. Note that

00

L P(n, m) , ·
m=,

We shall now use for the first time the fact that the objects
under consideration are c-a-machines. This means that there is an ef.fectlve
process such that if one 1s given positive integers, r, nand m, one
can find the :first r digits of the binary expansion of Pen, m}, Denote

the rational number .a1a2
••• 8 r by P(n, mj r) if (a" 8

2
, ••• , Qr )

are the first r digits of the binary expansion of P{n, m). P(n, m; r)
is a computa.ble function. Let Q(n, m; r) be the number .b,b

2
• • • br

if (b" b 2 , ... , br ) are the first r binary digits of

m

L P(n, n.
j.l
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Note that Q(n, mj r) ~ Q(n, mj r + 1) and teat

m

Lim Q(n, m; r) -= L Pen, j).
r~ao j.1

We now wish to construct a .; - machine that is equivalent to B

given markoff' c-s-machine. If' this can be done Theorem 4 will be proven
since every c-s-machine is equivalent to one that is markoff. The main

trick 1s the use of a random device printing l' s with probability .; in

conjunction with the computable fWlction Q(n, mj r) to obtain events oc-
curing with the probabilities pen, m). A simplified but relevant example
will be given first that will demonstrate the idea involved.

Let us assume that we are given a random device that prints l's
with probability ~ and wish to construct a device that prints liS with
probability P, where p is a. computable number. First construct a
l-machine Np that generates the binary expansion .b

1b2b , . . . of p , Let

the output or our random device be the sequence a l' a 2 I a
3,

•.. • Compare
the successive approximations

that one obtains for the number p by observing the output ta.pe of Np'
with the numbers

n
a a a a a a '"" Br 2-r , ...· 1'· 12'· 123' ••. , ~

Eventually, if'

co

(and thus with probability 1), one will come to the first n such that

n n
L Q r 2-

r f:: L
r=l r=l

At this point, write down a

n

if

n

L 8 r 2-r < L b r 2-r

rcl r=l

and a 0 if the inequality is in the other direction. Thus, since the
probability is precisely p that
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and is 1 - P that
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the event liS 1 is written" occurs with probability p and the event
"a 0 1s written" occurs with probability 1 - p. (Note that the event
"nothing ever happens" occurs with probability 0 but may still occur.)
If this process 1s repeated, the object that is described 1s a device that
prints , with probability p.

Furthermore, this construction demonstrates that every p-machine
(remember that p 1s a computa.ble number) is equivalent to a .; - machine.
For any machine M, supplied with the output of the device constructed
above, becomes a ~ - machine, and is equlvalent to the p-machine that
one obtains when one supplies M with the output of a random device that
prints 1 's with probability p. The construction of a ~ - machine equiva-
lent to a given c-a-machine will be seen to be similar to the above
construction.

We shall now assume that we have a markoff c-a-machine M and
1shall proceed to construct a 2' - machine M' equivalent to it. It can be

assumed that the machine M starts in the state a. Let the output sequence
of a random device prmt1ng , with probability ~ be (a" a 2 , 6 3 , ... ).
The probability that the number

lles between

and

co

L a. 2-n
n

n=1

m-l

L pea, j)

j-o

m

L p(o, j)

j=o

1s precisely P ( 0, m}, Let N be a 1-maohine that computes in succession
the values of the oomputable function Q(n, m; r) for every n, m and r ,
The machine M' does the following: At the sth stage, it compares the
number
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with the .first a o.f the values Q(O, m; r) that N has computed. Using
this process, with probability 1 (but not certainty), these comparisons

will eventually find some number t
1

such that

00
t

1
- 1

L P(O, r) < L
n=l

t ,

a 2-n < L rto, r).n
r=l

-j2 ,

At this point the machine Mt prints what M would print on arrival in

state t,. Thus Mt, imitating the first transition of M, has printed
with. probability P(o, m) what M would print on arrival in state m,
Mt must now imitate the second transition of M. It again accepts an
input (b , b

2
, b" ... ) from the random device and compares the numbers

s

l: b j
j=l

this time to the first s values of Q(t" mj r) that N produces.
probability 1, these comparisons will eventually find some integer
such that

r=,
pet"~ r) <

0=1 r=l

pet" r).

At this point M' imitates the second transition of M and prints what
M would print on arrival in state t

2
• Thus, M' has printed with probabil-

ity pet" m) what M would print on arrival in state m, M' then pro-
ceeds in the same manner to imitate the next transitions of M. It is clear
that M' is a ~.- machine that is equivalent to M and also that the

above construction yields an efrective process for transfo~ a description
or M into a description of MI.

The proof of Theorem 4 1s complete.
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Some Results on Ideal Rectifier Circuits*

Claude E. Shannon

Abstract

Some results are obtained in the theory of circuits constructed of rectifiers and of rectifiers
and relay contacts. Such circuits are shown to be related to partially ordered sets. Upper and
lower bounds are found for the number of rectifiers necessary for n-tenninal rectifier circuits.
A duality theorem is obtained. A partly ordered set analyzer is described.

We consider some properties of circuits made up entirely of ideal rectifiers. By an ideal
rectifier we mean a two-terminal element which conducts perfectly in one direction and
presents an open circuit for current flow in the other direction.

Consider a circuit, made up of a number of such rectifiers, having n available terminals, T 1,

T 2 , ••• , Tn. Two of these terminals, say Terminals T, and T j , may be related in four different
ways.

(1) It is possible for current to pass from i to .i and from j to i. This will occur either if
they are directly connected internally or if there is a chain of rectifiers all in the same
direction from i to j and a second chain all pointed in the reverse direction from j to i.
In this case we consider i and j to be the same terminal, and write T, = Tj • In
Figure I, T 6 = T 7 and T 3 = T4.

(2) It is possible for current to go from i to j but not in reverse. This will occur if there is a
chain of rectifiers running from i to j but no chain in the reverse direction. In this case
we will write Z', > T j • In Figure L'r , > T 3 > T 4 , T g > T 9 , etc.

(3) In the reverse situation, current can go from j to i but not in reverse, and there is a
chain of rectifiers from j to i but no reverse chain. Here we write T i < Tj •

(4) It may not be possible for current to go in either direction, there being no oriented
chain of rectifiers from i to j and vice versa. This does not necessarily mean that no
path exists, but along any path there will be some rectifiers pointed one way and some
the other.

The set of terminals T I, T2, ... , Til together with the relations :::, < and> form a partiaIJy
ordered set, or poset, as defined for example in Birkhoff, Lattice Theory. (We interpret his
relation T, ~ T, to mean either T, > T, or T, = T j . ) The transitive and reflexive properties
required of a partial order are readily seen to be true for the > relation we have here. For
example, T, > T j and T j > Tk imply T,. > T k» since there is a directed path from T i to T j

whose existence is implied by T; > T, together with the directed path from Tj to T k whose
existence is implied by T, > T k _ Also there is no path from T k to T i since, if there were, there
would also be a path from T, to T i : namely from T j to T J.: and thence to T;. This would imply
T; = T j , contradicting T; > T].

* Bell Laboratories Memorandum, June 8, 1955.
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Figure I

773

Similar arguments show that the other requirements for a partially ordered set are satisfied,
and we have as our first result that any ideal rectifier circuit corresponds in the sense described
to a partially ordered set. The partial ordering is, in fact, a complete specification of the
external characteristics of the circuit, for it gives complete information as to the current and
voltage constraints imposed by the circuit. If for two terminals T; and Tj we have T; = Tj ,

then the network imposes the constraint e r > ej' where e, and ej are the potentials of terminals
T, and Tj . If T, > Tj , the network imposes e , ~ ej' etc. If two different n-tenninal circuits
impose the same ordering on their terminals T i , then they are identical in external electrical
characteristics.

A finite partially ordered set is conveniently represented by the well-known Hasse diagram
(the Hasse diagram for Figure 1 is shown in Figure 2). For a given ordering, the diagram is
uniquely determined in its connectivity. Correspondingly, with an ideal rectifier circuit we can
find a kind of canonical equivalent circuit which corresponds directly to the Hasse diagram.
One way to do this is to determine the partial ordering of the rectifier circuit, construct the
corresponding Hasse diagram, and in each line of this diagram place a rectifier oriented
downward.

A more direct procedure for obtaining the same result is the following. Construct for the
given network N a new network N' according to the following rules. If, in N, T, == Ti, let
terminals T; and Tj be directly connected in N'. If, in N, T, > Tj , then connect a rectifier "from
T; to r; If T, and T, are incomparable, no connection is made in N'. Now if in N' there are
two terminals, say T; and r; such that there is a rectifier from T; to T; and also a path from T;
to ~i through other terminals, say T: to T~ to T~ ... to t; then delete the rectifier directly
connected from T; to Ti (since it is superfluous). Continue this process eliminating all such
superfluous rectifiers. When this is done, we obtain a canonical circuit equivalent to the given
circuit and having no internal nodes and no redundant rectifiers (that is, rectifiers which may be
eliminated without altering the operation of the circuit). This last is true since it is easily seen
that if any element is removed, sayan element from terminal T; to terminals Tj, then it is not
possible for current to flow from T; to r; whereas with the element present it is possible.
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Figure 2

c. E. Shannon

Theorem 1: The normal form of a rectifier network contains fewer rectifiers than any other
form of the same network which has no internal nodes (no nodes other than the n terminals),
The normal form of an n-tenninaJ network contains at most [n(n + 1)/4] rectifiers.

Here the square brackets mean 44 the largest integer in.' ,

.To prove the first part of the theorem, note first that since the normal form, say N, of a
network corresponds to the Hasse diagram of the corresponding partially ordered set, it contains
a rectifier for each line of that diagram and consequently for each case of one element
"covering" another (being an immediate superior in the ordering). Now consider some other
realization N' of the same partial ordering without any internal nodes. Suppose in the ordering
T; covers T;. Then in this second network there must be a rectifier from T: to T;, for if not, in
order for current to go from T; to T;, there must be a directed path and since the direct path
does not exist it must go through other terminals. This implies that these other terminals lie
between T; and T; in the ordering, contradicting the assumption of T; covering T;. Thus in N'
we may find a rectifier for each line of the Hasse diagram and, in general, others as well. If
there are no others, N' is clearly identical with the normal form N; otherwise it contains more
rectifiers.

The second statement of the theorem will be proved by induction. The result is obvious for
n = 2, since the two terminals are then either open, shorted or connected by one rectifier. The
worst case is one element and {2' 3/4] = 1. Now, note that the normal form of a network
never contains three rectifiers connected in a triangle, that is, three terminals Ti, T, and Tk with
rectifiers between each pair. If there were such a triangle, either the orientation would be
around a circle and T j , T, and T k would be considered the same terminal and directly
connected, or the orientation would be of the type T, to Tj , T, to T k and T, to T k in which case
the latter rectifiers would beeliminated as superfluous.

To carry out the inductive step, we consider first the case where n is odd, the result is
assumed true for n, and we wish to prove it for n + 1. Select the terminal (or one of the
terminals), say Ti , with the minimum number of rectifiers connected to it in our n + 1 tenninaJ
network. This number of rectifiers is less than or equal to ~ (n + 1), for suppose it were
greater than ~ (n + 1). Then select one of the terminals, say Tj , connected to T; through a
rectifier. T, must be connected through rectifiers to at least 1S (n + 1) + I terminals (including
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T;), none of which can belong to the set connected to T i , for if one did there would be a triangle
of three rectifiers. We thus would have at least ~ (n + 1) + 1 + ~ (n + 1) + 1 different
terminals, a contradiction. Therefore the terminal T; adds at most Y2 (n + 1) rectifiers. Since,
with n odd, (n(n + 1)/4] + ~ (n + I) = [(n + I )(n + 2)/4], the inductive step carries
through in this case. For the case n even, the same construction is carried out. We can in this
case deduce that T; has at most ~ n rectifiers connected to it, and with n even,
[n(n + 1)/4] + Y2n = [en + I )(n + 2)/4]. This completes the induction and the proof of
the theorem.

We can exhibit a partial ordering for any n which in the normal form actually requires
n(n + 1)/4 rectifiers. For n even, the terminals are divided into two sets of ~n each. Each
member of the first set covers each member of the second set. In the odd case a similar device
is used with sets containing Y'2 (n + 1) and Y'2 (n - 1) members.

If internal nodes are allowed, it is interesting that an equivalent circuit can often be found
with fewer rectifiers than the normal form (which we have shown to be minimal when there are
no internal nodes). Indeed, the circuits just described which require [n(n + 1)/4] elements in
their normal form can be realized with only n elements by the addition of one extra node, a
great reduction when n is large. The extra node I is merely placed between elements of the first
and second sets, all terminals of the first set cover I and I covers all terminals in the same set.
An interesting unsolved problem is that of finding the least number, G n» such that any network
with n terminals can be realized with not more than G" elements (allowing internal nodes).
Theorem I shows that G n $ [n (n + 1)/4]. We wiJl now show that G n ~ (n/2)3/2 for every n

which is the square of a prime, thus for an infinite sequence of values of n. The construction is
based on a particular partially ordered set suggested for this purpose by E. F. Moore.

Let the integers from 0 to p2 - I be written down in order in a p x p square array. We
construct p 2 subsets of these integers, each subset containing exactly p elements, and such that
no two subsets have more than one element in common. Each subset contains one element
from each row of the square array. A subset is defined by a pair of integers,
a, b for a, b = 0, 1, 2,... , p - I. The subset defined by a, b contains the element in the
column numbered a + rb(mod p) from the left in the r-th row, where the leftmost column is
numbered 0, etc.

There are clearly p2 subsets each containing p elements. We need to show that no two have
more than one element in common. This would require that simultaneously

or, subtracting,

or

at +b tr=a2 +b2r

at+ b t s=a2+ b2

b t (r - s) = b2 (r - s)

(b , -b2 ) ( r - s ) = 0

(mod p)

(mod p)

(mod p)

(mod p) .

Since p is a prime and r does not equal 5, this requires hi = b 2• In this case we see that
a 1 = a 2 and the two subsets are identical.

Now consider the partially ordered set containing 2p 2 elements, the p2 integers and the p2
subsets, the ordering being that of inclusion. In the Hasse diagram the p2 subsets will be on
one level and the p 2 points on a lower level. There will be p lines down from each upper point
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and p lines up from each lower point. The normal form for this as a rectifier circuit would
clearly contain p 3 elements. We will show that any circuit realizing this partially ordered set
contains at least p 3 elements.

Suppose we have a network realizing this partial ordering. Suppose terminal A (of the
upper level) includes in the partial ordering terminal a (of the lower level). Then there is a
directed path through rectifiers from A to a. Going along this path from A to a, let us mark the
first rectifier such that after passing through this rectifier it is not possible to go in the direction
of current flow to any terminal of the lower level except Q. This rectifier will, in fact, exist, for
if it did not, at terminal a itself it would be possible to go in the direction of current flow to
another terminal of the lower level, i.e., one point would include another, which is not true. We
assign this rectifier to the pair (A, a). In a similar manner we assign a rectifier to each other
pair which are related by inclusion. We now must show that the same rectifier has not been
assigned to two different pairs, say (A, a) and (8 OJ h). It is clear from the way the rectifier was
assigned that a = b, since having gone through it, it is possible to reach only one terminal of
the lower level. Since the rectifier was the first at which the destination of the path became
unique, just before entering it there must have been a branch path leading to at least one other
terminal, say c, of the lower level. It is clear, then, that terminals A and B each include both a
and c. This is a contradiction if A and B are different, since two of our subsets do not have
more than one point in common. Consequently we have assigned a different rectifier to each of
the p 3 inclusion relations and therefore the network contains at least p 3 elements. The number
of terminals n is equal to 2p 2 , and hence the number of rectifiers is at least 3n/4.

Partially Ordered Set Device

A second use of this correspondence between rectifier circuits and partially ordered sets is
that rectifier circuits may be constructed to represent and study, analog-computer fashion,
various partially ordered sets. The circuit shown in Fig. 3, for example, may be used to
represent any partially ordered set within its capacity. Rectifiers with plugs on each end are
available to plug into the jacks. By plugging these in, the partially ordered set in question is set
up on the machine. If, now, the test lead is applied to any terminal, all gas tubes associated
with terminals included in the given terminal (in the ordering) will receive voltage and fire. By
reversing the + and - voltage it is possible to isolate an elements including the given element.
Simple modification of this circuit allows one to perform more complex operations in the
partial ordering, for example, obtaining the set of elements included in both of two given
elements or including them. (The greatest and least of these sets are the u and n of lattice
theory.)

Rectifier Contact Networks

So far we have considered networks consisting entirely of rectifiers. One may also consider
networks of rectifiers and relay contacts. It is, in fact, often convenient to use rectifiers in relay
circuits for the elimination of sneak paths and the like. An n-terminal circuit of rectifiers and
contacts on s relays corresponds to a function from a set of s Boolean variables to partially
ordered sets with n (labeled) elements. This is evident since for each particular state of the
relays we have a pure rectifier circuit corresponding to a partially ordered set. It is easily seen
that any such function can be realized by means of a suitable network. One may, for example,
construct a tree on the s relays from each of the terminals. Corresponding points of these n

trees are connected with a rectifier circuit corresponding to the desired partial ordering for that
state of the relays.
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Of particular interest is the case of a two-terminal network of rectifiers and contacts. This
may be characterized as above for the special case n = 2, or, more conveniently, by means of
two Boolean switching functions (hindrance functions). The first is the Boolean function for
current flow from terminal 1 to terminal 2; the second is the Boolean function for current flow
from 2 to I. Figure 4 shows that any pair of such functions tl2 and /21 can be realized using
two rectifiers and the number of contacts required for the realization [vz and f2J as ordinary
switching functions.

2'

~
~ "

/j \"

/j \"

1/ \"

/ / \ " "
/ I / \

I' I' \
I' / \

I' I \
I' I' \

1'1 II' ~
I /

I' /
I /

I /

1'1' 0
I'

j/~9
/ - - - - _1- - - - - - - - -1

I

" ""<

b

Q
, I

, I
, I', /

" I'
" I'

" II'

" I
" I'

" I'

" I'
" I'

" I'
" I'

'r/
l'

Figure 5

"o 'oX'
AJ X

2



Some Results on Ideal Rectifier Circuits 779

We now give a generalization of the duality theorem for contact networks to the case of
networks containing contacts and rectifiers. Let N be a planar network of this type with
terminals ] and 2, and switching functions 112 and 121. We construct the dual N' as follows.
Let N be drawn upon a plane and the topological dual network drawn superimposed in the usual
manner. For each contact in N, place its negative in the corresponding branch of N'. For each
rectifier in N, place a rectifier in N' with orientation rotated 90° clockwise from that of N. Let
the terminal of N' counterclockwise from terminal I of N be labeled l' ; similarly for 2. An
example is shown in Fig. 5, with N solid and N' dotted.

Theorem 2:

t" l' 2' = /(2, /2' l' = .f2}· With proper orientation, dualizing the network negates the
two switching functions.

Proof: The proof follows the same line as that for simple contact networks. For current to
flow from t to 2 in N, there must be a path containing only closed contacts and rectifiers
oriented from 1 to 2. This path defines a cut set across N' with every element on the cut set
either an open contact or a rectifier pointed in the wrong direction for current flow from l' to
2'. Thus it is impossible in this state for current to flow from I' to 2' . In a similar way, when
1(1 2, = 0 then 112 = 1, and consequently II' 2' = 1(2. The similar argument for reverse
current flow completes the proof.
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c. E. SHANNON AND D. W. HAGELBARGER
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(Received August 1, 1955)

It is proved that any network of linearly wound potentiometers and fixed resistors has a curve of resistance
versusshaft angle which is concave downward.

Aspart of a computer, a rheostat having a resistance
that was a concave upward function of the shaft

angle was needed. After many attempts to approximate
it with networks of linearly wound potentiometers and
fixed resistors, it became apparent that either it was
impossible or that we were singularly inept network
designers. Rather than accept the latter alternative,
we have proved the following theorem:

Theorem: Let ]\T be a two-terminal network of re-
sistors, Rl, R2, .", R" with resistance R between its
two terminals. Then R= R(Rl, R2, •• " R,,) is a concave
downward function of Rc; R2 '.', R.",.

This means that for any two sets of (non-negative)
values Rs, R 2, ••• , R; and R l ' , R2' , ••• , R n' we willhave:

(1)

Thinking of these sets of resistances as two points in
n-space, this states that the resistanceR at the midpoint
of the joining line is greater than or equal to the average
of the values at the ends.

Before proving the theorem we state two corollaries.
Corollary I: Let Ri j = (iJ2R/ iJRiiJRj ) . Then s; is

a negative semidefinite form.
eorollary I I: Any network of linearly wound poten-

tiometers' on a common shaft and fixed resistors will
give a resistance which is a concave function of shaft
position.

All three terminals of a potentiometer may be used
in the network, since this is equivalent to two rheostats
with their wipers connected.

Proof: The right-hand side of Eq. (1) may be inter-
preted as half the resistance of a series connection of the

N N N

RI +R;,R2+R~, RI • R2, R;,R~,

•••,Rn+R~ •..,R n •••,Rn

FIG. 1.

1 A linearly wound potentiometer is one whose resistance is a
linear function of shaft position.

FrG.2.

network N with Ri, R2, '.', R" for its elements and
the network N with Rs', R'j', "., Rn ' for elements.
The left-hand term is the resistance of the network
~V with elements (R l+R t')/2, (R2+R2')/2,

(R,.+R,.')/2 or (due to linearity) half the resistance
with elements R1+Rt' , R2+R2' , "', Rn+R,.'. Thus,
to establish Eq. (1), we must show that in Fig. 1 the
box at the left has the same or higher resistance than
the series connection at the right. A simple special case
of these networks is shown in Fig, 2.

To the network with elements R1+R1' , R2+R2' ,

· . " Rta+R,a' add the auxiliary circuits shown in Fig. 3
for the particular network of Fig. 2. The additions
consist of a set of ideal one-to-one transformers con-
nected across the unprimed elements. A set of inde-
pendent meshes is chosen for the network N. Suppose
elements a, b, · .. , k form one of these meshes. Then the
other winding of transformers connected across elements
Rs; Rs, .. ', R k are connected in series. This is done
for each mesh in the set chosen except the mesh con-
taining the external source. If these series connections
are now left open it may be seen that the ideal trans-
formers have no effect whatever and the circuit acts
like the left-hand circuit of Fig. 1 or, in the particular
case, Fig. 2. On the other hand, if the loops described
for these ideal transformers are closed (switches SW)
and SW2 in Fig. 3 are closed), the constraints of the
circuit are exactly the constraints of the right-hand
part of Fig. lor, in the particular case, Fig. 2. It may
be seen that the ideal transformers imply the mesh
constraints for the unprimed elements. The original
mesh constrain ts minus those due to the ideal trans-
formers imply that the primed variables also satisfy
these constraints. The mesh through the external source
contains the same elements in both cases. Consequently,
the current through each element and the voltage
across it in Fig. 3 is the same as the corresponding

784
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2 Hardy, Littlewood, and Polya, Inequalities (Cambridge Uni-
versity Press, London, 1934), p. 80.

Thus closing the switch reduces the resistance. In
Fig..3 this applies to each switch and hence the resis-
tance of the right part of Fig. 2 is less than or equal to
that of the left-hand side. This argument, of course,
applies to the general networks of Fig. 1 and proves
our main theorem.

The ideal transformers in this argument are not
really necessary-the argument could be translated
into purely mathematical terms. A set of equations is
found of the mesh type which can be transformed into
those for either of the two circuits in Fig. 1 by making a
set of particular resistors (the switches) have zero or
infinite resistance. The standard network theorems
work for these mesh equations, in particular the result
concerning reduction of resistance when a switch is
closed. The ideal transformers merely serve as a con-
venient way of describing how to set up these equations.

Corollary I is a well-known condition equivalent to
convexity of a function when these second partials
exist.2 These partials do exist for physical networks,
since the resistance R is then a bilinear function of any
particular R without poles at finite points.

The second corollary is equivalent to the statement
tha t a convex function in n-space reduces to a convex
function of one variable if we move uniformly along a
straight line in the n-space.

sw

FIG. 4.

INPUT

FIG. 3.

Rc2~O

R"Rc+ R c2~ R"Rc
e,~ Rt>Rc/ (R,,+ Rc)

R a+R, 2:: R a+R"Rc/ (R b+R c).

current and voltage in ...'ig. 2 right, and the resistance
of Fig. 3 when these switches are closed is the same
as Fig. 2 right.

In any linear resistance network, closing a switch
reduces (or leaves constant) the resistance. This is
more or less evident from physical intuition but follows
matheinatically by representing the two terminal circuit
and switch by its equivalent T structure, Fig. 4. If the
original circuit is passive then although the individual
resistances R a , Rs, and R c may be negative, R,,+Rc is
non-negative. The input resistance with the switch
open is Ro-t-Rcand with it closed is Ra+R"Rc/(Rb+Rc).
Now since



GAME PLAYING MACHINES·

BY

c. E. SHANNON 1

The design of game playing machines may seem at first an enter-
taining pastime rather than a serious scientific study and, indeed, many
scientists, both amateur and professional, have made a hobby of this
fascinating subject. There is, however, a serious side and significant
purpose to such work, and at least four or five universities and research
laboratories have instituted projects along this line. If Benjamin
Franklin were alive today, I am sure he would be interested in this
problem for it combines two of his avocations. We are all familiar
with his achievements as a scientist and an inventor; it is not so well
known that he was also a strong chessplayer. Indeed, he is the author
of an engaging essay called "The Morals of Chess"-a blend of diplo-
macy and chess that might well have been subtitled "How to be Happy
Even Though a Chessplayer."

One of the most important technological advances of the last
twenty years has been the development of large scale electronic com-
puting machines. These computers are capable of carrying out
automatically and at the speed of thousands of operations per second
a long sequence of numerical operations. The series of instructions
which tells the computer exactly what it should do is called the program.
When a computer is to solve a problem, a program must first be devised
which translates the solution into a series of simple operations. These
basic orders might consist of the elementary operations of arithmetic,
addition, multiplication and the like, and also "decision" orders which
enable the machine to make a choice between two alternatives, the
choice depending upon the results of previous calculations. When the

• Delivered at the 1955 Medal Day Meeting, October 19, 1955, in acceptance of the
Stuart Ballantine Medal.

1 Bell Telephone Laboratories, Murray Hill, N. J.
(NoI_n. rna.,11D lutllutl II lot mpo.llble for the ItatftDtn(J aDd oplDlou advuced b, contrlbuton In

tb. JOVbU.)

Reprinted from JOURNAL OF THE FRA:\KLIN I~Sl'ITUTE,

Vol. 260, No.6, December, 1955
PriDted in U. S. A.

786



Game Playing Machines 787

program is introduced into the machine, it carries out the instructions
one by one at high speed.

Electronic computers are normally used for the solution of numerical
problems arising in science or industry. The fundamental design of
these computers, however, is so flexible and so universal in conception
that they may be programmed to perform many operations which do
not involve numbers at all-operations such as the translation of
language, the analysis of a logical situation or the playing of games.
The same orders which are used in constructing a numerical program
may be used to symbolize operations on abstract entities such as the
words of a language or the positions in a chess game.

Programming computers to perform such non-numerical tasks is
valuable in a number of ways. It widens our understanding of the
capabilities of this amazingly flexible tool, the general purpose com-
puter; it seems certain that we have only scratched the surface of the
potentialities of such computing devices and each new application
leads to new understanding. Also, this wider use of the computers
suggests useful changes in their design; new types of orders which will
enhance their value in these more unusual programs and even in the
ordinary numerical problems. Finally, we hope that research in the
design of game playing machines will lead to insights in the manner
of operation of the human brain. It would, of course, be naive to
expect that the brain operates in a manner similar or even vaguely
analogous to that of a machine designed to playa game. It is never-
theless certain that the design of any learning machine will illuminate
the path toward the understanding of brain functioning.

Perhaps the earliest game playing machine was the chessplaying
Automaton of MaelzeI. This was a device constructed in 1769 by the
Austrian inventor von Kempelen and exhibited widely in Europe and
America by the promoter Maelzel. A large mechanical figure seated
at a desk would play chess against human opponents. Before the
performance the desk and figure were opened to show that there was
no one inside. In its games, the machine usually won. The automaton
created quite a sensation at the time and a number of theories were
proposed to explain its operation. Among these, for example, was an
essay by Edgar Allen Poe who concluded correctly (although in part
by fallacious arguments) that the machine was a hoax and in fact was
operated by a human chessmaster cleverly concealed inside. This
was indeed the case, the effect being produced as in many cases of
magical tricks by moving the chessmaster about within the machine
as the various compartments and doors were opened for inspection.
After many adventures, including some games with the Emperor
Napoleon, the automaton ended up in a place called the Chinese
museum here in Philadelphia and was finally destroyed by fire in 1854.

A modern counterpart to the Maelzel Automaton came to my
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attention a few years ago. A friend in California wrote me that a
checker playing machine had been exhibited there both in local depart-
ment stores and on television. Almost invincible, it had even played
the United States checker champion a drawn match and was widely
accepted as an authentic electronic computer. Having investigated
the problem of programming machines for chess and checkers, I was
rather skeptical, particularly in view of the reported strength of play
and portability, and suggested an investigation of the device. After
considerable detective work, my friend finally tracked down the checker
player in an old warehouse. He reported that the only electronic
component was an electric fan to keep the concealed human operator cool!

Apart from such hoaxes, game playing machines may be divided
into three main types depending on their level of sophistication. The
simplest type of machine is that designed for games which have been
completely analyzed. By this we mean that a complete strategy of
play of relatively simple nature is known, a strategy of play which
dictates an appropriate move for each situation in the game. This is
the case, for example, in tic-tac-toe, in the match game of Nim and in
a number of other mathematical games. In cases such as these, one
can translate the known strategy into a program for a general purpose
computer or into a special purpose computer so that the machine will
make the correct move for each situation in the game. This type of
machine will typically playa perfect game. It will win whenever it
is possible to win.

One of the first machines of this type was developed about 1914
by a Spanish inventor Torres y Quevedo. It was a machine which
played the end game in chess of king and rook against king. This
end game is a relatively easy one and the proper moves can be described
with only a few simple rules. The Torres machine translated these
rules into a switching circuit-while by today's standards the device
seems simple, it was certainly a remarkable invention for that period.

Another game susceptible of complete mathematical analysis is the
game of Nim and many Nim-playing machines have been constructed.
The first, I believe, was one exhibited at the World's Fair in New York
in 1939. The game of Nim was analyzed early by mathematicians,
who found that the correct strategy of play could be stated quite simply
in terms of the binary notation for numbers. Relay circuits are most
naturally adapted to the binary notation and consequently it was an
easy step to translate the mathematical strategy for Nim into a relay
circuit. Most of the Nim machines which have been built play a
perfect game in the sense of winning whenever it is possible, but they
usually give the human opponent a starting position that he can win
if he plays without error. If he makes a single error the machine
seizes the initiative and will win the game.!

t Here the speaker demonstrated a small Nim playing machine.
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The familiar game of tic-tac-toe is a favorite among amateurs and
hobbyists for machine construction. The game can be completely
analyzed by enumeration of all possible lines of play. When the
symmetry of the board is taken into account the number of such
variations is relatively small. One of the earliest tic-tac-toe machines
was designed by W. Keister about fifteen years ago and I have here
a tic-tac-toe machine using Keister's circuit. In this machine the
human player has first move and the machine will always at least
draw the game. If the player makes a serious mistake, however, the
machine will win. It also has "anti-cheat" features built in. If one
attempts to make two moves at once, a "tilt" light goes on."

The second main class of game playing machines relates to games
for which a complete analysis is unknown but for which certain general
principles of play or maxims of sound strategy are available. This
includes most of the games of every day interest such as checkers,
chess, bridge, or poker. A machine for playing chess by such general
principles would investigate, in a given position, the different moves
it could make, the different replies available to its opponent, and so
on for two or three moves. At the end of each of these variations it
might apply an "evaluation function" to the resulting positions. It
would choose as its move that one which leads to the position of highest
value, when its opponent is assumed to play in such a way as to mini-
mize this value. This is a kind of minimax procedure familiar in the
theory of games. Insofar as the evaluation function or the general
principles of play are not infallible, a machine designed along these
lines would not playa perfect game. It might be expected, however,
to make tolerably good moves if the general principles were carefully
thought out.

One example of a machine playing by general strategic principles of
the type just mentioned is the checker playing routine devised by C.
S. Strachey for use on a large scale computing machine. The first
game played by Strachey's routine gave the indication of reasonably
good play in the opening and middle game but very poor play in the
end game. It is evident that a rather different type of program should
be used in the later stages of play.

Another checker playing routine has been devised by A. L. Samuel
and it is rumored that a match is being arranged between the two
machines. There is a possibly apocryphal story with regard to Dr.
Samuel's program. When he first introduced it into a computing
machine and pressed the start button for the machine to give its first
move the computer operated furiously for a few minutes and then
printed out "I resign l".

Another Quite different general principle type game player was
designed by E. F. Moore and myself. It is a special purpose machine

• Here the lecturer demonstrated the operation of the tie-tae-toe machine.
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designed to play a game of Hex. Hex is a game played on a board
laid out in a regular hexagon pattern. Two players alternate in play-
ing men on the hexagons. One player uses yellow men and the other
uses blue men. The object of the yellow player is to form a connected
path of yellow men from the top of the board to the bottom. The
object of the blue player is to form a connected path of blue men
between the two sides of the board. After some study of this game
Moore and I conceived the idea of representing the board by a resistance
network and the placement of men by voltages applied to corresponding
points of the network; + voltage for the yellow men and - voltage
for the blue men. We suspected that certain saddle points in the
potential field produced in this resistance network would correspond
to good moves in the game. A simple device was built embodying
this network and it turned out that the machine played a tolerably
good game. It would win when it had first move perhaps 70 per cent
of the time against laboratory visitors. With second move its score
was perhaps 50 per cent or less. We were often agreeably surprised
to find the machine selecting moves which at first looked weak but
careful analysis proved sound and strong. Indeed in one early position
of the game the machine "discovered" a move which is better than
any we had used in that position and which we now normally adopt.

The third and most sophisticated type of game playing machine is
one which learns its own principles of play. Only the rules of the
game and the desired goal are introduced into the program, together
with some general principles of how to improve the play through
experience. The machine is then allowed to play many games and by
trial and error, by imitation of its opponent, by analysis of its failures
or by other means it is supposed to gradually improve its playing skill.
Although this problem has been discussed a good deal, no machines
quite coming up to these specifications have been actually designed.
The problem is one of great difficulty and the cost of carrying out such
a research program would be great. However, at a somewhat more
elementary level, learning machines have been built. Two examples
of these will be described.

D. W. Hagelbarger has developed an interesting device which plays
the game of matching pennies against a human opponent. In the
ordinary game of matching pennies two players expose coins at the
same time. They may arrange to have either the heads or the tails
facing up when the coin is exposed. If the two coins are the same,
one player wins. If they are different the second player wins. In
actual play this results in a kind of psychological outguessing game.
The player who can predict his opponent's reactions better will in the
long run win. Hagelbarger's machine plays this game substituting
lights and switches for the coins. The machine has memory registers
in which are stored some of the results of the play against its opponent.
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As it plays against the opponent these results are analyzed in the
machine in an attempt to find certain patterns or psychological tenden-
cies on the part of the human player. For example, one individual
might have a tendency if he had won twice in a row to change from
heads to tails. Another individual might have just the opposite ten-
dency. The outguessing machine searches for such tendencies and
those that it finds it exploits in future play. Thus, it assumes that in
the future the human player will follow the tendencies he has exhibited
in the past and the machine plays in such a way as to win if he in fact
does so. In actual play the penny matcher has won something like
55 per cent of the time against a wide variety of opponents, definitely
better than the 50 per cent it would win by pure chance.

Fascinated by Hagelbarger's machine, I designed a second penny
matcher along the same general lines but simplified a great deal with
regard to memory capacity and other details. After considerable
discussion concerning which of these two machines would win over the
other we decided to put the matter to an experimental test. A third
small umpire machine was constructed which was able to pass informa-
tion back and forth between the two machines, keep score, and ensure
that the Queensbury rules were followed. The three machines were
plugged together and allowed to run for a few hours to the accompany-
ment of small side bets and large cheering. It turned out that the
smaller, presumably less "intelligent" of the two machines beat the
larger one in the ratio of about 55 to 45. This was possibly due to
its greater speed in altering its conclusions concerning its opponent.
Both machines are attempting to find patterns in the other and as
soon as one machine finds such a pattern the other machine begins to
lose and consequently changes the pattern. Thus the more volatile
type has a certain advantage.

The maze solving machine which I have here is another example
of a learning machine. While not learning to playa game, it does
learn by experience to solve a certain type of problem. A classical
psychological learning problem is to place an animal in a maze and
observe the time required for it to learn its way to the food box. The
maze solving machine is an attempt to dramatize in precisely the same
terms how a relay circuit can learn to solve this type of problem. The
partitions in the maze can be changed about at will and allow one to
set up something like one thousand billion different possible mazes for
tile machine to solve. On its first trip through, the mouse follows an
exploring strategy involving a great deal of trial and error and false
moves into blind alleys. Eventually it arrives at a brass disk repre-
senting the food box. If we now place the mouse at its original starting
point it goes directly to the goal with no false moves. This demon-
strates that the relay circuit has learned the correct path. Furthermore
if the mouse is placed in any other part of the maze that it has pre-
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viously explored it will proceed directly to the goal. If it is placed in
a part of the maze that it has not previously visited during its explor-
ation phase it will blunder about until it reaches a familiar square and
from there it will proceed directly to the goal. If it is now again placed
in this region it will go directly to the goal. This shows that it has
added the information about this part of the maze to its previous
analysis. Finally, if the maze is changed the mouse first tries the old
path and when this fails it starts exploring again to find another way
to the goal. If the goal is blocked off so that there is no path available
the mouse continuously searches through all parts of the maze that it
can reach.'

While the developments in game-playing machines of the past,
particularly in the last two decades, have been interesting and provoca-
tive, it seems certain that the next decade or two will make these
devices seem primitive. The widespread use of large-scale computers
and the rapid advancement of programming theory will surely result
in impressive examples of general strategic machines and of game-
learning machines.

4 Here the operation of the maze solving machine was demonstrated.



A Note on the Maximum Flow Through a Network'
P. ELIASt, A. FEINSTEINt, AND C. E. SHANNON§

Summaru-«This note discusses the problem of maximizing the
rate of flow from one terminal to another, through a network which
consists of a number of branches. each of which has a limited capa-
city. The main result is a theorem: The maximum possible flow from
left to right through a network is equal to the minimum value among
all simple cut-sets. This theorem is applied to solve a more general
problem. in which a number of input nodes and a number of output
nodes are used.

CONSI D.ER a two-terminal network such as that
of Fig. 1. The branches of the network might
represent communication channels, or, more

generally, any conveying system of limited capacity as,
for example, a railroad system, a power feeding system,
or a network of pipes, provided in each case it is possible
to assign a definite maximum allowed rate of flow over a
given branch. The links may be of two types, either one
directional (indicated by arrows) or t\VO directional, in
which case flow is allowed in either direction at anything
up to maximum capacity. At the nodes or junction points
of the network, any redistribution of incoming flow into
the outgoing flow is allowed, subject only to the re-
striction of not exceeding in any branch the capacity, and
of obeying the Kirchhoff law that the total (algebraic)
flow into a node be zero. Note that in the case of infor-
mation flow, this may require arbitrarily large delays at
each node to permit recoding of the output signals from
that node. The problem is to evaluate the maximum
possible flow through the network as a whole, entering at
the left terminal and emerging at the right terminal.

The answer can be given in terms of cut-sets of the
network. A cut-set of a two-terminal network is a, set of
branches such that when deleted from the network, the
network falls into two or more unconnected parts with
the two terminals in different parts, Thus, every path
from one terminal to the other in the original network
passes through at least one branch in the cut-set. In the
network above, some examples of cut-sets are (d, e, f),
and (b, c, e, g, h), (d, g, h, i). By a simple cut-set we will
mean a cut-set such that if any branch is omitted it is no
longer a cut-set. Thus (d, e, f) and (b, c, e, g, h) are simple
cut-sets while (d, g, h, i) is not. When a simple cut-set is
deleted from a connected two-terminal network, the net-
work falls into exactly t\VO parts, a left part containing the
left terminal and a right part containing the right terminal.
\Ve assign a value to a simple cut-set by taking the sum of
capacities of branches in the cut-set, only counting
capacities, however, from the left part to the right part
for branches that are unidirectional. Note that the
direction of an unidirectional branch cannot be deduced

• Manuscript received by the PGIT, July 11,1956.
t Elec. Eng. Dept. and Res. Lab. of Electronics, Mass. Inst,

Tech., 'Cambridge, Mass.
t Lincoln Lab., M.I.T., Lexington, Mass.
§ Bell Telephone Labs., Murray Hill, N. J., and M.LT., Cam-

bridge, Mass.

from its appearance in the graph of the network. A branch
is directed from left to right in a minimal cut-set if, and
only if, the arrow on the branch points from a node in the
left part of the network to a node in the right part. Thus,
in the example, the cut-set (d, e, f) has the value 5 + 1 = 6,
the cut-set (b, c, e, g, h) has value 3 + 2 + 3 + 2 = 10.

Theorem: The maximum possible flow from left to right
through a network is equal to the minimum value among
all simple cut-sets.

This theorem may appear almost obvious on physical
grounds and appears to have been accepted without proof
for some time by workers in communication theory.
However, while the fact that this flow cannot be exceeded
is indeed almost trivial, the fact that it can actually be
achieved is by no means obvious. We understand that
proofs of the theorem have been given by Ford and
Fulkerson' and Fulkerson and Dantzig." The following
proof is relatively simple, and we believe different in
principle.

To prove first that the minimum cut-set flow cannot be
exceeded, consider any given flow pattern and a minimum-
valued cut-set C. Take the algebraic sum S of flows from
left to right across this cut-set. This is clearly less than or
equal to the value V of the cut-set, since the latter would
result if all paths from left to right in C were carrying
full capacity, and those in the reverse direction were
carrying zero. Now add to S the sum of the algebraic
flows into all nodes in the right-hand group for the cut-
set C. This sum is zero because of the Kirchhoff law
constraint at each node. Viewed another way, however,
we see that it cancels out each flow contributing to. 8,
and also that each flow on a branch with both ends in the
right hand group appears with both plus and minus signs
and therefore cancels out. The only term left, therefore,
which is not cancelled is the flow out of the right hand
terminal, that is to say, the total flow F through the
network. 'Ve conclude, then that F ~ 1'.

We now prove the more interesting positive assertion
of the theorem: That a flow pattern can be found which
actually achieves the rate V. From any given network
with minimum cut-set value V it is possible to construct
what we will call a reduced network with the properties
listed below.

1) The graph of the reduced network is the same as
that of the original network except possibly that
some of the branches of the original network are
missing (zero rapacity) in the reduced network.

2) Every branch in the reduced network has a capacity

1 L. Ford, Jr. and D. R. Fulkerson, Can. J. Math.; to be published
2 G. B. Dantzig and D. R. Fulkerson, "On the Max-Flow Min~

Cut !heorem of Networks," in "Linear Inequalities," Ann. Math.
Studies, no. 38, Princeton, New Jersey, 1956.

793



794

5 d

P. Elias, A. Feinstein, and C. E. Shannon

f
Fig. 1

equal to or less than the corresponding branch of the
original network.

3) Every branch of the reduced network is in at least
one cut-set of value V, and V is the minimum value
cut-set for the reduced network.

A reduced network may be constructed as follows. If
there is any branch which is not in some minimum cut-set,
reduce its capacity until either it is in a minimum cut-set
or the value reaches zero. Next. take any other branch not
in a minimum cut-set and perform the same operation.
Continue in this way until no branches remain which are
not in minimum cut-sets. The network then clearly
satisfies the condition. In general, there will be many
differen t reduced networks obtainable from a given net-
work depending on the order in which the branches are
chosen. If a satisfactory flow pattern can be found for a
reduced network, it is clear that the same flow pattern
will be satisfactory in the original network, since both the
Kirchhoff condition and the capacity limitation will be
satisfied. Hence, if we prove the theorm for reduced
networks, it will be true in general.

The proof will proceed by an induction on the number
of branches. First note that if every path through a re-
duced network contains only two or less elements, the
network is of the form shown typically in Fig. 2. In
general, such a network consists of a paralleling of series
subnetworks, these series combinations being at most
two long with or without arrows from left to right. It is
obvious that for such a reduced network, the theorem is
true. It is only necessary to load up each branch to
capacity. Now suppose the theorem true for all reduced

networks with less than n nodes. 'Ve will then show that
it is true for any reduced network with n nodes.

Either the given reduced network with n nodes has a
path from left to right of length at least three, or it is of
the type just described. In the latter case the theorem is
true, as mentioned. In the former case, taking the second
branch on a path of length three, we have an element
running between internal nodes. There exists (since the
network is reduced) a minimum cut-set containing this
branch. Replace each branch in the cut-set by twc
branches in series, each with the same capacity as the
original branch. Now identify (or join together) all ot
these newly-formed middle nodes as one single node,
The network then becomes a series connection of twc
simpler networks, Each of these has the same minimurr
cut-set value V since they each contain a cut-set eorre
sponding to C, and furthermore neither can contair
higher-valued cut-sets since the operation of identifying
nodes only eliminates and cannot introduce new cut-sets

Each of the two networks in series contains a numbe:
of branches smaller than n. This is evident because of th.
path of length at least three from the left terminal to th.
right terminal. This path implies the existence of a brand
in the left group which does not appear in the right grouj
and conversely. Thus by inductive assumption, a satis
factory flow pattern with total flow V can be set up it
each of these networks. It is clear, then, that when th,
common connecting node is separated into its origins
form, the same flow pattern is satisfactory for the origina
network. This concludes the proof.

It is interesting that in a reduced network each brancJ
is loaded to its full capacity and the direction of flow i

Fig. 2
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determined by any minimum cut-set through a branch.
In nonreduced networks there is, in general, some freedom
in the amount of flow in branches and even, sometimes,
in the direction of flow.

A more general problem concerning flow through a
network can be readily reduced to the above result-.
Suppose we have a network with a number of input nodes
and a number of output nodes as in Fig. 3. The three nodes
on the left are inputs and it is desired to introduce two,
three, and six units of flow at these points. The nodes on
the right are outputs and it is desired to deliver three and
eight units at these points. The problem is to find con-
ditions under which this is possible.

This problem may be reduced to the earlier one by
adding a channel for each input to a common left-hand
node, the capacity of the channel being equal to the input
flow, and also introducing channels from the outputs to a
common right-hand node with capacities equal to the out-
put flow. In the particular case this leads to Fig. 4. The
network obtained in this way from the original problem
will be called the augmented network.

It is easy to show that necessary and sufficient con-
ditions for solving this multiple input multiple output
problem are the following:

1) The sum of the input flows must equal the sum of
the output flows. Let this sum be C.

2) The rmrumum cut-set in the augmented network
must have a value C.

To prove these, note that the necessity of 1 is obvious and
that of 2 follows by assuming a flow pattern in the original
network satisfying the conditions. This can be translated
into a flow pattern in the augmented network, and using
the theorem, this implies no cut-set with value less than C.
Since there are cut-sets with value C (those through the
added branches), the minimum cut-set value is equal to C.

The sufficiency of the conditions follows from noting
that 2 implies, using the theorem, that a flow pattern can
he set up in the augmented network with C in at the left
and out at the right. Now by Kirchhoff's law at the right
and left terminals and using condition 1, each added
output branch and input branch is carrying a flow equal
to that desired. Hence, this flow pattern in the original
network solves the problem.
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RELIABLE CIRCUITS USING LESS RELIABLE RELAYS

BY

E. F. MOORE I AND C. E. SHANNON 1

ABSTRACT

An investigation is made of relays whose reliability can be described in simple
terms by means of probabilities. I t is shown that by using a sufficiently large
number of these relays in the proper manner, circuits can be built which are arbitrarily
reliable, regardless of how unreliable the original relays arc. Various properties of
these circuits are elucidated.

Part 12

INTRODUCTION

In an important paper' von Neumann considers the problem of con-
structing reliable computing circuits by the redundant use of unreliable
components. He studies several cases, one of which, for example, in-
volves the construction of machines using as a basic component a
"Sheffer stroke" organ" Von Neumann shows that under certain con-
ditions it is possible to combine a number of unreliable Sheffer stroke
organs to obtain an clement which acts like a Sheffer stroke organ of
higher reliability. In fact, under certain conditions one can approach
perfect operation by means of a sufficiently redundant circuit.

The present paper was inspired by von Neumann'swork and carries
out a similar analysis for relay circuits. I t appears that relays are
basically more adaptable to these error-correcting circuits than the
neuron-like components studied by von Neumann. At any rate, our
results go further than his in several directions.

In the first place, von Neumann needs to aSSUI11C a certain fairly
good reliability in his components in order to get started. With the
Sheffer stroke organ, a probability of error less than 1/6 is absolutely
necessary, and something like one in a hundred or better is required
in the specific error-correcting circuits developed. The methods de-
veloped here, on the other hand, will apply to arbitrarily poor relays.

Secondly, the anlount of redundancy required in our circuits for a

I Murray Hill Laboratory, Bell Telephone Laboratories, I nc., Murray Hill, N.J.

I Part II will appear in this JOURNAL for October, 1956.
3 J. VON NEUMANN, "Probabilistic Logics," California Institute of Technology, 1952.

(Also Published in "Automata Studies," edited by C. E. Shannon and J. McCarthy, Princeton
University Press, 1956.)

C The Sheffer stroke is the logical operation on t\VO variables "not A and not B:' I t has
the property that all logical functions can be generated in terms of it. A Sheffer stroke organ,
is a device with t\VO binary inputs and one binary output which performs this logical operation.
An unreliable component of this sort would give the proper output only with a certain prob-
ability.
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given improvement in reliability is considerably different from that
required by von Neumann. For example, in one numerical case that
he considers, a redundancy of about 60,000 to 1 is required to obtain a
certain improvement in operating reliability. The same improvement
is obtained in relay circuits with a redundancy of only 100 to 1. We
also show that in a certain sense S0111e of our circuits arc not far from
minimal. Thus, in the numerical case just mentioned, our results show
that a redundancy of at least 67 to 1 is necessary in any circuit of the
type we consider. Hence, the actual circuits which achieve this im-
proverncnt with a redundancy of 100 to 1 are not too inefficient in the
use of components.

Another difference is that it is not necessary in the case of relays
to use what von NeU111ann calls the "multiplexing SYStCI11" in order to
approach perfect operation on the final output. With his types of
elements, the final output (without multiplexing) always has a definite
residual unreliability. With the SystCI11S described here, this final prob-
ability of error can approach zero.

This paper is not intended for practical design purposes, but rather
for theoretical and mathematical insight into the problem, There 111ay,
however, be S0l11e practical applications. '[he reliability of a C0111-
rnercial relay is typically very high, for example, one failure in 10 7

operations. I-Iowever, there are cases where even this reliability is
insufficient. In the first place, in large-scale computing machines an
extremely large number of individual relay operations J11ay be involved
in one calculation, an error in anyone of which could cause an error in
the final result. Because of this, the Bell Telephone Laboratories'
computers have made extensive use of self-checking and error-detecting
SChClllCS. A second type of situation requiring extreme reliability
occurs when human safety is dependent on correct operation of a relay
circuit, Ior example, railway interlocks, safety circuits on automatic
elevators and in guided missiles, etc. It is possible that some of the
simpler circuits we describe 111ay be of some use in applications SUCll as
these. However, the results of this paper will not be directly applicable
to actual relays which wear out with age, but only to idealized relays
whose probability of failure are constant in time.

IDEALIZED RELAYS

We will prove results only (or idealized relays whose failures can be
described in onc specific mariner by means of probabilities. Their
description allows only intermittent types of failures, and allows these
only under the assumption that the probability of failure remains
constant as time passes.

This. idealization does not cover such actually possible cases as
relays which wear out with age, relays whose windings burn out, or
relays which have been wired into the circuit with an imperfect soldered
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connection. It is also assumed that the circuit is not improperly de-
signed or improperly wired and that there are no bits of solder to
produce short circuits between different wires.

Since all of the above kinds of errors and failures can actually occur
in practice, using real relays, the results of this paper do not strictly
apply to SUCll real relays. l-Iowever, the two kinds of failures ~n­

sidered in this paper do actually occur in relays, so the kinds of ci,fuits
suggested are of some possible application.

The first kind of failure allowed is the failure of a relay contact to
close, which in actual relays is often due to a particle of dust preventing
electrical closure.

The second type of failure is the failure of a contact to open, which
in actual relays is usually due to the welding action of the current
passing through the contacts. We shall consider relay circuits in which
the only causes of errors are of these two typcs-e-Iailurc of contacts
that should be closed to be actually closed and of contacts that should
be open to be actually open. We will aSSUI11C, in fact, that there arc
two probabilities associated with a contact on a relay. If the relay is

x.

FIG. 1. Schematic represen- FIG. 2. One proposed way of transforming relay circuits
tation of the transition prob- to improve reliability.
abilities.

energized, the contact is closed with probability a, open with prob-
ability 1 - a. If the relay is not energized, the contact is closed with
probability c and open with probability 1 - c. If a is greater than c, we
will call the contact a make contact; if a is less than c we call it a break
contact. We assume that different contacts arc statistically indepen-
dent. With actual relays this is probably not too far from the truth
for contacts on different relays and, indeed, this is all that is required
for most of the results we wish to establish. In addition, we shall
aSSU111C that on the successive ti111eS that a relay coil is energized its
closures are statistically independent.

A relay of this type governed by probabilities (J, and c will be called
a CrU111,l1ty" relay. Its probability operation may be represented sche-
matically as in Fig. 1. This will be recognized as similar to diagrams
used to represent a simple noisy communication channel, and indeed
such a relay can be thought of as a noisy binary channel, Tile capacity
of the corresponding channel will be zero if and only if a = c. We will

I "Crummy = crumby, esp. lousy," Webster's New International Dictionary. We chose
the more modern spelling universally used in comic books.
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see later that highly reliable computers can be constructed from a
sufficient number of crummy relays if and only if a ::f= c.

THE GENERAL METHOD OF IMPROVING RELIABILITY

In a general way the analysis we will give depends on constructing
networks of contacts which act like a single contact but with greater
reliability than tile contacts of which they are composed. For example,
in Fig. 2A, we have a crummy relay X with a make contact x, This
relay might appear as a part of a large computing circuit. In Fig. 2B
we replace this by four crummy relays X 1, X 2, X 3, X 4 whose coils in
parallel replace the single coil X, and whose contacts are in the series
parallel combination shown, this two-terminal circuit replacing the
single previous x contact. If each of these four contacts has the
probability p of being closed, it is easily seen that the probability of
the four-contact circuit being closed is

h(p) = 1 - (1 - p2)2 = 2p2 - p4.

This function is plotted in Fig. 3. It will be seen that it lies above the
diagonal line y = p for p greater than 0.618 and lies below the line for

1..382.

lr---------,...

1P .618

1..--------
.f\(p)

FIG. 3. The function describing
the behavior of Fig. 2B.

FIG. 4. Another series-parallel circuit and its as-
socia ted function.

p less than 0.618. This means that if 0.618 is between the a and c of
Fig. 1, Fig. 2B will act like a relay with better values of a and c, that
is, values nearer to zero and one. For example, if the individual relays
made errors with probabilities 1 - a = c = 0.01, the circuit of Fig. 2B
would make errors when the coils are energized with probability 0.000396,
and when the coils are not energized with probability 0.0002. TllUS
a large improvement in reliability, both when the coil is energized and
when it is not energized, is obtained by the use of this circuit.

Figure 4 shows another contact arrangement giving rise to a some-
what different function
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I-Iere again, h(p) is the probability of the network being closed, when
the individual contacts each have probability p of being closed. TIle
network of Fig. 4 is the dual of that in Fig. 2, and the curve is that
obtained by interchanging 0 and 1 in both abscissa and ordinate in
Fig. 3.

The bridge network of Fig. 5 gives rise to a symmetrical curve
crossing the diagonal at p = 0.5. For this network we have:

h(p) = 2p2 + 2pl - 5p4 + 2p6.

All of these networks tend to accentuate the nearness of p to its
values 0 or 1 and thus tend to improve reliability. Many other net-
works have similar properties as we shall sec. Furthermore, we will
show that it is possible to find a network whose curve, Fig. 6, crosses
the diagonal line for a value of p between any two given numbers a
and c (no matter how close together) and in fact is less than 6 at a
and greater than 1 - 8 at c, for any positive 6. This means that an
arbitrarily good relay can be made from a sufficient number of CrU111my
relays.

lt may be seen that this general procedure operates to improve the
reliability of either make or break contacts. The only difference is
the labeling of the points a and c.

a.
FIG. 6. The general form of

curve of attainable functions.

l,...-----~~

FIG. 5. A bridge circuit and its associated function.

PROPERTIES OF lee,,)

Consider any two-terminal network made up of contacts each of
which has a probability p of being closed. The network will have a
probability, say h(p), of being closed. We wish to investigate some
of the properties of h(P).

In the first place, h(p) is a polynomial and may be written as follows:

...
It(p) = I: A ftpn(l - er:: (1)_-0
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where m is the total number of contacts in the network and A" is the
number of ways we can select a subset of It contacts in the network
such that if these ,I, contacts are closed, and the remaining contacts
open, then tile network will be closed. This is evident since (1) merely
sums up the probabilities of the various disjoint ways that the network
could be closed.

The first non-vanishing term in (1), say A.p·(l - p)m-., is related to
the shortest paths through the network from one terminal to the other
-s is the length of these paths and A. the number of them, This is
because in (1) all the elements of a subset which contribute to A. must
actually be on the path (otherwise A. would not have been the first
non-vanishing term), We will call s the length of the network. It is
evident from (1) that ncar p = 0 the function It(p) behaves as A,p·.

In a similar way, one can work with the probability of the network
being open and write

m

1 - h(p) = 1: B,,(1 - p)np",-n
n-O

(2)

where B n is the number of subsets of 11, contacts such that, if all contacts
in a subset are open and the other contacts closed, the network is open.
The first non-vanishing term in this series, say B,(1 - p)'pm-" relates to
the smallest cut sets of the network (sets of contacts which, if opened,
open the network). Here t is tile number of contacts in these minimal
cut sets, and B" the number of such cut sets. The reason is essentially
as before. We will call t the width of the network. It is evident that,
in the neighborhood of p = 1, Jt(p) behaves as 1 - B,(1 - p)'.

The function h(p) may also be calculated by other means, For
example, fix attention on a particular contact in the network, N.
Calculate the probability function for the network obtained from N
by replacing this contact with a short circuit, say f(P), and for the
network obtained from N by replacing this contact with an open
circuit, say g(p). Then clearly,

l,,(p) = Pf(P) + (1 - p)g(P).

Furthermore we will have, whenever 0 ~ p s 1,

f(P) ~ g(p).

(3)

(4)

This is intuitively evident since closing a connection certainly cannot
decrease tile probability of the network being closed. Formally, it
follows from tile relation (1), noting that the cases where the g net-
work is closed are a subset of those in which j' is closed, and consequently
the terms in the expression for f dominate those in the expression for g.

If the network in question is planar, it will have a dual. Let
hD(P) be the probability function for this dual network, For each
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state of the contacts of the original network let us make correspond
in the dual network the state in which corresponding contacts have the
opposite value. Then states for which the original network is open
correspond to states for which the dual network is closed. If the prob-
ability of closure of a contact in the dual network is 1 - p, where p is
the probability of closure in the original network, then the probabilities
of corresponding states are equal. Consequently we will have

1 - hD(l - p) = h(p). (6)

An example of this relation between the 1" functions for a network
and its dual is given in Figs. 3 and 4. Either of these graphs can be
obtained from the other by inverting, that is, by interchanging 0 and 1
in both abscissa and ordinate.

If the network is self-dual (for example the bridge of Fig, 5),

1 - h(l - p) = h(I}).

Substituting p = 1/2, we find /z,(1/2) = 1/2.

(7)

COMBINATION OF TWO NETWORKS

Consider now two networks Nt and N 2 with functions h 1 (p ) and
1t 2(p). If N 1 and N 2 arc connected in series, Fig. 7, the resulting net-

~
-R(p) = ".(P)"2 (p)

FIG. 7. Connection of two
networks in series.

FIG. 8. Connection of t\VO networks in
parallel.

work will be closed only if both parts arc closed. Hence, the resulting
h(p) function will be given by the product ht(p) h 2 (P).

If Nv and N 2 are connected in parallel, Fig. 8, the resulting network
will be open only if both parts are open, an event with probability
(1 - hi) (1 - lt2) . Hence, the resulting Iz(p) function for the parallel
network will be [1 - (1 -1t 1) (1 -1t2)J.

A third method of combining the two networks N', and N 2 is by
"composition." By this we mean replacing each element of N l by a
copy of N 2 , as shown for a typical example by Fig. 9. It is evident
that the composite network has an It function given by the composition
of the two original h functions:

(8)
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If Nv and N 2 are identical and this process is repeated ," - 1 t.imes, we
obtain the 1t t h composition of /1. with itself, which we denote by

/1. (ra) (p) = h(h(/t· · -h. (p) · · ·».
The value of h(ft)(p) can be found readily from the It(p) curve by

the staircase construction shown typically in Fig. 10 for h(3) (Pt). TllUS,
by composition, a greater il11prOVC111cnt in reliability may be obtained
with networks whose h(P) curve crosses the diagonal but once. This
effect, and the improvement by iteration relating to the staircase con-
struction of Fig. 10, arc very similar to situations in von Neumann's
approach.

BOUNDS ON It'(,,)

We will now deduce an interesting inequality concerning the slope
of possible functions h(p). As a corollary, we will showthat any It(p)
function can cross the diagonal at 1110st once.

FIG. 9. Composition of two networks.

Theorem 1

FIG. 10. The effect of iterated
compos] tion.

h'(P) 1
(1 - It(P»It(p) > (1 _ P)p whenever 0 < p < 1, (9)

provided Jt(p) is neither identically zero, identically one, nor identically
equal to p.

This will be proved by an induction on the number of contacts in
the network. We expand It(p) as in (3) except that we expand it
about S0l11e contact which lies on a path through the network, and then
\VC aSSU111e that either the inequality holds for the functions f and g,
or that they are among the three exceptional functions, and then we
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prove the inequality for the function h. But since the contact actually
lies on a path, the proof of (4) gives that f(P) < g(P) for all p. Also
we cannot have 1 - f(P) + g(p) = 0 for any p, for if 50, we would
have f(P) = 1 and g(p) = 0, which implies there is no path through
the network of g, and no cut set through the network of j, and hence
f(P) = 1 and g(p) = 0 for all p, hence h,(p) = p, contradicting the
hypotheses of the theorem,

It can be seen that

(1 - P)P(f - g)(l - f + g) > 0 whenever 0 < p < I, (10)

since each of the terms is positive. Multiplying out,

PI - pg - pp + 2pfg - pg2 - P'1 + p2g + p'f2 - 2p'fg + p2g2 > o.
Rearranging and factoring

- pf2 + (1 - P)Pf - (1 - p)g2 - (1 - p)pg >
- trr + (1 - p)2g2 + (1 - P)2pfgJ.

Adding PI + (1 - p)g to each side,

(1 - f)pf + (1 - P)pf + (1 - p)(l - g)g - (1 - p)pg
> PI + (1 - P)g - [Pf + (1 - p)gJ2 = " - h2 = (1 - h)lt. (11)

N · bv ] ductive ussumnti · I I' 1ow, Since y In uctive assumption CIt rer (1 _ J)I > (1 _ p)p' or

we have one of the three exceptional functions, we have in any case that
(1 - 1)1 ~ (1 - P)Pf' and similarly (1 - g)g ~ (1 - p)pg'. Using
these in the left member of (11) we obtain

(1 - p)p2f' + (1 - P)Pf + (1 - P)2pg' - (1 - p)pg > (1 - /t)/t.

Dividing by (1 - p)P,

PI' + I + (1 _ P)g' _ g > (1 - h)lt
(1 - p)p ,

or
d (1 - It))/,
dp (PI + (1 - p)g) > (1 _ p)p ,

h' 1
(1 - 1£)1£ > (1 - p)p ,

completing .the proof.
If we replace the inequality (9) in the statement of the theorem
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by an equality, that is if we set (1 !.'y)y = (1 ~ p)p , we have a dif-

ferential equation, the solutions of which form a one-parameter family
of curves. The inequality (9) states that the permissible h functions
corresponding to contact networks must have slopes greater than these
y curves. If we solve this differential equation for the y curves we
obtain

y(p) - P
1 - y(P) - C (1- p) · (12)

This family of curves is plotted in Fig. 11 for C = 1/4, 1/3, 1/2, 1, 2,
3, 4. Any possible It (p) function must cross curves of this family with

---------4 P - ~Q.

Q ..-- ~ ~ + Eo Q.

FIG. 1I. The family of curves satis-
fying the equation

y(p) - p
1 - yep) - c (1 _ P) •

FIG. 12. A binary channel used to obtain an
upper bound on the slope h' (P).

a greater slope. Consequently, any h(p) curve can cross one of these
curves at most once in the open interval 0 < p < 1. Since the straight
line of slope 1 which goes through the origin is one member of this
family, any h(p) curve can cross this line once at 1110st, say at the point
p = po. Then applying the staircase construction as shown in Fig. 10,
it can be seen that Iz(n)(p) approaches 0 as a limit for all p < po, and
approaches 1 for all p > po. Thus any network whose It(p) curve
crosses this diagonal straight line can be composed with itself to obtain
a network which improves reliability. In fact if we iterate the corn-
position 1t times, we will have

{

1 P > po
Lim h(fI>(p) = po p = po
"-+00 0 P < po

where Po is the (necessarily unique) diagonal crossing point.
I t is possible to place an 'upper bound on tile slope It' (p) by a curious
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argument involving information theory, Consider the binary channel
shown in Fig. 12. The rate of transmission for this channel will be

R = H(y) - H.(y)

= - (p - EQ) log (p - EQ) - (q + EQ) log (q + EQ)

+ (1 - Q)(p log P + q log q)

+ Q[(P - E) log (p - E) + (q + E) log (q + E)].

For E approaching zero, (a + E) log (a + E) is approximated by its
Taylor series

E2

aloga + (1 + log e)« + - + ....
a

Using this in the above for all terms containing E, we find that the con-
stant terms and first order terms in E vanish. The first non-vanishing
terms are given by

It is evident from this last expression that R is maximized (when we
vary Q) by Q = 1/2. This maximum R is, by definition, the channel
capacity C. Thus as E approaches zero in Fig. 12, the capacity C is

• E2

asymptotic to -4 ·pq
Now consider a crummy relay which has probability P of being

closed when the relay is energized and p - E of being closed when the
coil is not energized. The relay may be thought of as a communication
channel for which the coil is the input and the contact the output. If

2

E is very small, tile capacity will be -4
E

• If we have n relays, with thepq
same p and E, the total capacity of this sytem, using the n coils as
input and the n contacts as output, is nE2/4pg, since the capacity of a
set of independent channels is the sum of the individual capacities.

We wish to show from these capacity considerations that the prob-
ability function h(p) for our contact networks must satisfy

dh < ~n(l - h)h
dp - (1 - p)p · (13)

Consider a network N with n contacts and probability function It{p).
Let the individual relays and contacts have probabilities PI and E as
in Fig. 12. Then the network as a whole acts like a single relay with
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parameters h(Pl) and lt 2' (Pl)E, (when E is small), As such, it has a
capacity (It' £)2/4(1 - It)/t. This capacity must be less than or equal
to that obtained when these n relays are used in thc best possible way.
Hence,

(h' £)2 nE2

4(1 - h)h ::; 4(1 - Pl)Pl ·

This being true for any Pit we have, rearranging terms, the desired
result

h' < ~n(l - h)h.
- (1 - Pl)Pl

If this inequality is changed to an equality we obtain the differ-
ential equation

{;" dp _ dlt

~(1 - p)p - ~(I - It)lt

the solution of which is

~n sin-lei - 2p) = sin-l(l - 211,) + 8. (14)

For a given number of contacts 11" a possible h(p) curve ITIUSt cross the
corresponding family of curves (14) always with less or equal slope.

Another sort of upper bound on It(P) functions obtained from n
contacts can be found by a different argument. A two-terminal net-
work corresponds to a Boolean function of the 11, contacts involved.
However, it is not possible to realize all Boolean functions using only
one make contact for each variable. Suppose we ignore these condi-
tions of realizability and consider the class of all Boolean functions of
n variables. For any such Boolean function there will be an h(p)
function, h(p) being the probability that the function is equal to one
if each variable has the (independent) probability p of being equal to
one. Which Boolean functions have h(p) functions with the greatest
slopes and show the greatest sharpening effect on probabilities?

A Boolean function of n variables will be called a quorum function
if there is some s, 0 ~ s S n, such that if less than s of the variables
are one the function is zero, and if 1110re than s of thc variables are
one the function is one.

Theorem 2

If the h curve for any quorum function of 11, variables, say ho(p),
crosses the h curve of any other Boolean function of n variables, say
h(P), then at the point of crossing po we have

It' (Po) < It0' (po)
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that is, the quorum function has the greater slope. Furthermore,

h(p) > ho(p)

J,,(p) < hQ(p)

o < P < po
po < p < 1.

This theorem says that, in a certain sense, the quorum functions
are the best of all Boolean functions for our purposes of increasing
reliahili ty.

Proof: For any Boolean function of n variables, the /,,(p) polynomial
is made up of a sum of terms of the form piqra-i, a term of this form for
each state of the variables for which tile Boolean function has the value
one with i of the variables equal to one. A quorum function has the
value one for all states with i less than s, say, and zero for all states
with i greater than s. Hence the hQ(p) function is of the form

Since h is not identical with kg but is equal in value to it at po, it follows
that the J" polynomial must miss some terms before (or at) i equals s
and have some extra ones after (or at) i equals s. In other words,
we can write

"
h(p) = I: BiPiq,,-i

i-O

~

Let C(p) = L B,piqn-i + ap'qra-. where a is B. or
i-O

A, whichever is smaller, Then we will have

,.
hQ(p) = C(p) + L Dipiqn-i

i-O

(15)

h(p) = C(p) + L: Eipiqra-i
i-,,+1

where the D; and E; are non-negative integers and T IS S - 1 or s
according as B, or A was smaller.

Now we note that for an expression of the form u(p) = piqra-. we
have

u'(p) = ipi-1qra-i - (1J - i)p'qn-i-l

= (~ _ n - i) u(p) = i - pn u(p).
p q pq
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, · pn
Th u 1, -. •• f · f· N II hus - == P IS a monotone Increasing unction 0 t. ow ate

u q
terms in the sum in (15) for ho correspond to smaller values of i than
those in the sum for h. If we let uo(p) stand for any term in the sum
in k o and u(p) stand for any term in the sum in h, we will have

uo' u'-<-
Uo U

and hence there will exist a constant K such that

Uo' u'-<K<-
Uo u '

and
Ku < u',

Summing tile first inequality over all the different terms uo, and the
second over all the u, we obtain

K ~ u < ~ u',

But evaluating at po, we have I: Uo = I: u, and consequently

~ uQ' = 1: u',

ho'(po) < h'(po).

TIle remainder of the theorem follows readily by noting that to con-
tradict it, since the hand ko curves are continuous, would require that
they cross at a point different from po and in such a way as to con-
tradict the first part of the theorem.

NETWORKS OF A GIVEN LENGTH AND WIDTH

We have seen that the orders of flatness of h(p) in the neighbor-
hoods of p = 0 and p = 1 are related to the "length" and "width" of
the network in question. It is clear that in the case of practical im-
portance, tile values of p of interest will be in these neighborhoods,
that is, the relays will be initially quite reliable. In this section we
will develop some results relating these orders of flatness with the
number of elements in the network.

Theorem 3

If a network N has length l and width w it contains at least lw
contacts. Equivalently, if h(p) bellaves like Ap' near p = 0, and if
I-h(P) behaves like B(l - p)VI near p = 1, the corresponding network
contains at least lw contacts.
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Proof: We associate an integer with each contact in N by the fol-
lowing process. Contacts directly connected to the left terminal of N
are labeled HI," contacts connected to those labeled I but not already
labeled are numbered "2," and so on inductively. In general, a con-
tact will be labeled ,1, if it is possible to find a path to the left terminal
through n - 1 other contacts but there is no such path through a
smaller number.

The set of contacts labeled n for any particular 11, from 1 to l will
be shown to form a cut set of the network. This is true since every
path through the network starts at the left terminal with a contact
labeled 1 and ends at the right terminal with a contact labeled l or
more (if any of the contacts touching the right terminal were labeled
with numbers less than l the length of N would be less than l). Along
any path, the numbering changes by 0 or ± 1 in going from one con-
tact to the next. Hence every path in going from contacts numbered

.. .. ..

FIG. 13. A series-parallel network or length I
and width w.

1 ..

-..
w ~

1

-9l(p) =(1- (1- p)\N )1

FIG. 14. Another series-parallel
network of length I and width w.

1 to those with numbers ?l must pass through every intermediate
value. Consequently if all contacts labeled n (for 1 ~ ," ~ I) are de-
leted from N, all paths are broken and these contacts thus form a
cut set.

Since the network is of width w, every cut set contains at least w
contacts. Thus there are at least w contacts labeled 1, at least w
labeled 2, · · ., and at least w labeled 1. The network therefore contains
at least wl contacts.

The alternative statement of Theorem 3 follows from remarks made
in connection with Eqs. 1 and 2.

It is possible to achieve the "dimensions' land w with eXGCtly lw
contacts in a wide variety of ways. For example, we can make a
series chain of 1contacts and parallel w copies of this (Fig. 13). Dually,
w contacts can be paralleled and l copies of this placed in series (Fig. 14).
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Theorem 4

A complete characterization of minimal networks with dimensions
land w is tile following. Let Y and Z be the terminal nodes, So be the
set consisting of Y alone, and s, be the set consisting of Z. alone. In
addition to So and s, there will be l - 1 subsets of nodes Sit S2, ••• , S'-I.

There will be precisely w elements connecting nodes in s ; to nodes in
s ,,+1 (n = 0, 1, ... , l - 1). Finally, if any node in S j has m elements
connecting it to nodes in S;-I, then it has m. elements connected to nodes
in Si+ 1 (j = 1, 2, ... , l - 1).

This means that any such minimal network witil dimensions 1 and
w can be obtained from the network of Fig. 13 by making appropriate
connections among nodes in the same vertical line. When all the nodes
in each vertical line are connected together, for example, the result is
Fig. 14. Another possibility is shown in Fig. 15.

A B
FIG. IS. A hammock network of length I and width w.

To show that any minimal lw network is of the form described in
Theorem 4, first note that in our preceding proof, each of the numbered
cut sets must contain precisely w elements, and these elements Blust run
between elements of lower numbers and higher numbers. The nodes
between elements numbered j - 1 and j will belong to subset Sj in the
above characterization. Now suppose that some node in s, has m
elements going to nodes in s i:, and m + p going to nodes in Si+l(P > 0).
The elements numbered j + 1 form a cut set of w elements. It is
easily seen that if the m + P members of this, going from the node in
question, are replaced by the m elements going to nodes in S i-It then
we will still have a cut set but one with less than w elements, a contra-
diction. Consequently any minimal network of dimensions land w is
of the type described in our characterization.

To show the converse, that any network of the type characterized
has dimensions 1 and w, note first that to go from one terminal to the
other the path must pass through nodes belonging to s., S2, ••• , S,-t.

Hence any path is of length at least l and the network is of length 1.
Now consider any cut set c. \Ve will show that c contains at least w
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elements, Consider the smallest-numbered contacts of c. Suppose one
of these is connected from node A in S j_1 to node B in S j. Then either
all elements fro III B to nodes in S j-I are in the cut set or the one in
question is not essential to the cut set and may be eliminated, giving a
still smaller cut set. In the former case, this group of elements can
be replaced by an equal number, those going From node B to members
of Sj+h preserving the cut set property. Proceeding in this way, the
cut set is gradually worked over toward the right-hand terminal, either
reducing or keeping constant the number of clements in the cut set.

1.
w 1 2 J 4 5

1 • tt • • .. • II • .... a. .... ............. • Jf .... If • M ....

~ <>:=-~ ¢(X)2- <> <> -oc-
{)~~~3 <:::::-

~
@
~
~.

~4

~ ~

~ ~@ ~5 $
FIG. 16. Hammock networks of various lengths and widths.

When all the elements of the cut set are adjacent to the right-hand
terminal there are exactly w members, Consequently there were at
least that many in the original cut set, as we wished to prove.

An interesting type of minimal lw network is obtained by putting
alternate connections in Fig. 13, leading to the brick-wall appearance
of Fig. 15A. When redrawn, pulling together the vertical connections,
the network appears as in Fig. 15B, and we will call networks of this
type hammock networks. Figure 16 shows some of the simple cases
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of hammock networks. I t will be seen that if both I and ware
even, there are two possible hammock networks with these dimensions.
If either or both are odd, there is only one. Furthermore, the dual of
a hammock network with length land width w is a hammock network
with length wand width I. These hammock networks are, in a sense,
midway between the extreme minimallw networks of Figs. 13 and 14,
having half of the connections required to go from Fig. 13 to Fig. 14.
In the case where land ware equal and odd the (unique) hammock
network is self-dual.
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PartUI

THE CENTRAL PROBLEM

We now attack our main problem-the design of arbitrarily good
circuits from crummy relays arbitrarily poor in reliability. It will be
shown that circuits with the h{p) characteristic of Fig. 6 can be con-
structed; h(p) rising from a value less than aat p = a to a value greater
than 1 - a at p = C, for any a> 0, 0 ~ a < c ~ 1. We also make
estimates of the numberof contacts in SUC)l circuits in terms of a, a, and c.

The general design problem will be solved in three stages. These
will be called the opening, middle game, and end game. The opening
consists of finding a network w.iich, roughly speaking, moves the given
a and c over until they straddle the point p = 1/2. That is, a network
is designed such that h(a) < 1/2 and h(c) > 1/2. This network can
then be thought of as a single contact with more suitably placed a and c
(at least, more suitable for the method uf design being used).

The middle game consists of designing a network that can efficiently
separate a and c near the value 1/2 until a is in the general neighborhood
of 1/4 and c near 3/4.

The end game consists of designing a network that will efficiently
move points near 1/4 and 3/4 toward the ends of the scale, 0 and 1,
respectively.

The solution of the general problem is then found by placing a copy
of the first (opening) network for each contact of tile second (middle
game) network. A copy of this structure is then placed for each contact
of the end game network. The total number of contacts used is clearly
the product of the numbers used in each of the three subsidiary prob-
lems.

This breakdown into three problems is largely for mathematical
convenience. It is likely that the most efficient possible design fre-
quently would not consist of this composition of three networks.

In many cases, of course, the first part or even the first two parts of
the solution are unnecessary since a and c already are separated by 1/2
and sufficiently far apart. This indeed will always be true with normal
relays. The general case is chiefly of theoretical interest. In the cases
of practical interest, where a and c are already close to 0 and 1, it will be

1 Murray Hill Laboratory, Bell Telephone Laboratories, Inc., Murray Hill, N.J.
2 Part I appeared in this JOURNAL for September, 1956.
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shown that the circuits proposed for the end game are quite efficient in
contacts-they do not contain many 1110re contacts than a provable
lower bound for all circuits.

THE OPENING

The first step will be to show that a network can be constructed with
an h(P) curve crossing the line It(p) = 1/2 in an arbitrary interval and
with an average slope in the interval of at least one half. Further,
bounds will be obtained for the number of contacts in the network.
More precisely, we prove the following result.

Theorem 5

Given a, C with 0 < a < C < 1, let b = a ~ c, let d = max (b,

1 - b), let E = c 4 a, then there exists a network N having fewer than

[ :;; ; ] contacts such that ltN(a) s ! - E, ltN(c) ~ ! + E.

Lemma I. There exist two sequences of networks No, Ns, N 2, · _.

and M 0, M t, M 2, - • - such that for each i :

N, has i or fewer contacts

M i has i or fewer contacts

hNi(b) < ! ~ hM.(b)

hA1.(b) - hNi(b) ~ d i

and
either M. can be obtained by shorting between two of the nodes

of N,
or

N, can be obtained by opening a contact of M i -

The networks M, and N, in this lemma will be derived Irorn a ladder
network of the general Iorrn of Fig. 17 (with, however, different num-
bers of horizontal and vertical elements, depending on the value of b,

: _e~f Mill MeW;M! K

M
'g I

Nt r

FIG. 17. A ladder network of the sort used in the proof of Theorem 5.
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and possibly starting with a vertical instead of a horizontal group).
M; or N, is obtained by cutting off the network after i contacts (as
shown for M, or N,) and shorting or opening, respectively, the wires that
are cut. Tile infinite network 111ay be thought of as one which crosses
h(p) = 1/2 at exactly p = b. The networks M. and N, are finite ap-
proximations which cross to the left and right of b.

Proof: Let M« be a short circuit and No be an open circuit. These
satisfy the conditions for the case i = 0, since /t,ftro(P) = 1, ItNo(p) = O.

Then assume the above conditions are satisfied for i - 1. If M i - 1

is obtained by shorting between two nodes of Nt-I, let M be the network
having a single contact added between these nodes. If N i- J is obtained
by opening a contact of M i- 1, let M be the network obtained by putting
another contact in series with this contact. Then M has i or fewer con-
tacts; shorting the added contact causes M to become ltf i - h and open-
ing the added contact causes M to beC0l11C N i - t • Then by (3)

hM(p) = P·hJ1i- 1(P) + (1 - p) ·hNi-t(P),

hence ltNi_t(P) < hlt,(p) < h/tli-t(P). If hJ1(b) < !, let N, = M, and
M, = M i - t • Then

hM;(b) - hNi(b) = ltJf i_ 1(b) - hJ/(b)
= hM i_ 1(b) - [b hllli_t(b) + (1 - b) hNi_1(b)]

= (1 - b) (It.J1i_t(b) - hNi_t(b»
~ (1 - b)d i - 1 ~ die

And if hAf(b) ~ I, let M. = M and N, = N i- 1• Then similarly ltJ1i(b)
- hNi(b) ~ bdr:' ~ die This completes the proof of the lemma.

Lemmo II. It'{p) ~ i for all fJ such that! - E :::; h(P) ~ ! + E.

• C - a (It - l)h
Since E = -4- ~ 1, we have 1 ~ h(p) ~ l, hence It'(p) ~ (p _ l)P
3> 16 _ .l

- 1 - ,.
'i

To prove the original theorem, let i = [:~;;]. then d! ~ E, hence

hNi(b) < ! ~ hMi(b) ~ hN.(b) + E.

Let N be whichever of N, or M i will satisfy IhN(b) - ! I ~ ~, since one

of the two ITIUst satisfy it.
Then, without loss of generality, it suffices to show only that hN(c)

~! + E.

ASSUI11e the contrary, that hN(c) < ! + E. Then since h« is 010no-
tone, we have! - E ~ h(p) ~ ! + E for all p between band c. Hence
by Lemma- II. h'(p) ~ 1 in this interval.
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Hence

817

t: 1 E 3
h(e) == h(b) == J& h'(p) dp ~ 2 - 2 + :r (e - b)

1 E 3E 1>---+->-+E-2 2 2-2
which contradicts the assumption.

THE MIDDLB GAME

The second phase of our approach consists of finding networks which
move probabilities just below and just above 1/2 to values beyond 1/4
and 3/4, respectively. Thus we seek networks for which

h(1/2 - E) 5 1/4

h(1/2 + E) ~ 3/4,

and wish to estimate the number of elements used in terms of E.

Networks satisfying our requirements may be obtained by compos-
ing a self-dual network with itself a sufficient number of times. For
example, the three-by-three hammock network, Fig. 16, may be used.
It' is not difficult to show that the h(p) function for this network, as
shown in Fig. 18, lies below a straight line of slope 3/2 passing through

FIG. 18. The function associated with the three-by-three hammock network.

the point 1/2, 1/2 in the interval 1/4 ~ P < 1/2, and lies above this
straight line in the interval 1/2 < P ~ 3/4. This means that compos-
ing the hammock network with itself a sufficient number of times to
move a point 1/2 - E out to 1/4 will require fewer compositions than
if the staircase construction moved along this straight line. Now, if we
move along the straight line starting at 1/2 - E, it is evident that after
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s compositions (or staircase steps) the point will be moved to 1/2 - E X

( ~)'. If we wish to reach 1/4, then s compositions will suffice if s

is the smallest integer satisfying

1 (~2)',4E =
and this same number will surely suffice with the hammock network
since its effect in the staircase construction is stronger. The number of
contacts for an s-fold composition of this hammock network with itself
is

1019

(
1 )101 3/ 2

N 2 == 9' ~ 9 4E

(
1 ) 6.41

~ 9 4E •

The same considerations apply, of course, to moving the point 1/2
+ E to P = 3/4 and the same network, being self-dual, performs this
function.

Since our E resulting from the opening part of the strategy was
c - a ( 1 )'041-4-' the middle game network requires at most 9 c _ a con-

[
c- a]log--

tacts. The combined network requires not more than 9 log~

(
1 )',41

X -- contacts.
c-a

THE END GAME

Our third "end game" network must take probabilities at 1/4 and
3/4 or better and move them to points near 0 and 1, respectively. This
type network will also be found by composing a self-dual network with
itself, in particular the three-by-three hammock or the five-element
bridge. It will first be convenient to carry out some calculations to
determine the rate at which it is possible to approach 0 and 1 in such
cases.

It is sometimes possible to obtain upper or lower bounds on a par-
ticular h(p) function in the form of a power of p. For example

(16)

If Jt(P) is composed with itself we obtain, using the fact that /t(p) is
monotone:
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h. (2) (p) s a(apr)r = al+rprl

h(3)(p) s a1+r(apr)rt = o,l+r+rlpr l

11, (.) (p) 5 a1+r+r'+ . · ·+r·-.pr·
ril-l

= a-_pr'
r - 1

819

(17)

Now suppose that the original network contains 1tl contacts. When
composed with itself s times, the resulting network will require 11, = 1tl'

contacts. Eliminating s from (17), we obtain

If the direction of the inequality (16) were reversed the result would
also be reversed. Furthermore, similar results 1101d with p replaced by
1 - p.

The three-by-three hammock network, Fig. 16, has the h(p) func-
tion:

h(p) = 8pa - 6p4 - 6p' + 12p7 - 9p8 + 2p9

= 8pa - p4[6 + 6p - 12p3 + 9p· - 2plJ
= spa - p4[6(1 - p3) + 6p(1 - p2) + ir + 2p4(1 - P)J.

Since the bracketed expression is clearly non-negative,

h(p) 5 8pa for 0 s p s 1.

Hence for the s'th composition, by (17):

Since each composition multiplies the number of contacts by 9, the total
number is N = 9', W = 3'.

hhl(P) s ~ (..J8 P)..fN.

(
IOg ..J8 h(I)(P))2

N< ~ .
- log 8 P

(18)

(19)
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It may he noted that this gives a significant result only when p ~ .Js
== 0.353. For larger values of p the upper bound on h exceeds 1.

It should also be pointed out that in this process N must jump by
multiples of nine. If the right member of (19) is given, the number N
of contacts required may be up to nine times that defined by tile in-
equality, but this amount will surely suffice.

The dual situation gives an inequality for N:

[
'log "8 (1 - h) Ct) (1 - p) ]2

N< {R ·- \ log 8 (1 - p)
(20)

Returning now to the end-game problem, we wish to improve a prob-
ability p ~ 1/4 to h(p) ~ ~J say. This requires by (19) not more than

(
log -{ga)2. .

9 -v2 contacts. Since the hammock network IS self-dual,
log 2

similar considerations apply to improving the probability 3/4 to 1 - 8.
The same network will effect this improvement.

We 111ay summarize the results obtained by the composition of these
three networks in the following manner:

Theorem 6

. a+c a+c
GIven 8 > 0,0 < a < c < 1, let d = max -2-,1 - -2-'

There exists a network SUCll that

h(a) < 8

h(c) > 1 - 8

using not more than N contacts, where

N = 81 [lOgy] (_I_)I~~IJ~2 (log -{g 8)2.
. log d c - a log -{g

This result Sl10WS that the equivalent of an arbitrarily reliable relay
may be made from a sufficient number of arbitrarily poor ones, and
places a bound on the number of them which are necessary, The
bound is undoubtedly quite loose. In particular tile factor 81, which
was introduced because things might not "come out even," could prob-
ably be reduced a great deal by a more refined analysis. For particular
values of c, a and 8, this factor will be one, and for cases where the factor
is large, the substitution of other networks for tile three-by-three ham-
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mock will often reduce it to a number not far Irom one, without greatly
changing other parts of the bound.

CONTACT BOUNDS WHEN THE RELAYS ARB ALREADY QUITE GOOD

If the relays are initially quite reliable, the first two stages of the
above construction can be omitted, the a and c being less than 1/4 and
greater than 3/4 at the start. This of course is the usual practical case.
Wilen this is true, and we wish to improve a down to ~l and c up to
1 - 82, not more than the maximum of:

9 (log "'8 8. )2, 9 ( log "'8 82 )2
log -{8 a log -{8 (1 - c)

contacts are required, and if the numbers work out right, the factor 9
may be replaced by a factor as low as one.

In the appendix we develop some similar bounds using general ham-
mock networks. These bounds are somewhat stronger, both in elimi-
nating the factor 9 and in replacing the coefficient {8 by a smaller one.

We will now develop a companion inequality to this giving a lower
bound for the number of contacts required for a given improvement in
reliability.

Theorem 7

Suppose 0 < a < c < 1 and N is a two-terminal network with h(p)
satisfying

h(a) ~ 81

h(c) ~ 1 - 82•

Then tile number of contacts, n, in the network satisfies

n > log ~1. log ~2 •

- log a log (1 - c)

For example. if contacts made errors one time in ten, both when they
should be open and when they should be closed, we would have a = 1
- c = 10-1• If a network is desired making but one error in 106 op-
erations, it will require by this theorem at least

log 10-6 log 10-6

log to-I-log to-I = 36 contacts,

To prove this theorem, let the network N have length land width w.
There is then a path through l contacts Irorn one terminal to the other.
The probability that this path will be closed when it should be open is ale
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If this should occur, the network of course will be closed when it should
be open. Hence

~1 2:: al
and

log «5 1 ~ llog G.

Dividing by the necessarily negative log a reverses the inequality:

log at < l
log a - ·

Tile dual argument concerning cut-sets with w elements goes through in
a similar fashion to give

log 02 <
log (1 - c) - w.

Since all terms arc positive, we 111ay multiply these inequalities and
obtain

log 01 log 02 < l <--. w n
log a log (1 - c) - -,

using the inequality proved in Theorem 3.
To summarize, the number of contacts n required to improve the

probability of error on make from a to 01 and on break from log (1 - c)
to 02 is something like

log OJ log 02
log a -log (1 - c)·

It is never less than this, and for an infinite sequence of increasing values
of ,I, only a little greater, as shown for the hammock networks in the
Appendix.

COMPARISON WITH VON NEUMANN'S ELEMENTS

As a numerical example, we 111ay consider a case similar to one used
by von Neumann, ill which he aSSUll1CS Sheffer stroke organs whose prob-
ability of error is 1/200 and wishes to construct from them a Sheffer
stroke organ with a probability of error about 10-2°. He finds that his
circuits then require something like 60,000 elements for each desired
reliable organ. It also turns out that the number 60,000 is quite in-
sensitive to the final reliability 10-2°, varying only from 32,000 to 69,000
when the final reliability varies from 10-17 to 10-23•

As a corresponding problem we 111ay consider relays with initial prob-
abilities of error a = 1 - c = 1/200, and ask for circuits which improve
this reliability to figures like 10-2°. Since our initial probabilities are
relatively good, we need only use the end-game type of analysis.
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Let us first consider using the three-by-three hammock networks in
composition. If one stage is used, a redundancy of 9 to 1 is involved

and the final probability of error is less than 8 ( 2~0) 3 = 10-6
• If

two stages are used the redundancy is 81 to 1, and the final probability

of error is Jess than 8-1 ( ..J8. 2~0 ) 9 = 8 .10-18• Thus with this redun-

dancy of 81 to 1 we are in the general range desired, although still a bit
short. Another COInposition of the three-by-three hammock gives a re-
dundancy of 729 to 1 and the final error probability is less than 4·10-51!

By using larger hammock networks (see the Appendix for bounds on
the error probability), we can hit closer to our mark. Thus, with a
ten-by-ten hammock, the error will be less than 2.10-19 with a redun-
dancy of 100 to 1, while with the eleven-by-eleven the figure is 2.2.10-21

with redundancy 121 to 1.
In general, in the range where the Sheffer stroke organs require re-

dundancies of 50,000 up to 70,000, crummy relays require redundancies
of only 80 to 120, a rather remarkable reduction.

The lower bound for the number of contacts, obtained in Theorem 7,
may now be applied to show that the redundancies here could not be
improved very much. In fact, in order to obtain a final probability
8.10-18, at least 55 contacts' are necessary (while 81 were used). To
obtain 2.10-19 at least 66 are necessary (100 were used), while for 2.2.·
10-21 at least 81 are necessary (121 were used). In all these cases the
lower bound is very nearly two-thirds of the actual number.

It is interesting to speculate on why the relays should require so
much less redundancy than" appears to be necessary for the Sheffer stroke
type of synthesis. (It is not certain,' of course, that the type of error
control used by von Neumann approximates the most efficient use of
these elements.) One difference between the two types of component,
which may account for this difference, is the following. In both types
of machine two processes are involved: first tile duplication of variables,
that is, obtaining copies of the same variable for use in various parts of
the computation, and second, forming logical combinations and func-
tions of several variables. In the case of CrUln111Y relays, the errors oc-
cur in the duplication of variables. The different contacts 011 a relay
are not in exact correspondence with the coil but are subject to statisti-
cal error. However, logical combinations are formed without error; a
series combination is an absolutely correct "and" circuit and a parallel
combination is always correct as an "or" circuit.

In the case of neuron-type components, the situation is reversed.
It is possible to obtain any nunlber of duplications of a given variable

I In fact, it is not even certain that the methods used in this paper give close to the best
possible reduction of errors (or relay circuits. Perhaps it is more efficient to redesign the cir-
cuit as a whole to get redundancy than to replace each relay by an individual circuit.
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by merely branching the line on which it appears. TI1CSC are all as-
sumed to be identical. I-Iowever, when a logical combination is made
of two or 1110re variables in a Sheffer stroke or majority organ, statistical
errors occur. Now, in each of the two machines, the statistically unre-
liable part must be checked by a logical operation involving something
akin to vote-taking. "Sed quis custodict ipsos custodies?" In the
relay case, the custodians are beyond reproach; in the case of neuron-
like organs, tile custodians must indeed be carefully controlled by fur-
ther custodians. This fundamental difference may be responsible for
the difference in the redundancies and possibly also for the fact that a
certain reliability is necessary in the Sheffer organs in order to control
errors at all, a situation that is not present in the relay case.

It is interesting, in this comparison, that for sufficiently great im-
provernents in reliability the von Neumann circuits will require fewer
elements than the ones we have described. If we take as before at =

ch and a = 1 - c = 0.005, he has approximately (taking the logarithm

of his Eq. 27, identifying p = a and ignoring the higher order term
6.4)

log ~n

n ~ - 3500 log 61•

With our circuits, we have

These curves cross at ~1 ~ 10-14.ooo! If improvements in reliability
greater than this were desired, the multiplexing circuits would require
fewer elements.

However, the effect of a Sheffer stroke organ could be obtained by
using the circuit of Fig. 19, in which two relays, each having one back

OU7PUT

~.X'
X

INPUTS: ~'I'-"---'-~
y

FIG. 19. Method of making a Sheffer stroke clement front two relays.

contact, labelled x' and s'. respectively, are connected to act as such an
organ. This circuit as a Sheffer stroke has a reliability only slightly
less than its individual clements and may be used in the tYIJC of circuit
proposed by von Neumann. Hence, for the extremely high reliabilities
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where the von Neumann circuits have the advantage, it is possible to
change over to the first power increase with log a1 using only slightly
greater redundancy than the Sheffer stroke elements,

The converse method, attempting to use the relay type correcting
circuit for the Sheffer stroke organs, docs not appear to be possible.
There seems to be no way to make anything which acts quite like a relay
from Sheffer stroke organs.

RELAYS WITH UNCERTAIN OPERATE TIMES

The function h(p) associated with a network of contacts can be in-
terpreted in a way somewhat different Irom that employed above. Sup-
pose that each of the contacts in the network is on a different relay and
that these relays are uncertain in their operate ti111CS. Let qJ(t) be the
cumulative distribution function for one of the relays; if the relay is
energized at t = 0, qJ(t) is tile probability that its contact will be closed
at time t. The same «J(t) is assumed to apply to all the relays and they
are assumed statistically independent. Then the cumukuiue distribution
for the two-terminal network is given by h[cp(t)]. The reason for this is
that at any time t 1 each of the contacts may be thought of as a contact
on a crummy relay whose probability of closure is p = cp(tt). Hence,
the probability of the network as a whole being closed at t1 is h,(p) =
h[ cp(t1) ] .

TIle same statements hold even if the relays are both uncertain in
time and crummy. In this case, cp(t) does not range from zero to one
bu t from tile c to a of Fig. 1, when t goes from zero to + 00.

The results we proved concerning the sharpening of the It(p) curve
show in this interpretation that relays of uncertain operate time can be
used to synthesize circuits of precise timing, The fact that /t(p) crosses
the diagonal at most once shows that, in a certain sense, the timing of
any two-terminal circuit is less uncertain than its component contacts.
In a general way this interpretation indicates that replacing individual
contacts by these two-terminal networks should tend to improve timing
margins and reduce the probability of errors due to races and the like.

DESIGN OF RELIABLE CIRCUITS IN THE LARGE

Up to now we have been concerned with the problem of designing
circuits which would act like a single reliable relay contact. It is not
immediately clear that we may replace the relay contacts of a large
circuit by the reliable circuits we have developed and necessarily expect
the large circuit to behave reliably. The difficulty is that replacing a
single contact by a reliable network introduces the possibility of certain
race conditions which Blight conceivably cause errors of a kind not pres-
ent in the original network. For example, one of our reliable networks
might open and close rapidly several times in the transition of its relays
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from the energized to the non-energized state. If this circuit operated
a pulse-counting circuit which could correctly count such a rapid se-
quence of pulses, it is evident that errors could be introduced. We
have not been able to justify the use of these reliable circuits in all cases
for just such reasons as these. There are, however, many types of
circuit in which SUCll effects cannot occur and there are reasons for be-
lieving that even when they can, they will usually not be troublesome.
Some possible cases and justifications are as follows.

1. Forward-acting circuit. By this we mean relay circuits in which
the relays may be organized in levels. A relay in level n, say, is con-
trolled by a contact network on inputs and relays of levels less than n,
This type of organization implies that there are no memory or feedback
effects and that race conditions are of no significance for final positions
of the relays. It is easy to sec that if such a circuit contains N contacts
and each of these is replaced by a reliable network with probability less
than P of incorrect operation, then the network as a whole will have
probability less than NP of failure. This overbound adds the failures
of the individual contacts disjunctively and hence pessimistically.

. 2. "Synchronous" relay circuits. By this we mean circuits operat-
ing in a quantized time system and acting somewhat like the neuron
models of Mcf.ulloch and Pitts' or like IBM "selectors." More pre-
cisely, contacts can open or close only at integer multiple of the unit T
of time, and if at time nT a relay is energized (or not energized), at time
(n + 1)T the contacts will have probability a (or c) of being closed.
Circuits constructed of such components can be made reliable by tech-
niques we have described, even if memory and feedback are involved.
The probability of an error in any calculation performed by SUCll a
circuit is, by a slight extension of the previous argument, less than
PND, where TD is the duration of the calculation, and P and N are as
before.

3. In many ordinary relay circuits the techniques we have described
will lead to reliable relay circuits even though feedback and memory are
involved. This is because, as we have seen, reliable contact networks
tend to sharpen the effective operate time. As the contact network is
made 1110re and more reliable it tends to act more and more like a relay
with a very definite operate time, If any extra opening and closing
occurs, it is with high probability confined to an extremely short time
and would not be expected to cause malfunctioning of the circuit.
TI1US, it is very plausible that even in cases of this sort the techniques
we suggest will not, in fact, lead to trouble, particularly if a great deal
of improvement in reliability (and hence great sharpening of operate and
release times) is involved.

4W. S. MCCULLOCH AND·W. PITTS, Bull. Math. Biopl,ysics, Vol. 5, p. tIS (1942).
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Upper BOU1Zds for the Error Probabilities with l-by-ui Hammock Networks

In our standard design method we made use of the three-by-three
hamrnock network, composed with itself many times if necessary, to
give increased reliability. This led to easily computed upper bounds
for the error probabilities. It is plausible, however, that a more
efficient procedure might be to use a larger type of hammock network
without the composition.

In this Appendix it will be shown that with a, C, ~h ~2 as before, in a
hammock network of length land \vidth w we have the inequalities

8 < ( 1 - ~1 - 16a2
) 1-1 wa

1_ 4a

and
~2 ~ (1 - ~1 - 16(1 - C)2)_1 l(l - c).

4(1 - c)

For a and 1 - c small, the right members of these inequalities are ap-
proximately (2a)'-1 wa and [2(1 - C)JU'-l l(1 - c).

To prove these inequalities, first consider the infinite network shown
in Fig. 20. All sloping lines here represent contacts with probability

L

b

c

e

d 0

1
r::x2p

1/2p

FIG. 20. The infinite
hammock network.

FIG. 21. One node of the FIG. 22. The iterative pro-
infinite hammock network. cedure used to improve the

bound.
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P of being closed. The network is assumed to continue indefinitely at
the top, bottom and to the right. Tile vertical line L at the left is a
common connection. Let PI be the probability of one of the junction
points at distance 1 from L being connected to the line L. Similarly
p 2 is the probability for those at distance 2, and P" for those at distance
n, We wish to derive an upper bound for P".

In Fig. 21, the node a at distance n will be closed only if node b is
closed to L and contact C1 is closed, or node c is closed to L and contact
C2 is closed, or node d is closed to L and contact C3 is closed, or node e is
closed to L and contact C4 is closed. An upper bound for the probability
for the first of these four events is PP,,-l. This also applies to the second
event. The last two have upper bounds PP,,+l. If we add these (as
though they were disjunctive) we have again increased our estimate of
the probability P,. (since more than one of these can occur at once).
Thus we can say

(21)

Now it is evident that P n+1 ~ P,.. Using this in the above, we obtain

P,. < 2PPn-l + 2pP"
2p

P.. < 1 - 2pP_1.

This relation, carried back to Po = 1, gives

( 2p )"
P..~ 1 - 2p ·

(22)

However, this can be improved by a curious feedback process, using the
relation (22) back in (21) as a better estimate of P'*l. Thus, from (22),

P..+1 ~ 1 ~2p P.. and using this in (21)

4p2
P.. < 2pP..- 1 + 1 - 2pP...

2p 2p(l - 2p)
P.. < 1 _ ( 4p2 ) P_1 = 1 - 2p - 4p2 P..- 1

•

1 - 2p

This again can be used to improve the estimate, To find the result of
infinite application of this process, notice that at stage j we have a rela-
tion
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Using this in (21) we have

P" < 2PP"-1 + 2p ajP"
and hence

829

This hyperbolic relation between aj+l and a, is plotted in Fig. 22. If
P < 1/4, the hyperbola will intersect the straight line aj+l = a, in two
places, namely tile roots of

2pa2 - a + 2p = 0

1 ± ~1 - 16p2
a=------

4p

Tl 1 .. di 1 1 - -Vi - 16p2 ·ie ower intersection, correspon mg to t ie root 4p , 15 a

stable point of tile iterative process. Starting with any ao lying between
zero and one, a" will approach as a limit this root by the staircase process
indicated in Fig. 22. It follows readily that

(
1 - -V 1 - 16P2)r. ~ 4p P n- 1

and from this that

(23)

Now consider the l-by-w hammock network. This can be thought of
as made up of the two parts shown in Fig. 23. The probability of

------.......-...
FIG. 23. An l-by-w hammock network is made up of the two parts shown above.
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closure for this network is bounded IJy the inequality

TIle last term will be of the form p<,)(2p - p2) or P'op, according as w
is even or odd. III this expression, P(j) is the probability of the left
half of the network being closed to its jth node from the top on the right..
The quantities 2p - p2 are the probabilities for the parallel connection
of two contacts being closed. The terms of the sum therefore correspond
to the different ways the network could be closed. Since we have added
these, we have an upper bound for the probability.

It is clear that each p(i> S Pc., since we may obtain the network of
Fig. 20 from the left part of Fig. 23 by adding contacts which will cer-
tainly only increase the probability of closure. Consequently, from (23)

(
1 - -V 1 - 16P2) I-I

pm <. 4p · Using this and also strengthening the

inequality by deleting the negative f)2 terms, we arrive at the desired
result

(
1 - ~1 - 16a2)'-1

«5 1 < 4a wa.

The dual of a hammock with dimensions land w is a hammock with di-
mensions wand l, By duality wc obtain

(
1 - ~1 - 16(1 - C)2)W-l

~2 < 4(1 _ c) l(1 - c).

It may be noted that for a and 1 - C small, these upper bounds be-

come approximately 1(2a)1 and ~ [2(1 - c)J"'. We conjecture, but

have not been able to prove, that for all a and C

wo. < - (2a)'
2

l
~2 < 2[2(1 - c)J"'.



Von Neumann's Contributions
To Automata Theory*

Claude E. Shannon

The theory of automata is a relatively recent and by no means sharply defined area of
research. It is an interdisciplinary science bordered mathematically by symbolic logic and
Turing machine theory, bordered engineering-wise by the theory and the use, particularly for
general non-numerical work, of large scale computing machines, and bordered biologically by
neurophysiology, the theory of nerve-nets and the like. Problems range from Godel-type
questions (relating to Turing machines and decision procedures), to questions of duplication of
various biological phenomena in a machine (e.g., adaptation, self-reproduction and self-repair).

Von Neumann spent a considerable part of the last few years of his life working in this area.
It represented for him a synthesis of his early interest in logic and proof theory and his later
work, during World War II and after, on large scale electronic computers. Involving a mixture
of pure and applied mathematics as well as other sciences, automata theory was an ideal field
for von Neumann's wide-ranging intellect. He brought to it many new insights and opened up
at least two new directions of research. It is unfortunate that he was unable to complete the
work he had in progress, some of which is in the form of rough notes or unedited lectures, and
for some of which no record exists apart from his colleagues' memories of casual
conversations.

We shall not here discuss his tremendously important contributions to computing machines
and their use - his ideas on their logical organizations [1], [3], the use of flow diagrams for
programming [3], [4], [5], methods of programming various problems such as the inversion of
matrices [2], the Monte Carlo method, and so on - but restrict ourselves to the automata area
proper.

Reliable machines and unreliable components. One important part of von Neumann's
work on automata relates to the problem of designing reliable machines using unreliable
components [10]. Given a set of building blocks with some positive probability of
malfunctioning, can one by suitable design construct arbitrarily large and complex automata for
which the overall probability of incorrect output is kept under control? Is it possible to obtain a
probability of error as small as desired, or at least a probability of error not exceeding some
fixed value (independent of the particular automaton)?

We have, in human and animal brains, examples of very large and relatively reliable
systems constructed from individual components, the neurons, which would appear to be
anything but reliable, not only in individual operation but in fine details of interconnection.
Furthermore, it is well known that under conditions of lesion, accident, disease and so on, the
brain continues to function remarkably well even when large fractions of it are damaged.

These facts are in sharp contrast with the behavior and organization of present day
computing machines. The individual components of these must be engineered to extreme
reliability, each wire must be properly connected, and each order in a program must be correct.
A single error in components, wiring or programming will typically lead to complete gibberish

* Bulletin American Mathematical Society, volume 64, 1958.
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in the output. If we are to view the brain as a machine, it is evidently organized for protection
against errors in a way quite different from computing machines.

The problem is analogous to that in communication theory where one wishes to construct
codes for transmission of information for which the reliability 0 ~ the entire code is high even
though the reliability for the transmission of individual symbols is poor. In communication
theory this can be done by properly introduced redundancy, and some similar device must be
used in the case at hand. Merely performing the same calculation many times and then taking a
majority vote will not suffice. The majority vote would itself be taken by unreliable
components and thus would have to be taken many times and majority votes taken of the
majority votes. And so on. We are face to face with a "Who will watch the watchman?" type
of situation.

To attack these problems, von Neumann first set up a formal structure for automata. The
particular system he chooses is somewhat like the McCullough-Pitts model; networks made up
of a number of interconnected components, each component of a relatively simple type. The
individual components receive binary inputs over a set of different input lines and produce a
binary output on an output line. The output occurs a certain integer number of time units later.
If the output were a function of the inputs, we would have a reliable component that might
perform, for example, operations of "and," "not," "Sheffer stroke," etc. However, if the
output is related only statistically to the input, if, for example, with probability I - E it gives
the Sheffer stroke function and with probability e the negative of this, we have an unreliable
component. Given an unlimited number of such unreliable elements, say of the Sheffer stroke
type, can one construct a reliable version of any given automaton?

Von Neumann shows that this can be done, and in fact does this by two quite different
schemes. The first of these is perhaps the more elegant mathematically, as it stays closely with
the prescribed problem and comes face to face with the "watchman" problem. This solution
involves the construction from three unreliable sub-networks, together with certain comparing
devices, of a large and more reliable sub-network to perform the same function. By carrying
this out systematicalJy throughout some network for realizing an automaton with reliable
elements, one obtains a network for the same behavior with unreliable elements.

The first solution, as he points out, suffers from two shortcomings. In the first place, the
final reliability cannot be made arbitrarily good but only held at a certain level f. (the f.

depending on the reliability of the individual components). If the individual components are
quite poor the solution, then, can hardly be considered satisfactory. Secondly, and even more
serious from the point of view of application, the redundancy requirements for this solution are
fantastically high in typical cases. The number of components required increases exponentially
with the number n of components in the automaton being copied. Since n is very large in cases
of practical interest, this solution can be considered to be of only logical importance.

The second approach involves what von Neumann called the multiplex trick. This means
representing a binary output in the machine not by one line but by a bundle of N lines, the
binary variable being determined by whether nearly all or very few of the lines carry the binary
value I. An automaton design based on reliable components is, in this scheme, replaced by one
where each line becomes a bundle of lines, and each component is replaced by a sub-network
which operates in the corresponding fashion between bundles of input and output lines.
Von Neumann shows how such sub-networks can be constructed. He also makes some
estimates of the redundancy requirements for certain gains in reliability. For example, starting
with an unreliable "majority" organ whose probability of error is 1/200, by a redundancy of
60,000 to 1 a sub-network representing a majority organ for bundles can be constructed whose
probability of error is 10-20 . Using reasonable figures this would lead to an automaton of the
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complexity and speed of the brain operating for a hundred years with expectation about one
error. In other words, something akin to this scheme is at least possible as the basis of the
brain's reliability.

Self-reproducing machines. Another branch of automata theory developed by von Neumann
is the study of self-reproducing machines - is it possible to formulate a simple and abstract
system of "machines" which are capable of constructing other identical machines, or even
more strongly, capable of a kind of evolutionary process in which successive generations
construct machines of increasing "complexity"? A real difficulty here is that of striking the
proper balance between formal simplicity and ease of manipulation, on the one hand, and
approximation of the model to real physical machines on the other hand. If reality is copied too
closely in the model we have to deal with all of the complexity of nature, much of which is not
particularly relevant to the self-reproducing question. However, by simplifying too much, the
structure becomes so abstract and simplified that the problem is almost trivial and the solution
is unimpressive with regard to solving the philosophical point that is involved. In one place,
after a lengthy discussion of the difficulties of formulating the problem satisfactorily,
von Neumann remarks: "I do not want to be seriously bothered with the objections that
(a) everybody knows that automata can reproduce themselves, (b) everybody knows that they
cannot. "

Von Neumann spent a good deal of time on the self-reproduction problem, discussing it
briefly in the Hixon Symposium paper [8] and later in more detail in uncompleted manuscripts
[12].

He actually considered two different formulations of the problem. In the Hixon
Symposium paper and in earlier lectures on this subject, a model is discussed in which there are
a small number of basic components from which machines are made. These might be, for
example, girders, a sensing organ (for sensing the presence of other parts), a joining organ (for
fastening other parts together), etc. Machines are made by combinations of these parts and
exist in a geometrical environment with other similar parts freely available.

Certain machines, made from these parts, are capable of gathering and working with
components from the environment. It is possible also to construct "programmed" machines
which follow a long sequence of instructions much as a computer does. Here, however, the
instructions relate to manipulating parts rather than carrying out long calculations. The
situation is somewhat analogous to that of Turing machines and indeed there is a notion of a
universal constructing machine which can, by proper programming, imitate any machine for
construction purposes. Von Neumann indicates how such a universal machine, together with a
program-duplicating part, can be made into a self-reproducing machine.

This model is a very interesting one but, involving as it does complex considerations of
motion of parts in a real Euclidean space, would be tremendously difficult to carry out in detail,
even if one ignored problems of energy, noise in the environment, and the like. At any rate,
von Neumann abandoned this model in his later work in favor of a simpler construction.

The second type of self-reproducing system is described in an unfinished book for the
University of Illinois Press. This second model is perhaps a little more suggestive of biological
reproduction in the small (say at the cellular or even molecular level) although it is not closely
patterned after any real physical system. Consider an infinite array of squares in the Euclidean
plane, each square or "cell" capable of being in any of a number of states. The model that
von Neumann developed had cells with twenty-nine possible states. Time moves in discrete
steps. The state of a cell at a given time is a function of its state at the preceding time and that
of its four nearest neighbors at the preceding time. As time progresses, then, the states of all
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cells evolve and change according to these functional relations. A certain state of the cells is
called' 'quiescent" and corresponds to an inactive part of the plane. By proper construction of
the functional equations it is possible to have groups of neighboring "active" cells which act
somewhat like a living entity, an entity capable of retaining its identity, moving about and even
of reproduction in the sense of causing another group of cells to take on a similar active state.

In addition to the self-reproducing question, he considers to some extent the problem of
"evolution" in automata - is it possible to design automata which will construct in successive
generations automata in some sense more efficient in adapting to their environment? He points
out the existence of a critical size of automaton built from a given type of component such that
smaller automata can only construct automata smaller than themselves, while some automata of
the critical size or larger are capable of self-reproduction or even evolution (given a suitable
definition of efficiency).

Comparison of computing machines with the brain. A field of great interest to
von Neumann was that of the relation between the central nervous system and modern large-
scale computers. His Hixon Symposium paper relates to this theme as well as to the problem of
self-reproducing machines. More particularly, the Silliman Memorial Lectures [11] (which he
prepared but was unable to deliver) are largely concerned with this comparison.

While realizing the similarities between computers and nerve-nets, von Neumann was also
clearly aware of and often emphasized the many important differences. At the surface level
there are obvious differences in order of magnitude of the number and size of components and
of their speed of operation. The neurons of a brain are much slower than artificial counterparts
- transistors or vacuum tubes - but on the other hand they are much smaller, dissipate less
power and there are many orders of magnitude more of them than in the largest computers. At
a deeper level of comparison von Neumann stresses the differences in logical organization that
must exist in the two cases. In part, these differences are implied by the difference in the kind
of problem involved, "the logical depth," or the number of elementary operations that must be
done in sequence to arrive at a solution. With computers, this logical depth may reach numbers
like 107 or more because of the somewhat artificial and serial method of solving certain
problems. The brain, with more and slower components, presumably operates on a more
parallel basis with less logical depth and further, the problems it confronts are much less of the
sequential calculation variety.

In the Silliman lectures, von Neumann touches briefly on a curious and provocative idea
with some relevance to the foundations of mathematics. Turing, in his well known paper on
computability, pointed out how one computing machine could be made to imitate another.
Orders for the second machine are translated by a "short code" into sequences of orders for the
first machine which cause it to accomplish, in a generally roundabout way, what the first
machine would do. With such a translating code the first machine can be made to look, for
computing purposes, like the second machine, although it is actually working inside in a
different language. This procedure has become a commonplace and very useful tool in the
everyday use of computers.

If we think of the brain as some kind of computing machine it is perfectly possible that the
external language we use in communicating with each other may be quite different from the
internal language used for computation (which includes, of course, all the logical and
information-processing phenomena as well as arithmetic computation). In fact von Neumann
gives various persuasive arguments that we are still totally unaware of the nature of the primary
language for mental calculation. He states "Thus logics and mathematics in the central
nervous system, when viewed as languages, must be structurally essentially different from
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those languages to which our common experience refers.

, 'It also ought to be noted that the language here involved may well correspond to a short
code in the sense described earlier, rather than to a complete code: when we talk mathematics,
we may be discussing a secondary language, built on the primary language truly used by the
central nervous system. Thus the outward forms of our mathematics are not absolutely relevant
from the point of view of evaluating what the mathematical or logical language truly used by
the central nervous system is. However, the above remarks about reliability and logical and
arithmetic depth prove that whatever the system is, it cannot fail to differ considerably from
what we consciously and explicitly consider as mathematics."

In summary, von Neumann's contributions to automata theory have been characterized, like
his contributions to other branches of mathematics and science, by the discovery of entirely
new fields of study and the penetrating application of modem mathematical techniques. The
areas which he opened for exploration will not be mapped in detail for many years. It is
unfortunate that several of his projects in the automata area were left unfinished.
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CLAUDE ELvVOOD SHANNON

Computers and Automation-s-Progress and

Promise in the Twentieth Century

LE TECHNOLOGICAL PROGRESS of mankind in exploiting its environ-
ment may be divided into three main streams of activity. The first and
earliest of these relates to exploiting material resources. Man learns to
use wood for shelter, develops agriculture for food and the use of
metals for tools. In our time this has led to the great industries relating
to extraction, manufacturing, and transportation.

The second major stream of activity relates to the exploitation of
our energy resources. Early man uses fire for heat, domestic animals
supply transportation, and he' harnesses both wind and water. The
development of the steam engine and the internal combustion engine
were important break-throughs in this area, followed by the wonders
of electric-power engineering. A most important point in this history
was the first industrial revolution, when it became clear that it was
possible to replace man's muscle by the power of a steam engine, us-
ing a man only to control this energy. Our own cenmry has seen
further break-throughs in the exploitation of energy, the use of nu-
clear power and the promise of solar energy. The rapidity of change
on this scientific front can be judged from the fact that while atomic
energy is only twenty years old, po,"rer engineers tell me that steam-
driven generators are now almost obsolete.

The third great stream of technological activity relates to the col-
lection, transmission, and processing of information. Early man
learned to communicate with his fellow man by the spoken word and
later to use writing and a printed book to record and disseminate
knowledge. The great and explosive growth in communication and
processing of information, however, occurred in the late nineteenth
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century and in the present century, spurred by the development of
electrical technologies. In rapid sequence we had the various power-
ful communication media-the telegraph, the telephone, radio, and
Jeleyision, to~ether with the information-pr~cessin~ de,?ces of co~­
~nng machmes, control systems, and the like. It 15 this area of m-
formation-processing and communication that I wish to discuss today.

Information, like many other words, has both a popular and a tech-
nical meaning. In the popular sense, information is what we find in a
book or hear when someone is speaking. Technically, infonnarion
relates to choosing one possibility from a set or ensemble of various
possibilities. The information in a sequence corresponds to the fact
that it is this particular sentence chosen from the set of possible sen-
tences. Information is always carried either by means of matter or en-
ergy. In the case of a book, it is carried on a material carrier; in a radio
wave, on a medium of pure energy. The information, however, is not
the underlying carrier but rather corresponds to the particular form
or pattern impressed on this carrier as one from the set of possible
forms it might assume.

The relations between information, energy, and matter may be il-
lustrated by a little anecdote involving Samuel Johnson. His biogra-
pher, James Boswell, tells us that at one time Bishop George Berkeley
proposed a philosophy of idealism, suggesting that the real world
about us was not, in fact, real, but only ideas in one's mind. When
Johnson was asked how he would refute this philosophy the good
doctor said, "I would refute it thus," and took a mighty kick at a
nearby stone. I don't wish to take a position on idealism versus real-
ism but would like to point out the parts played in this litde story by
matter, energy, and information. Matter is represented by a stone that
Johnson kicked, energy by the muscle power he used to kick it, and
information by the thoughts and nerve currents which caused his
muscles to so act. The three entities are playing parts here which are
entirely typical. Information controls energy which then acts on
matter.

In its technical sense, information can be measured much as we
measure energy or mass. The unit of information is the bit. It corre-
sponds to the information produced when a choice is made from two
equally likely possibilities. If I toss a coin· and tell you that it came
down heads, I am giving you one bit of information about this event.
More complex choices correspond to larger numbers of bits. The unit
of information is useful in measuring storage capacity in computers.
For example, one might have a computer with a million bits of stor-
age. This means that it can store a million independent yes-or-no
decisions.
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Again, the measure isuseful in communication problems where one
is concerned with how much information is produced by an informa-
tion source and how much capacity may be available in a communi-
cation channel. If the capacity of the channel, in bits per second, is
less than the rate of production for the source, it is impossible tI)

transmit all the information over the channel. On the other hand, it·
greater capacity is available than the source rate, it is possible by suir-.
able coding to transmit the information with substantially no errors.

It may be noted that the unit of information says nothing whatever
concerning the value or importance of the information. The outcome
of a presidential election still corresponds to only one bit if the two
candidates are equally likely to win and less if the probabilities are
biased. It is analogous to the fact that a gram is the same whether it be
a gram of diamonds or a gram of sand.

In the first industrial revolution we have said that man's muscles
were replaced by external energy sources. Weare now in the midst
of what Norbert Weiner has called the second industrial revolution,
in which man's control function is replaced by computing devices.
This actually started long ago. The Jacquard loom, for example, used
a rather sophisticated control system based on punched cards for con-
trolling the harnesses of a power loom. However, automation, like
communication, really required the speed and simplicity of electronics
for adequate realization.

Automation in this century was initiated on a large scale with the
development of the dial system for telephone switching. This was not
only efficient and desirable-it was, in fact, absolutely necessary. The
present level of telephone traffic, if handled manually, would require
the services of almost all the young ladies of suitable age in the coun-
try. The telephone-switching system uses electromagnetic relays, a
racher slow type of component operating in the millisecond range.
The most exciting possibilities in automation and computers stem
from the vacuum tube and recently the transistor, those two wonder-
ful devices capable of operating in fractions of a millionth of a second.
These can be used for many types of logical operations required in
processing and transmitting information.

The development of the transistor was a genuine scientific break-
through of absolutely first-rate importance. I recall some fifteen years
ago when I first saw a transistor and was completely taken with the
beauty of its tiny size and small power requirements. It seemed an
absolutely ideal component apart from technical difficulties with noise
levels and reliability. In the intervening fifteen years our ideas have
changed. We now regard the transistor as an easily manageable device
but rather large and bulky. Most of it, after all, was empty air, and
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now we are looking to microminiaturization which reduces size again
about as much as the transistor did relative to the vacuum tube.

This highlights an interesting feature of information-processing de-
vices. Information can be carried on almost arbitrarily small bits of
matter or of energy. It would seem that the only limits are set by dif-
ficulties of manufacture as a practical limit and the presence of ther-
mal noise or quantum uncertainty as a theoretical limit. Nature, how-
ever, is still far ahead of us in the miniaturization game. This may be
illustrated by a simple calculation. If we regard a neuron in the brain
as about the equivalent of a vacuum tube and if we were to build an
electronic circuit with as many vacuum tubes as the brain has neurons,
this circuit would just about fill the Empire State Building. If it were
built with conventional transistor circuitry closely packed, it would
still fill an ordinary dwelling. With microminiaturization techniques,
it might be reduced to the size of a room. We have at least one linear
order of magnitude to go in order to equal nature's amazing circuit. I
hasten to add that even if we had these ten billion circuit elements
available, we would, by no means, know how to connect them up to
simulate a brain. The problem of how the brain operates is still largely
unknown.

Perhaps the most exciting developments in the information area re-
late to the large-scale digital computing machines. While the history
of as of rnod can be traced back many centuries, the most important
ideas 0 modem computers were first discovered by the Anglo-Irish
mathematician, Charles Babbage, about a century ago. With a re-
markable prescience, he discovered the basic principles of a program-
controlled computer and spent his life attempting to build one. Un-
fortunately, like many geniuses ahead of their time, his attempts failed,
mainly because of lack of money and because he was attempting to
do mechanically something that really required electronics.

Babbage's work was forgotten for some eighty years until about
1940. Then in at least three independent projects the principles of
digital computers were rediscovered; at Harvard under Howard H.
Aiken, at Bell Telephone Laboratories under George R. Stibitz, and at
the University of Pennsylvania under John P. Eckert, Jr., and John W.
Mauchly, with a strong assist from John von Neumann. Three pro-
gramed computers were constructed, soon to be followed by many
others at numerous laboratories, each generation of computers pro-
ducing improvements over the last. The improvements took the fonn
of increased speed, increased capacity, greater flexibility, and greater
ease of programing, together with more compact designs and greater
reliability. Since that time the dollars involved in computation have
just about doubled every two years, and there appears as yet to be no
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slackening of this exponential increase. In addition to the large-scale
computers, there is a vast family of smaller or more specialized de-
vices, and my own feeling is that the surface of this great mother lode
has only been scratched.

What are the important features of a large-scale computer? First, it
can carry out arithmetical and logical operations at incredibly high
speeds. Current models operate in the microsecond range, and in the
near future we expect to push toward millimicroseconds. Second,
these computers can store and recover large amounts of information,
including results of intermediate calculations. Finally, they can carry
out a sequence of orders without outside help, this sequence or pro-
gram representing a very complex calculation. The program can con-
tain decision points, where the further operation depends on the re-
sults of previous calculations. Thus, the machine can make a proper
choice when the time comes, even though the person who writes the
program does not know which choice it will be. Perhaps more than
anything else, these decision orders give computers a possibility of
simulating in many ways complex logical decisions that we associate
with the human mind.

We have had, then, just two decades of development of the com-
puter in the modern era. The first of these, the decade of the forties,
wimessed the construction of a large number of computers, each dif-
ferent from all the others, and going by such names as Eniac, Edvac,
Univac, Illiac, and even Maniac. Most of these were built at universi-
ties and explored the possibilities of various types of logical organiza-
tion, as well as new types of components such as different kinds of
memory. Further, much work was done in learning how to use com-
puters efficiently.

The uses of computers at this time were almost entirely straight-
forward computation, the solution of complex numerical problems
arising in science and commerce.

During the decade of the fifties the development of computers
largely passed from the university laboratory to the industrial research
laboratory. Large companies began to manufacture computers and
sell or rent them as a commercial product. There was still a good deal
of research and development of new components, but it was more a
matter of perfecting and improving than of innovating,

An important area of research during this period was that of im-
proving communication between man and machine. The very diffi-
cult problem of programing was gradually reduced to manageable
size. Whereas earlier it was necessary for man to talk in the machines'
language, communication is now carried out in a language about half-
way between that of the computer and that of man. It is now possible
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for the average scientist to program his own problem after only a few
days of study.

Another trend of growing importance became evident during the
decade of the fifties. This was the growing realization that the po-
tential applications of computers were by no means limited to ordinary
numerical work-the solution of differential equations, or keeping
bank accounts straight. Indeed, computers could be used for all man-
ner of symbolic manipulation, involving abstract entities of almost
any sort. Words, musical notes, mathematical expressions, wiring dia-
grams, or even pictures couId be encoded into numbers and stored
in a computer. Furthermore, almost any rules of operation or manipu-
lation could be translated into a form understood by a general-pur-
pose computer. Thus the doors were opened for a wild orgy of ex-
perimental programing, ranging from such things as playing chess to
composing music, from translating languages to medical diagnosis.

So far most of this work must be described as experimental with
little practical application. Much of it, in fact, is not intended for ap-
plication, but rather to gain experience and knowledge relating to the
possibilities in this general area. I feel, however, that this line of re-
search is one of the greatest promise-a real indicator of the shape of
things to come. It is interesting to take a quick look at some of the
experimental programing that has been, or is being, carried out. This
is an area in which there is a good deal of scientific wildcatting with
many dry holes, a few gushers, but mostly unfinished drilling.

Language translation has attracted much attention, and many re-
search groups are devoted to its study. As yet results are only medi-
ocre. It is possible to translate rather poorly and with frequent errors
but, perhaps, sufficiently well for a reader to get the general ideas in-
tended. It appears that for really first-rate machine translation the
computers will have to work at a somewhat deeper level than that of
straight syntax and grammar. In other words, they must have some
primitive notion, at least, of the meaning of what they are translating.
If this is correct, the next step forward is a rather formidable one and
may take some time and significant innovation.

Many computers have been programed to play various games, such
as chess, checkers, bridge, or blackjack. By and large, the machines
are now in the middle range of human ability, although in certain
games particularly suited to their talents they will outplay any human.

To give just one example, A. L. Samuel has developed a program
for playing checkers which plays a first-rate game. While a world
champion can beat it, I would certainly bet on the 704 in a strong lo-
cal tournament such as, say, the Houston Finals. Samuel's program is
interesting in several respects. The machine is improving its play by a
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learning procedure as it plays more games. It remembers parts of pre-
vious analyses and uses these later. Thus at times it may be seeing the
game twenty or more moves in depth. It also may change its strategy
in general form as time goes on.

It is also interesting that Samuel himself was only a beginner at
checkers when he designed the program, and the machine beats him
soundly. This shows that one can design a machine which does an
intellectual task better than one's self, just as we can design steam
shovels that lift more or automobiles that go faster than we can.

Another area of programing exploration is that of symbolic mathe-
matics in contrast with solution of numerical problems. One aspect of
this relates to the manipulation of expressions that occur in algebra
and calculus-problems of factoring expressions, differentiation, and
integration. These problems have all been tackled with excellent re-
sults. Differentiation is essentially a rote process and mainly, there-
fore, a matter of translating the roles into a program. Integration and
algebraic manipulation often involve trial-and-error procedures and,
for the mathematician, experience and insight. Nevertheless, it is pos-
sible to set up programs which will carry out these operations with a
considerable degree of success. For example, an integration routine
developed by Dr. James R. Slagle was sufficiently competent to pass
an M.I.T. calculus test on formal integration.

Another aspect of symbolic mathematics is that of discovering and
proving theorems, the work of the pure mathematician. It is possible
to program a set of axioms and rules of inference into a computer, to-
gether with methods of looking for proof, and have it deliver proofs
of various theorems. Thus, Hao Wang has programed a part of prop-
ositional calculus into a computer in such a way that it can prove
many of the theorems in this area.

In particular, it was able to prove all the theorems in a large section
of the famous Whitehead and Russell tract, Principia Matbematica,
and it did this in less than five minutes, The authors of this work must
surely have required many months to do the same job.

While on the subject of these rather exotic researches, I would like
to mention a number of theoretical srudies with biological repercus-
sions. Lead by von Neumann, a number of investigators have studied
mathematically and theoretically the matter of self-reproduction in a
machine. Without going into details, one might summarize the results
by saying that there is no theoretical reason why this should not be
possible, although from a practical viewpoint complete self-reproduc-
tion by machine is at best a gleam in some mathematician's eye.

Another related question is that of self-repair and self-maintenance
together with self-checking of errors in machines. Many computers
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today have error-checking systems built in, so this is a realized goal.
Self-repair is considerably more difficult, but some investigation has
been made of this possibility.

Work has also been carried out in the direction of using computers
to design various types of electrical circuits. These include such
things as relay-switching circuits, diode-logic circuits, linear-filter
circuits, and the like. In some cases the circuits designed were actually
used in the next generation of computers. Thus we have perhaps the
beginnings of self-reproduction in machines.

I should like to mention briefly also a creeping invasion of the arts
and professions by the ubiquitous computer. In the arts, some of you
may have heard the record Suite for the [Iliac-music composed by
the Illiac computer. While certainly not great music, its very exist-
ence brings to mind thoughts of a brave new world.

In the professions, lawyers have been working with the possibility
of using computers for the study of legal precedents and other infor-
mation-retrieval problems. Doctors are studying the possibilities of
computers as a diagnostic aid. Teachers are investigating the possibil-
ity of teaching machines which may range from a simple question-
and-answer device to a full-scale computer acting very much like a
private tutor. The second industrial revolution may displace us at all
levels, from the factory hand to the skilled professional.

For the most part, computers so far have been used as straight in-
formation-processing devices. Instructions are fed in by a human op-
erator and answers typed out for a human operator. The only con-
nection of the computer to the real world is through the operator. A
most interesting area of study is that of giving a computer its own
sense organs so it has direct knowledge of the outside world, and ma-
nipulative means, the equivalent of hands, so that it can act directly
on the outside world. Of course, this is done in the automation of fac-
tory equipment, but here the outside world is so limited that the ma-
chine has very little in the way of freedom of action or of unexpected
surroundings. Is it possible to add sense organs and motor organs to a
computer so that it issomething like the robot of science fiction? One
study along this line was carried out by Dr. Heinrich A. Ernst at
M.I.T., in which he coupled a mechanical arm of the type used in
nuclear research to a computer. The arm was supplied with primitive
sense organs of touch and given a program allowing the computer to
maneuver the hand with seven degrees of freedom. The hand was
able, for example, to feel around on the floor and pick up blocks and
then stack them in a tower or to deposit them in a wastebasket. This
is only a beginning, and many difficulties are encountered in this line
of research. Perhaps the most challenging is that of developing a sense
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organ comparable to the human eye which can be coupled directly to
a computer. Recent studies of the operation of the frog's eye and also
work in progress on the abstraction of object content from a picture
may eventually alleviate this problem.

The various research projects I have been discussing and many oth-
ers of similar nature are all aimed at the general problem of simulating
the human or animal brain, at least from the behavioristic point of
view, in a computing machine. One may divide the approaches to this
problem into three main categories, which might be termed the logi-
cal approach, the psychological approach, and the neurological ap-
proach. The logical approach aims at finding a strai~htforward meth-
od, in logical terms a decision procedure, which WIll solve all of the
problems of a given class. This is typified by Wang's program for
theorem-proving in symbolic logic. It is most effective and efficient
when it can be done, but not all problems have available a suitable de-
cision procedure. Furthermore, a decision procedure requires a deep
and sophisticated understanding of the problem by the programer in
all its detail.

'The second method, the psychological approach, is often referred
to as heuristic programing. It involves a study of how we solve prob-
lems, perhaps by subjective or introspective analysis of our own
thought processes. We then attempt to translate these heuristic meth-
ods of trial and error and the like into a program for a computer. The
integrating program of Slagle is an example of this method. I believe
that heuristic programing is only in its infancy and that the next ten
or twenty years will see remarkable advances in this area. This may
also have important fringe benefits in that we may understand far bet-
ter the processes of creative thinking and perhaps be able to teach
them to some extent to others.

The third or neurological approach aims at simulating the opera-
tion of the brain at the neural level rather than at the psychological or
functional level. Although several interesting research studies have
been carried out, the results are still open to much question as to in-
terpretation. While neurophysiologists have uncovered much infor-
mation regarding the operation of individual neurons and their ~en­

eral patterns of interconnection, the mode of operation of the brain is
still a wide-open scientific question. It is not, for example, as yet
known where memory takes place or by what means, Thus anyone
attempting to construct a neural-net model of the brain must make
many hypotheses concerning the exact operation of nerve cells and
with regard to their cross-connections. Funhermore, the human brain
contains some ten billion neurons, and the simulated nerve nets of
computers at best contain a few thousand. Under these conditions one
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could only hope for the most primitive type of brain activity in the
model, and consequently the experimental results are difficult to un-
derstand. This line of research is an important one with a long-range
future, but I do not expect too much in the way of spectacular results
within the next decade or two unless, of course, there is a genuine
break-through in our knowledge of neurophysiology.

With the explosive growth of the last two decades in computer
technology, one may well ask what lies ahead. The role of the prophet
is not an easy one. In the first place, we are inclined to extrapolate
into the future along a straight line, whereas science and technology
tend to grow at an exponential rate. Thus our prophecies, more often
than not, are far too conservative. In the second place, we prophesy
from past trends. We cannot foresee the great and sudden mutations
in scientific evolution. Thus we find ourselves predicting faster rail-
road trains and overlooking the possibility of airplanes as being too
fanciful.

However, we may certainly expect in the near furore to see con-
tinued improvements in types of components and surely the develop-
ment of many new computer components. The next generations of
computers will be faster, smaller, with greater flexibility and mem-
ory capacity, and more reliable. We may expect the programing to
progress so that it becomes easier to communicate with computers
using our own language or something close to it. We may expect
computers to be applied in many new areas; thus the stock market is
planning computer Innovations. Many commercial enterprises will find
computers efficient and economical.

At the intellectual level and taking a longer-range view, I expect
computers eventually to handle a large fraction of low-level decisions,
even as now they take care of their own internal bookeeping. We
may expect them to be programed for a wide variety of types of
symbolic infonnation-processing and general problem-solving, replac-
ing man in many of hissemirote activities.

I further expect the development of high-grade sensory and motor
organs, the equivalent of the eye and the hand, for computers, leading
perhaps eventually to autonomous robotlike devices which might be
smart enough to do housekeeping.

Many people are concerned with regard to the impact of automa-
tion and computers on our economic and social life. It is clear in the
first place that there is no way to stop or slow down this type of sci-
entific research any more than work in any other field of science.
Good or bad, these trends will continue. OUf computers will become
more sophisticated, and our automation will invade more and more
areas. As in the first industrial revolution, there will necessarily be
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technological unemployment, economic hardship during relocation,
and the like. But again, as in the first industrial revolution, automation
makes possible a larger gross national product for the same total man-
hours of work. Thus if we desire a higher average standard of living
or more leisure, automation leads in this direction, provided only that
we can solve the problem of equitable distribution of this larger work
product. This last problem is, of course, most difficult, but, neverthe-
less, one feels that an intelligent scientific attack on it should lead to a
solution.

Another problem often discussed is: What will we do if the ma-
chines get smarter than we are and start to take over? I would say in
the first place, judging from the I.Q. level of machines now in exist-
ence and the difficulty in programing problems of any generality, that
this bridge is a long way in the future, if we ever have to cross it at all.
I would also suggest that if we can ever make machines much smarter
than we are we can also perhaps make them much wiser, and possibly
they will help us find a peaceful coexistence!



CLAUDE SHANNON'S
NO-DROP
JUGGLING DIORAMA

When Claude Shannon conceived a juggling
diorama, he put his hands and head towork on an
assortment ofchains, rods, bolts and other hardware.

Shannon picked upaninterest injuggling asan
adjunct to his distinguished career inmathematics
andcomputer science. Professor emeritus at the
Massachusetts Institute ofTechnology, Shannon has
received honorary doctoral degrees from Yale,
Princeton, Edinburgh and Oxford Universities, among
others.

" all started when Belly brought home a lillie
four-inch clown . doing a five ball shower . from
lhe cake decorating store IS 1.98) . I was both am-
used and bemused - amused as a long'lime ama-
leur juggler who even as a boy wished to run away
and join lhe circus . bur bemused by the unlikely
shower pattern and the plaSlic connections
between tbe balls .

A lillie study of Ihis clown led 10 the idea of
constructing a diorama of numbers juggling . a sta-
rionary display oflhe record number of rings . balls
andclubs(andcenainly without obviousconnec-
lions between the props)

By
CLAUDE E. SHANNON
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Official rules in the "numbers game" are hard
to find. by no means as well defined as. say. the
rules for track and field events. How long must
you juggle'n' rings to claim to be an n-ring juggler?
With large numbers. even starting and stopping
become major problems as the human hands find
difficulty with more than four objects. Jugglers
sometimes circumvent these problems with a belt
to hold props at the stan and an assistant to catch
them at the finish.

With rings. Ignarov is quire confident with II.
He includes this often in performance and finishes
in elegant fashion. tossing them backward over his
head to an assistant with a basket. A fellowRussian.
Petrovsky, also does II rings. and Albert Lucas
has even flashed 12

With bails the numbersare somewhatless. First.
balls collide much more than rings. Also. toppro-
fessionals rend to concentrate on rings. realizing
their greater visual impact. Enrico Rastelli. consi-
dered by many the greatest juggler of all rime. is
credited with juggling 10 balls.

On a recent trip 10 Europe I mel Felix Adanos,
a "gentleman juggler" using props such as tophats,
canes and champagne bottles. Adanos, in hisseven-
ties bUI still doing juggling dates. was a friend of
Rastelli. he said thai Rastelli "played with 10balls
bur really didn't do rhem.·· However. I also talked

with juggling Historian Hermann Sagemuller, who
is writing a biography of Rastelli. He believes Ras-
telli worked 10balls well, and also mentionedJenny
Jaeger. the German prodigy. as also juggling ten
small leather beanbags.

With clubs. the record seems to be seven by
the Rumanian Mitica Virgoaga, using triple spins.
His student. Jack Bremlov. later equalled this re-

cord. as have a number of others since then.
IJA historian Dennis Soldati gives II rings. 10

balls and 7 dubs as the current numbers records.
and I used these in constructing my first diorama.

I placed threeclowns againsta black velvetstage.
because it is excellent material for absorbing light.
I suspended their props with blackened needles.

which were totally invisible from more than a few
inches away. The props were half-inch beads for
the balls. miniature cake-decorating bowling pins
for the clubs. and curtain rings.

Night after night I looked at these frozen jug-
glers and. PyglJ1aJion.Jike. wished that they and
their props would come to life and actually juggle.
This led. finally. to a project requiring several

months of work. With the help of assistant Phil
Stone and members of my family. it culminated in
a display of three animated clowns juggbng the re-

cord numbers of props.
THE ILLUSION

In this miniature theater. we first hear a Gennan
folk song. The curtains open and three tiny clowns
are seen. spotlighted against a dead-black back-
ground. All of the downs are juggling in time to
the music.

The left-hand clown. "Ignatov." is juggling
I I rings in 8 cascade pattern with the rings passing
from one hand to the other. The rings glow brightly
10 different colors. and the JiUle juggler's hands
seem to bethrowing rhem up while his head moves
as though observing their flight.

In center stage. "Rastelli" juggles ten balls.
five in each hand in a synchronous pattern. He
later changes 10 an alternating. fountain pattern.

On the right. "Virgoaga" does a cascade of
seven clubs using triple spins. The clubs arecaught
in a flat position. as in human juggling. At the
catch. they go througha . 'glitch" ofa small amount
of reverse rotation. and then are reversed again in
direction and proceed airborne to the other hand.

Theamount of motionon this littlestage is mind-
boggling. In scientific terms, the three clowns and
their props appear to move with 96 degrees of
freedom.

THE REALITY
How is all this magic wrought? With a bag of

cheap scientific tricks and a fiendishly ingenious
backstage mechanism. In the first place. the aud-
ience sees only what it is supposed to see - the
clowns and their props. The stage is completely
lined with black velvet. and the scene is illuminated
by uJtraviolet light•. 'black light. ,. The combined
effect of black light on black velvet can best be

C. E. Shannon

described with a phrase from an old blues tune.
.blacker than the darkest kind of night."

The juggling props are painted with fluorescent
paint andglow brightlyagainst the dead-blackback-
ground. Each juggling down has a tiny spotlight
trained on him.

In Peter Pan, Mary Martin flew through the
air supported by the great tensile strength of steel
wire. OUf three performerssimilarly depend upon
steel. In this case. horizontal rods. projecting from
slots iQ. the backdrop of the stage. support the jug-
glers' props.

Behind the backdrop. each of the three jugglers
has his own special mechanical system involving a
great many sprockets. gears and cams. They all.
however. use a chain drive system to move their
props. The props aremounted on very thm (.021")
steel rods which go through slots in the backdrop
and. backstage. through two parallel ladderchains.

For the baJJ juggler with an even number 01

balls - five in each hand -there are two sets ot
chains. each carrying five rods and five baJls. FOJ
realistic jugk'ing. the ballsandhandsshoulddescribe
paths partially in front of the juggler. This cannot

be done with the supporting rods for right and left-
hand balls parallel - the rods would have to go
through the juggler's body. For this reason. the
two sets of rods -- those for the right hand balls
and those for the left hand balls - were brought
in from the sides at about IS-degree angles encom-
passing the clown. Coupling these angled chain
systems to the main motor drive required a pair of
universal joints.

A friction clutch was introduced between tbe
right and left hand drives. This allows slipping the
phase of one hand relative to the other to change
from synchronous to alternating variations. The
juggler's hands are driven synchronously with the
balls and. in fact. the same shafts that cart)' the
lower sprockets extend out to cranks which move
the hands in small circular patterns about 1'/2" in
diameter.

The ring juggler with an odd number of rings
uses a cascade pattern. This requires the rings to
move from hand to hand and therefore the rods.
which control the rings. to slide in and out. This is
done by having the rods carry small discs which
ride against slanting tracks. At the top of the track
a choice must be made. to go right or left. The
choice is governed by a cam which moves the discs
alternately one way or the other. When the disc
comes from the right. the cam forces it over to the
left. and vice versa. The cam is coupled synchron
ousJy to the rest of the mechanism andoperates b
sliding the shaftthatcerries the sprocketsand chair
back and forth.

The club mechanism is still more complex, il
volving rotation of the clubs as well as threedimei
sional positioning. The mechanism is similar It

that for rings but with the addition of a disc on each
of the rods that carry the clubs.

(Cont;nu~d on next page)
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BACK VIEW OF MECHANISM
WITH COVER REMOVED

SEVCtl CLUBS ON
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This disc rollsagainsla planeas thechainscarry
lhe rods through their cycle. This rolation carries
10 the club which is friclionally connecled 10 the
rod. The clubs nonnally turn wilh tbe rodsdue to
this friction. However, whenthe striketheclown's
hands. slippage occurs and lhey Slopturning, reo
maining horizontal for a shan period. as wilh real
juggling. Withoulthis slippage. tbe clubs would
tum JIIJ revolulions from one hand 10 lbe other.

The "glitch" holdslbe clubs back for a half·
revoluticn, giving tbe triple spins of Virgoaga.
The clown's handsare driven by a crankshaft in
synchronizalion with the clubs, and his headis also
linked to tbe sySlem. Three different methods of
coOrdinating clubs and hands we.., tried before a
salisfaclory solulion was found. The entire effect
is qui.. realislic.

AUof the clown and prop mOlions an:driven

by one synchronous motor at a rate of 1.3 throws
per second for each hand. This is slower than the
humanralefornumbersjugglingof abouttwothrows
per second. Experimentationwith diffe..,nlspeeds
indicated that this slowerrate gives abener effect.
Scaled-down models in general appear too busy
unless lhe time scale is slowed down as well. The
music is producedby aCasio "VL·Tone" adjusted
10 the same liming as the clowns.

11leball andclub jugglers are the most inle..,sl·
ing of tbe three. While the ball juggler perhaps
gives the most accurate representation of reality,
the clubs involve the mot comple.ily of object
movements.

The J"'8leSl numbersjugglen of all limecannot
sustain their record panems for more Ihan a few
minutes, but my linle clowns juggle all night and
never drop a prop!

FI RSI IN THE WORLD



Scientific Aspects of Juggling

Claude E. Shannon

HDo you think juggling's a mere trick?" the little man asked,
sounding wounded. "An amusement for the gapers? A means of
picking up a crown or two at a provincial carnival? It is all those
things, yes, but first it is a way of life, friend, a creed, a species of
worship."

, ,And a kind of poetry, " said Carabella.

Sleet nodded. "Yes, that too. And a mathematics. It teaches
calmness, control, balance, a sense of the placement of things and
the underlying structure of motion. There is a silent music to it.
Above all there is discipline. Do I sound pretentious?"

Robert Silverberg, Lord Valentine's Castle.

The little man Sleet in Silverberg's fantasy who so eloquently describes the many faces of
juggling is a member of a juggling troupe on a very distant planet, many centuries in the future.
We shall discuss some of the many dimensions of juggling on our tiny planet Earth from the
viewpoints of Darwin (What is the origin of the species jongleur?), Newton (What are the
equations of motion?), Faraday (How can it be measured?) and Edison (Can American
inventiveness make things easier?). But we shall try not to forget the poetry, the comedy and
the music of juggling for the Carabellas and Margaritas future and present. Does this sound
pretentious?

On planet Earth, juggling started many centuries ago and in many different and distant
civilizations. A mural on the Egyptian tomb of Beni-Hassan dating back to ]900 B.C. shows
four women each juggling three balls (Fig. 1). Juggling also developed independently at very
early times in India, the Orient, and in the Americas among the Indians and Aztec cultures.

The South Sea island of Tonga has a long history of juggling. George Forster, a scientist on
one of Captain Cook's voyages, wrote:

"This girl, lively and easy in all her actions, played with five gourds, of the size of
small apples, perfectly globular. She threw them up into the air one after another
continually, and never failed to catch them all with great dexterity, at least for a
quarter of an hour."

The early Greek historian Xenophon, about 400 B.C., describes in The Banquet the
following incident.

"At that, the other girl began to accompany the dancer on the flute, and a boy at her
elbow handed her up the hoops until he had given her twelve. She took these and as
she danced kept throwing them whirling into the air, observing the proper height to
throw them so as to catch them in regular rhythm. As Socrates looked on he
remarked: 'This girl's feat, gentlemen, is only one of many proofs that woman's
nature is really not a whit inferior to man's, except in its lack of judgment and physical
strength.' "
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Fig. I. Egyptian wall painting, circa 2040 B.C. (Source: unknown.)

This excerpt is interesting at a number of different levels. At the juggler's level, did the girl
in fact juggle twelve hoops at once? This is an astounding feat - in the twenty-three centuries
since then no one has reached this record, the highest being the great Russian juggler, Sergei
Ignatov, who does nine regularly and sometimes eleven in his act (Fig. 2). However, who
could ask for better witnesses than the great philosopher Socrates and the famous historian
Xenophon? Surely they could both count to twelve and were careful observers.

At a different level, it is amusing to note how Socrates, departing from his famous method
of teaching by question, makes a definite statement and immediately suffers from foot-in-mouth
disease. Had he but put his period nine words before the end he could have been the prescient
prophet of the women's equality movement.

In medieval times court jesters and traveling minstrel troupes often combined the three arts
of juggling, magic and comedy. A "Street of the Conjurers," where daily performances could
be seen, was a feature of many cities. Early in the present century vaudeville, circuses and
burlesque were a spawning ground for jugglers. Many jugglers of this period combined a
comedy patter with their juggling and some of the great comedians, Fred Allen (billed as the
World's Worst Juggler), Jimmy Savo (I Juggle Everything from a Feather to a Piano!) and
W.C. Fields (Distinguished Comedian & Greatest Juggler on Earth, Eccentric Tramp) evolved
from this background.

Jugglers are surely among the most vulnerable of all entertainers. Musicians and actors can
usually cover their slips but if a juggler makes a mistake Hit's a beaut!." This has led through
the centuries to a vast number of comedy lines and cover-ups for the missed catch or the
dropped club. Books on juggling contain whole sections about how to save face in such
situations. La Dent introduced the "Swearing Room," a boldly labeled, screened-off portion
of the stage to which he would retreat on missing a trick. Others wear numerous medals which
they take off if they make a slip. One writer suggests a large pair of spectacles to put on after
an error. There are dozens of comedy lines to be used after an error, e.g., "That's part of the
act, folks - the part I didn't rehearse." W.C. Fields was a master of the seemingly wild
throws, dropped balls and incredible recoveries. Expert jugglers could not distinguish Fields'
intentional moves from actual misses.

This very vulnerability may have led to the dichotomy between the comedy and the
technical jugglers. The technicians aim for perfection, striving to keep more and more objects
in the air at one time, the' 'Numbers game" in juggling parlance. Albert Lucas, keeping score
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Fig. 2.

C. E. Shannon

Sergei Ignatov took American juggling audiences by storm when he toured this
country with the Moscow Circus in 1978. Ignatov demonstrated his mastery of
seven balls and five clubs by doing a number of variations with. them during his
performances. He performed with eleven rings for his show-stopping finale.
(Source: Jugglers World Calendar, 1980. Photo courtesy Roger Dollarhide.)
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of his own performance, reported "2 misses in 46,000 throws." Outstanding among
performers in this area was Enrico Rastelli, who was said to have juggled ten balls. He could
do a one-armed handstand while juggling three balls in the other hand and rotating a cylinder
on his feet.

There have been many talented women jugglers. We have already mentioned the Grecian
lady who was perhaps the numbers champion of all time. Some others are Lottie Brunn (Fig.
3), the only woman to perform solo in Ringling Brothers' center ring, and the child star Trixie
from Germany, A photograph in the book Will Mariner by Somerville shows a woman on
Tonga showering eight balls - an incredible feat (showering being a very difficult way of
keeping many balls going).

With the advent of the various electronic media (radio, motion pictures and television),
vaudeville and the circuses were doomed and juggling went into decline. This lasted several
decades and many of the great jugglers sought greener pastures.

Recently, however, there has been a revival of this ancient skill, particularly among young
people of college age. The University of Colorado, Pennsylvania State University, M.I.T.,
Wesleyan and many other universities have active juggling groups. The market for the
professional juggler is still small - some ice shows, Las Vegas floor shows, the Ringling
circus. Street performers may be seen in such places as Greenwich Village, Harvard Square
and San Francisco. However, the main thrust of juggling today is that it is a challenging
recreation for amateurs. It can involve not just one person trying to juggle five balls but two
people passing six or more clubs between them, or, indeed, twenty people in a very complex
pattern of club passing.

Juggling seems to appeal to mathematically inclined people - many amateur jugglers are
computer programmers, majors in mathematics or physics, and the like. One knowledgeable
juggler, a mathematics professor himself, told a reporter that forty per cent of jugglers are
"algorithmically inclined." In the New York Times story, it appeared as "forty per cent are
logarithmically inclined." (This curious anagram probably conveyed the meaning better than
the original to most readers.) In spite of this appeal to the technical mind, there seems to be
very little mathematical or scientific literature relating to juggling.

Juggling also appears to be a skill that very young people can master well. W.C. Fields was
a fine juggler at age fourteen. Albert Lucas, one of the world's top performers, was brought up
in a circus family and is said to have juggled five balls at age five. He is now nineteen and has
performed several years with the Ice Capades (Fig. 4). (Note not only the nine rings but the
mouthpiece and ball and the ring on one leg.) Other young performers are Demetrius and
Maria Alcarese, who in their teens show excellent potential. In the various 1980 competitions
of the International Jugglers' Association, the Juniors (less than three years' experience),
Seniors, seven-ball, five-club and team events were all won by young people in their teens or
early twenties. Especially impressive were Barrett Felker and Peter Davison who, with Keziah
Tannenbaum, won the team event, and battled it out between themselves in five-club juggling.
It seems plausible that juggling ability may have its child prodigies in much the same way as
music (Mozart, Mendelssohn and Menuhin), mathematics (Pascal, Gauss, Abel) and chess
(Morphy, Capablanca, Reshevsky, Fischer). Further, it seems likely that the age of peak ability
for juggling may be quite young, as it is for such sports as gymnastics and swimming.

The Tools of Jugglers

It is well known that witches use three basic tools in their craft - the bell, the book and the
candle. Jugglers, whom many think are close cousins of witches, also use three basic tools -
the ball, the ring and the club.
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Fig. 3.
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Lottie Brunn was billed by Ringling Brothers as the "Greatest Girl Juggler of All
Time." She is also the only female juggler to have performed solo in the center
ring. She has appeared at all of the top Las Vegas nightclubs. as well as Radio City
Music Hall in New York. (Source: Jugglers World Calendar, 1980. Photo courtesy
Lottie Brunn .)
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Fig. 4. Albert Lucas began juggl ing as a small child, and could juggle five balls by the age
of five. (Source: Jugglers World Calendar. 1980. Photo courtesy Robert Leith .)
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Balls are the easiest for learning, and lacrosse balls weighing about five ounces and two and
one half inches in diameter are very popular among jugglers. However, all sizes of balls have
been used, from jelly beans to basketballs. Recently a record was set in juggling three eleven-
pound bowling balls for thirty-seven catches. At the other end of the weight scale, the Mexican
juggler Picasso has juggled up to five ping-pong balls by popping them out of his mouth.

Most professional jugglers like rings. If the juggler stands at right angles to the audience,
the rings present a large viewing area and are easily seen, as in Fig. 2. Furthermore, when
tossed, the area presented to the juggler is less than half that of balls, causing less interference.
This probably leads to higher numbers in ring juggling than in ball juggling.

While balls and rings are ancient, it appears that clubs date only to the late 19th century. At
that time the art of swinging "Indian clubs" became popular. This is an elegant and
demanding art form in itself. It was left to the jugglers, however, to discover the possibilities of
tossing clubs, and, even more exciting, exchanging them with partners. The sight of two people
with six rapidly spinning clubs being passed back and forth was electrifying. The early clubs

were turned from solid wood and were quite heavy. Modern clubs are made of plastic, often
with a wooden dowel through the middle, or of fiberglass. They weigh much less than the
wooden ones, about nine ounces, and are about nineteen inches long.

We spoke earlier of the witches' basic tools, bell, book and candle. Their secondary
instrumentation would have to include cauldron, broomstick and the entrails of a toad. If these
seem a bit exotic, consider the objects that jugglers use.

Jugglers will juggle with almost anything - gossamer scarves, kitchen utensils, flying
saucers, badminton racquets and flaming torches. One three-ball juggler uses a rubber chicken,
a head of lettuce and an M&M candy. Probably the ultimate in choice of weapons is that of the
Flying Karamazov Brothers, a totally insane group of performers, mad even by jugglers'
standards. They announce that they are going to juggle with a chainsaw and bring out a
completely harmless toy chain saw. However, they follow with a real machine operating at full
speed and toss this around.

Flying saucers and gossamer scarves involve aerodynamics - the interaction of the object
in flight with the air. The most common juggling objects, rings, balls and clubs, are sufficiently
massive relative to their surface area, and their speeds sufficiently slow, that such effects can be
ignored.

At the instant a juggling object leaves contact with the hand of the juggler it enters the
world of analytical dynamics, free of the juggler's control but subject to the laws and theorems
of Newton, Euler, Poinsot and Poincare. It seems unlikely that any of these mathematicians
ever did a three-ball cascade, but their differential equations describe not only the complex
motion of planets and satellites but the "polhodes," "herpholodes " and "invariable lines" of
a juggler's club in motion.

What can we learn from mechanical principles about the motion of a club? First, and
simplest, its center of gravity will follow a parabolic course. The relation between height and
time will be given by h = Y2 gt 2, where h is measured from the apex of the trajectory and
g = 32ft/sec 2 is the acceleration of gravity. For example, if a juggler throws a ball two feet in
the air and catches it with his hand at the same level, two feet below its highest point, the time
of flight would be 2~ 2h/g or .7 seconds. The horizontal distance traveled is of no significance.
It will take precisely the same time going straight up and down or to a juggling partner, say six
feet away, as long as the vertical travel is the same.

If the object is tossed to a height h I and caught after a drop of h 2, the time of flight would
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be given by -{2h;Ii +~ 2h 2 / g. In most cases of juggling, h I and h2 are close enough the

approximate formula 2"1/ 2h/g can be used, where h is the average of the two distances. The
following table shows the time of flight F for various values of Ii ranging from six inches (a fast
three-ball cascade) to the sixteen feet we estimate for Ignatov's eleven rings in Fig. 2.

h 6" 1" 2' 4' 8' 16'

F (sec) .35 .5 .71 1 1.41 2

Much more complex than the motion of the center of gravity is the rotational motion of an
object in free flight. This is a subject that was studied extensively by many mathematicians in
the 18th and 19th centuries. The motion will depend on the distribution of mass of the body,
which can be summarized in its ellipsoid of inertia. It is noteworthy that the three favorite
juggling objects are very special with regard to their ellipsoids of inertia. The ball has all three
axes of inertia equal, the ring has two equal and the other very small, and the club has two
equal and the third very large. These three special situations lead to much more predictable
behavior than that of an object with three unequal axes. In the latter case, the object will show
stability in rotation about the largest and smallest axes but not about the intermediate one. It is
easy and interesting to observe this property. Put a rubber band around a book so it cannot fly
open. Now toss it up, with a spin, in each of the three possible ways. The book will spin stably
about its shortest dimension and its longest dimension, but when spun about the intermediate
dimension will continue turning almost fully around in a most erratic fashion.

Basic Juggling Patterns

"The cross rhythm of 3 against 2 is one of the most seductive known." So wrote Gene
Krupa, the great jazz drummer, some forty years ago. Seductive it is, whether it be the Chopin
F minor Etude or Krupa's own tom-tom chorus in "Sing-Sing-Sing" with its ever-changing
emphasis.

The visual analog of the three against two rhythm is in the juggler's three balls into two
hands, the three-ball cascade. This is the first pattern that most people learn and the most
fundamental, and it is capable of as many changes as bell ringing.

Fig. 5a shows how the simplest three-ball cascade appears to a viewer. Jugglers can vary
the height of the throw, the width of the hands and even reverse the direction of motion. They
can make under-leg throws, floor bounces, behind-the-back throws, overhand (claw) catches,
"chops," and numerous other variations.

The three against two can be done with clubs, rings, and, in fact, almost anything. The
Brothers Karamazov in their act offer the audience a choice of three from a wildly varied
assortment of possibilities - such things as hoses, basketballs, clubs, candies, etc. The
audience by their applause picks three of these and the "world's greatest juggler" attempts to
keep them in the air. Should he fail, he gets a pie in the face.

Many expert jugglers restrict their acts to three-ball variations and entire books have been
written on this subject. At the 1980 jugglers' convention there were seventeen entries in the
Seniors competition - each entrant was allowed six minutes for an unrestricted act, judged by
seven experts and viewed by a sophisticated audience of several hundred of his peers. The acts
were all good and ranged from comedy monologues to highly technical exhibitions.

The first prize, however, went to a young man, Michael Kass, who used no props other than



Fig. 5.

(d) (e)

(a) Three-baJJ cascade. (b) Two balls. (c) Three-ball shower. (d) Three-baJJ
fountain. (e) Five-ball cascade.

the three clubs he was juggling as he came on the stage. His routine consisted almost entirely
of variations on the three-ball cascade. The clubs were double-spun, thrown behind his back,
under his legs, in chops, flats and other variations to the music of Synergy" Synthesizer." His
stunning climax came with a series of "foot-drops" where the clubs were dropped to his feet
and tossed back into the cascade with a flip of the ankle. The audience was hypnotized and
gave him a standing ovation.

While the three-ball variations can be totally fascinating, the juggling repertoire has evolved
a vast series of other patterns. A small sampling of these is shown in Fig. 5. The right-hand
parts of these diagrams show how the juggled objects progress from hand to hand with time.

The almost trivial example of two balls and two hands (Fig. 5b) is included because of its
theoretical importance. It is the simplest case where a choice can be made at each toss -
whether to interchange the balls or keep them in the same hands.

The three-ball shower (Fig. 5c) is similar to the three-ball cascade but with different timing
- the Jeft to right throw going almost horizontally so that the whole pattern looks more like
balls rotating in a circle.
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Four balls are usually done in one of two ways: the' 'fountain" (Fig. 5d) where the two
hands are out of synchronism and which, in fact, amounts to two balls in each of two hands
which never interchange, or a synchronous movement where the balls can be interchanged or
not at each toss.

Fig. 5e shows the pattern for a normal five-ball cascade, a natural generalization of the
three-ball. In a multiplex juggle two or more balls may becaught in one hand at the same time.
In the 1979 competitions, one of the contestants raised a considerable furor by juggling seven
balls with the multiplex system. Multiplex juggling in itself is an interesting and picturesque
art but considerably easier than the standard form where only one ball contacts a hand at one
time. After some soul-searching, the IJA decided to disallow multiplex juggling in their
numbers competitions.

The Uniform Juggle

We shall define a uniform juggle as one without multiplexing and with aJJ dwell times the
same (D), all flight times the same (F) and all vacant times the same (V). Uniform juggles
include many of the most common juggling patterns, the three-, five- and seven-ball cascades,
two or three in one hand, the four-ball fountain and many passing routines among two or more
jugglers. At a recent juggling convention with perhaps one hundred jugglers on the floor it
appeared that 75% or more were working on uniform juggles.

Uniform juggles have good reason for their popularity - all of the hands do about the same
thing: they throw balls to the same height, hold them for the same time and are vacant for the
same time.

The same uniform juggle, for example the three-ball cascade, may of course appear in a
multitude of forms. The juggler may do overhead (clutch) juggling, he may toss the balls under
his legs or behind his back or cross his arms in a bewildering fashion. For our purposes we are
concerned only with the uniformity of the time parameters D, V and F.

Focusing on the uniform juggle is somewhat akin to the geometer who spends much time
with circles and triangles. He is well aware of the existence of other geometric figures, but the
simple structure of these leads to elegant mathematical theorems. We shall later give some
results relating to generalization to other types of juggles.

Of course a juggle may be uniform only for a period of time. In fact, many juggling
routines are made up of segments, which are uniform in our sense, with transitional moves.
The theorems which follow about uniform juggles require only that uniformity last for the
period that it would take one ball to visit all the hands (if it did them all in sequence, that is,
H(D + F». These theorems will be first stated and discussed, and later proved in a general
argument.

Theorem I. In a uniform juggle with dwell time D, vacant time V, flight time F, then

F+D B
V+D = H '

where B is the number of balls and H the number of hands.

In one sense this theorem seems almost trivial. It states a proportionality between the
number of balls and hands, and the total time for each ball circuit (F +D) and each hand circuit.
It is, however, more subtle than it appears, its proof depending on the uniformity of the juggle
for at least H tosses.
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Theorem 1 allows one to calculate the range of possible periods (time between hand throws)
for a given type of uniform juggle and a given time of flight. A juggler can change this period,
while keeping the height of his throws fixed, by increasing dwell time (to increase the period)
or reducing dwell time to reduce the period. The total mathematical range available for a given
flight time can be obtained by setting D =0 for minimum range and V = 0 for maximum range
in Theorem 1. The ratio of these two extremes is independent of the flight time and dependent
only on the number of balls and hands.

Corollary. In a uniform juggle with a fixed flight time, the range of possible periods is
8/(8 -H).

For example, in the three-ball cascade a 3-to-l period (or frequency) ratio is possible; with
five balls the maximum ratio is 5-to-3. With larger numbers of balls there is much Jess range
available. At nine, it is 9-to-7. Of course, in actual juggling the possible range will be
considerably smaller than these figures - it is not possible to have either zero dwell time or
zero vacant time.

Theorem 2. If Band H are relatively prime (have no common divisor) then there is essentially
(i.e., apart from labeling) a unique uniform juggle. The balls can be numbered from 0 to B-1
and the hands from 0 to H - 1 in such a way that each ball progresses through the hands in
cyclical sequence and each hand catches the balls in cyclical sequence.

Theorem 3. If Band H are not relatively prime, let n be their greatest common divisor with
B = I1p and H = nq (p and q relatively prime). Then there are as many types of juggles as
ways of partitioning n into a sum of integers.

For example, if n were 5, a partition into 2 + 2 + I would correspond to three disjoint
juggles. There would be no possible interchange of balls among these three juggles. Each' '2"
in this partition would correspond to 2p balls circulating among 2q hands in a fashion similar
to the cases described above, except that at each toss there is a choice of two possibilities. The
" 1" in this partition would be a cyclical juggle of the type in Theorem 2, with p balls
circulating around q hands with no choice.

In the common case of two jugglers, each with three balls (or clubs), we have B = 6 and
H = 4. The greatest common divisor is 2, which can be written as a sum of positive integers in
two ways: 2 or 1+ 1. The case of 2 corresponds to the jugglers starting simultaneously. Thus
at each toss there is a choice of two possibilities: a self-throw or a throw to a partner. In group
juggling, incidentally, a downbeat analogous to that of a musical conductor is used to ensure
synchronism.

The other partition, 1+ 1, corresponds to two jugglers out of synchronism. There is no way
to pass clubs from one pair of hands to the other without violating the uniform juggle condition.

The number of partitions of n into a sum increases rapidly with n as the following table
shows:

11

no. of partitions

We now prove these theorems.

Suppose that at time 0 a uniform juggle commences with the toss of a ball. Let us follow
this ball for a period of H catches (a time H(F + D». Since there are only H hands and the ball
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has visited H + 1 (counting the one it started with) it must have visited the same hand twice.
This is sometimes called the pigeonhole principle in mathematics - if you have n + 1 letters in
n pigeonholes, there must be some pigeonhole with at least two letters. The pigeonhole
principle, or Schubfachprinzip, as German writers call it, applies only for finite numbers. The
theory of transfinite juggling, like the case of the Giant Rat of Sumatra, is a story for which the
world is not yet prepared.

Focusing now on the hand that was visited twice by a ball, suppose the number of catches
of the ball was a. Then the time between these catches was at D +F). Meanwhile, the hand, to
satisfy the uniform juggling condition, has made some integer number, say b, catches in the
same time, and consequently b(D + V) =a(D +F), or (D +F)/(D + V) =bla, a rational
number. In other words, the times related to balls, F + D, must line up exactly with the times
related to hands, D + V, after some integer number of throws.

Let 01b be reduced to its lowest terms, say pIq. Thus p and q would be the smallest number
of hand catches and flight times which could return to coincidence.

Now consider the set of all balls, say d l' thrown at the time to. These may be called a
synchronous set - with a uniform juggle they will all be caught at the same times and thrown
at the same times so long as the juggle remains uniform. Furthermore, no other balls can fall
into this time pattern under the uniformity condition. Consider now the subset of balls caught
by the hands that caught this synchronous group at a time interval (D + V) after time to, that is,
the next catches of these hands. These balls also form a synchronous set at a later time. The
same may be said for each hand-catching interval (D + V) until we reach p(D + V) from time
to, the first time it is possible for the original balls to return to the original hands. At this time,
all of the original balls must have returned to the original hands, since no other balls could have
come into synchronism with these and all of these are timed right for these hands.

Consider now the balls thrown by the subset of hands we have been discussing at the time
(D +V) after to (one throw after our initial time). This subset must basically parallel the subset
we have just described - these balls go to the same next hands and after p throws return as a
subset to the same original hands.

Continuing this argument, we obtain pd 1 balls following each other cyclically through p
stages, d 1 balls at a time.

If d I did not exhaust all of the balls, we carry out the same process with the next balls
caught after time to. These are, in a sense, totally disjoint from the first subset. They cannot be
caught by the hands involved in the first sequence. Consequently we obtain a totally disjoint
subset of the balls juggled by a totally disjoint subset of the hands.

Continuing in this fashion, we exhaust all of the balls and all of the hands. The total
number of balls, B, is therefore equal to ~pd;, and the total number of hands. H, = ~ qd i :

The Jugglometer
"Some son-of-a-bitch will invent a machine to measure Spring with"

e. e. cummings

In order to measure the various dwell times, vacant times and flight times involved in actual
juggling, some instrumentation was developed. The first of these devices used three
electromagnetic stopclocks, accurate to about .01 seconds (10 milliseconds). These were
activated by a relay circuit. The relays were connected to a flexible copper mesh which was
fitted over the first and third fingers of the juggler's hand. Lacrosse balls were covered with
conducting foil. When one of these was caught it closed the connection between the two
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fingers, causing a clock to start. Break contacts allowed the measurements of vacant times, and
contacts on two hands enabled measurement of flight times. Juggling rings and clubs were also
made conductive with foil so that the various times could be measured.

While this system was workable, it required several people to observe and record the
observations, and we replaced it with a computerized version using an Apple II computer. This
uses essentially the same sensor arrangement, copper sleeves for the fingers connected to the
"paddles" of the computer. A computer program displays the time in milliseconds of the
various tosses and catches.

Preliminary results from testing a few jugglers indicate that, with ball juggling, vacant time
is normally less than dwell time, V ranging in our measurements from fifty to seventy per cent
of D. Of course, jugglers have great freedom in changing this ratio, especially when juggling a
small number of balls.

With a three-in-one-hand juggle, a dwell of .27 sec. against a .17 sec vacant time was
measured. With three clubs, typical figures were .52 sec dwell, .20 sec vacant and .56 sec flight
time. Clubs lead to a larger ratio of dwell to vacant time because of the need to stop a club's
rotation and start it again. At each catch the spin energy is all dissipated and must be supplied
anew at each toss. Curiously, after all of this the club is spinning in the same direction relative
to the juggler.

How Much Do Jugglers Weigh?

Watching a competition of jugglers working with eleven-pound bowling balls recently
reminded me of an old puzzle which I shall restate as follows.

Claude Crumley comes upon a canyon. He is carrying three copper clappers from his latest
caper. Claude weighs 98 kilo and each clapper 1 kilo. The bridge across the canyon can carry
100 kilo. How can Claude cross the canyon?

The intended answer is that Claude walks across doing a three-clapper cascade. I surely
hope he doesn't try this, for he would be catapulted into the canyon. All of the gravitational
forces on a juggler's objects in the air must be supported basically through his feet, by way of
the larger forces downward when he accelerates the objects upward. Put another way, the
center of gravity of the entire system, juggler plus objects, would accelerate downward were
not an average force of the weight of this system applied upward, and this can only come via
his feet. In Fig. 2, Ignatov's feet are pressing down with an average force of his weight plus
that of the eleven rings, just as surely as if he had the rings around his neck, and just as surely
as Isaac Newton sat under that apple tree.

Why Does Juggling Get So Hard So Fast?

Most people can learn to make 20 or 30 catches of a three-ball cascade within a week or
two, and some learn within a few hours. Moving up to four balls (basically two in each hand)
again is not extremely difficult. People do this in a few weeks of practice. The five-ball
cascade is a different matter indeed. I have asked many five-ball jugglers how long it took
them to learn. The answers ranged from six months to two years, and these were talented and
dedicated jugglers. Six balls, three in each hand, is again a step forward in difficulty, and seven
balls is a point that very few jugglers reach. At the 1980 Fargo convention, a competition was
held for juggling seven objects (balls, rings or clubs). Only six entered, and the longest time
registered was 5.6 seconds, twenty-six catches. A number of other seven-object jugglers are
known who were not entered or present at this convention but the number is very small,
probably less than ten. We estimate that fewer than twenty-five people in the United States can
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juggle seven objects for more than twenty-five catches.

Moving into the stratosphere, we come to the superstars of juggling. Among these is the
legendary figure Enrico Rastelli, who was famous for many complex balancing acts and is said
to have juggled ten balls. He practiced his craft as musicians do theirs, ten hours a day, and
died at only 35. The current world champion in the "numbers game" is undoubtedly the great
Soviet star of the Moscow circus, Sergei Ignatov. He juggles nine rings very securely in his
act, and can do eleven rings on occasion. Another strong contender is the American, Albert
Lucas, who started very young in a circus family and now juggles ten rings. In the picture, he
has nine rings but note also the ring rotating on his leg, the ball balanced in his mouth and that
he is balanced on one ice skate, truly an incredible juggling feat.

Why does it get so hard so fast?

To begin with, suppose a juggler requires the same dwell time and vacant time whether he
is juggling three balls or nine. From Theorem 1, thinking of all terms fixed except the number
of balls and flight time, we see that the flight time goes up linearly with the number of balls.
Now flight time, as we have seen, increases only as the square root of height of throw, which is
proportional to energy. Thus already we are facing energy and height requirements going up
roughly as the square of the number of objects juggled.

However, the situation is much worse than this. There is much painful positive feedback at
work. First, throwing objects higher will require longer dwell time to accelerate. Second, there
is always dispersion in angles of toss. With the same dispersion of angle, the dispersion of
where the objects land increases in proportion to the height of throw. The juggler, therefore,
will have increasing difficulty in catching, and consume more time. Even more serious is the
dispersion in vertical velocity of the toss. This can cause two objects, one thrown a little high
and the next a little low, to come down at almost the same time, making it impossible to catch
them both.

All of these factors must react on each other - the dispersion of angle and flight time
forces greater dwell and vacant time, which in tum requires higher throws. In the higher
numbers this vicious loop can only be controlled by the most precise throwing in height, in
angle and in tempo.

Bounce Juggling

"- things never fall upwards, you know. It's a plan
of my own invention. You may try it if you like. "

Lewis Carroll, Through the Looking Glass

Bounce juggling is an interesting variety of juggling where the balls are thrown downward
and bounced off the floor rather than tossed upward. It is possible to do all of the basic
juggling patterns - three- and five-ball cascades and the like - in this upside-down fashion.

There are pluses and minuses to bounce juggling vis-a-vis toss juggling. First, in bounce
juggling much of the energy expended on each throw is conserved. Balls of highly compressed
rubber (4'superballs") will rise to .85 of the original height. This means that the bounce juggler
must supply only 15% of the energy that the toss juggler would for a given height of throw. It
also probably implies less dispersion in both time and direction, since these tend to be
proportional to energy requirements.

On the negative side, in bounce juggling the juggler's own hands interfere with his line of
sight to the juggled balls. In addition, the part of the trajectory of the balls which we think most
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Fig. 6. "Superball" bouncing under tabletop.

optimal for prediction, namely halfway between the toss and the catch point, is now on the floor
at a very poor viewing angle. When tossing, the eyes are in a fine position for viewing the tops
of the parabolic orbits.

All told, it seems likely that bounce juggling may be easier than toss juggling, but very few
people specialize in it. I have seen bounce jugglers work five balls at less than two feet from
their bouncing surface - faster than these same jugglers could do a five-ball toss cascade.

There are other intriguing possibilities in bounce juggling. If the juggling ball has a high
coefficient of friction with the floor (as do "superballs' '), when it is thrown at an angle against
the floor a considerable fraction of the horizontal component of energy is turned into rotational
energy. If it continues and strikes the floor again, the second bounce appears to be
unexpectedly flat. More interesting, however, is to let it hit the underside of a table, Fig. 6.
The rotational energy then causes it to very closely return on its original path, bounce again on
the floor and return very closely to the hand that threw it. It is possible to bounce juggle several
balls this way under a tabletop. Since each one makes three loud clicks on each throw, the
audible effect approaches that of a drumroll.

In other words, this situation is a kind of boomerang where one can throw the ball quite
arbitrarily and ·it will come back to the same place except for a slight drop. This is something
of a juggler's delight, except that each ball returns to the hand that threw it. To get to the other
hand, as in a normal cascade, requires moving the other hand to where the throwing hand was.

A generalization of this automatic return in bounce juggling which, however, gives
interchange of hands can be constructed as follows.

If a light ray starts from one focus of an ellipse it will reflect back to the other focus. If that
eJJipse is rotated about its major axis we have a prolate spheroid, and the light ray from one
focus in any direction in three-dimensional space win be reflected back to the other focus.

Although balls do not reflect exactly like light rays, their behavior is fairly close. Imagine a
reflecting dish about 20" long by about 18" wide shaped as a portion of a prolate spheroid.
The two foci would be about 4" above the surface where the juggler's hands normally are. He
can throw a ball anywhere with one hand so long as it hits the dish, and it will automatically
come back to the other hand!



The Use of the Lakatos-Hickman Relay in a
Subscriber Sender*

Claude E. Shannon

Abstract

A study is made of the possibilities of using the Lakatos-Hickman type relay for the
counting, registering, steering, and pulse apportioning operations in a subscriber sender.
Circuits are shown for the more important parts of the circuit where it appears that the
new type of relay would effect an economy.

* Bell Laboratories Memorandum, August 13, 1940.
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A Study of the Deflection Mechanism
and Some Results on Rate Finders*

Claude E. Shannon

Summary

1. The deflection mechanism may be divided into three parts. The first is driven by two
shafts and has one shaft as output, which feeds the second part. This unit has a single
shaft output which serves as input to the third part, whose output is also a single shaft,
used as the desired azimuth correction.

2. The first unit is a simple integrator. Its output rate is

. Ro
y = ra- t p .

Rp

3. The second part is the same circuit as previous rate finders. Its presence appears to be
detrimental to the operation of the system from several standpoints. The output e of this
part satisfies

e=x+y,

R 1 •
-x+x==y.
L)

4. The third and most important part of the machine satisfies

. L ..
Sq+Rq+ q=e

~ 1 .2-q

in which

e = an input forcing function which, except for transients in the second part and
other small effects, is the function whose rate is to be found,

q = the rate of e as found by the device (the output of the mechanism is sin - I q),

R, L, S are positive constants depending on the gear ratios, etc. in the machine.

5. The mechanism therefore acts like an R, L, C circuit in which the differential inductance
is a function of the current

L

....),-/
The system can be critically damped for differential displacements near at most two
values of the current.

* Report to National Defense Research Committee, circa April 1941.
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6. Omitting the effect of backlash, the system is stable for any initial conditions whatever,
with a linear forcing function e = At + B. It will approach asymptotically and possibly
with oscillation a position where q is proportional to e. An error function can be found
which decreases at a rate - R(q - qO)2, qo being the asymptotic value of q.

7. If the system is Jess than critically damped, ordinary gear-play play type of backlash can
and will cause oscillation. This includes play in gears, adders, lead screws, rack and
pinions and looseness of balls in the integrator carriages. The oscillation is not unstable
in the sense of being erratic, or growing without limit, but is of a perfectly definite
frequency and amplitude. This type of backlash acts exactly like a peculiarly shaped
periodic forcing function. Approximate formulas for the frequency and amplitude of the
oscillation are

and

I =
... / R 2 + (WOLD __1_)2\I (Ooe

B I and B 2 being the amounts of backlash in the two driven shafts as measured in a
certain manner.

8. Elastic deformations of shafts and plates can be divided into two parts. One is exactly
equivalent to the gear type of backlash and may be grouped with B I and B 2 above. The
other has the effect of altering the parameters R, L, C of the circuit and also adding
higher order derivatives with small coefficients. This will slightly alter the time constant
and the natural frequency of the system.

9. The manner in which the arcsin function is obtained seems to me distinctly
disadvantageous to the operation of the system for a number of reasons, chiefly since to
eliminate backlash oscillation it requires high overdamping near q = 0 and this slows
down the response for low target speeds.

10. The general problem of rate finding and smoothing is considered briefly from two angles
- as a problem in approximating a certain given transfer admittance and as a problem in
finding the form of a differential equation. The first method based on a linear differential
equation leads to tentative designs which I think would be an improvement over the
present one. The second method indicates the possibility of still more improvement if
non-linear equations can be satisfactorily analyzed.



Backlash in Overdamped Systems-

Claude E. Shannon

Abstract

In the report "A study of the deflection mechanism and some results on the rate
finder" it is shown that backlash will cause sustained oscillation in a second order
mechanical system, providing the equation is less than critically damped. The question
of overdamped systems was not completely settled. The present paper is a new attack on
this problem.

* Report to National Defense Research Committee, June 26, 1941.
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Some Experimental Results on the Deflection Mechanism-

Claude E. Shannon

Abstract

In a previous report, "A Study of the Deflection Mechanism and Some Results on
Rate Finders," a mathematical study was made of a new type of deflection mechanism.
The present paper is a further study of this device and a report on some experimental
results obtained on the M.I.T. differential analyzer.

* Report to National Defense Research Committee.June 8, 1941
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The Transient Behavior of a Large Number of Four-Terminal
Unilateral Linear Networks Connected in Tandems

c. L. Dolph and Claude E. Shannon

Abstract

Asymptotic expressions for the transient response of a long chain of four-terminal
unilateral linear networks connected in tandem subject to an initial disturbance are
developed and classified according to the characteristics of the common transfer ratio. It
is shown that a necessary and sufficient condition for the stability of the chain for all n is
that the transfer ratio be of the high pass type.

The mathematical results are applied to chains of self-regulating telephone repeaters.

* Bell Laboratories Memorandum, April )0, 1946.

870



Review of "Transformations on Lattices and Structures
of Logic," by Stephen A. Kiss*

Claude E. Shannon

Published (1948) by Stephen A. Kiss, u E. 92 St., New York 28, N.Y. 315 pages + 4-page
index + 2-page bibliography + x pages. 6 figures. 7 x 10.

Mathematics develops by successive abstraction and generalization. Modem algebra is
particularly subject to this tendency, with many of its concepts, such as those of group and
lattice, now permeating the entire range of mathematical thought. In this book Dr. Kiss
develops a generalization of Boolean algebra based upon its lattice theoretic properties.
Naturally such a work will be of principal interest to the logician and the pure mathematician.

The book falls into three main parts of about the same length. The first consists of an
orderly exposition of the pertinent results from modem algebra and lattice theory. In the
second part the author defines his generalized Boolean algebras with 4, 8, 16 or generally 2n

elements, and develops their algebraic and lattice theoretic properties. These algebras have a
natural and elegant mathematical structure. The third part of the book is an exposition of the
calculus of classes and of propositions, and an application of the preceding algebraic theory to
an extension of these fields.

Classical Boolean algebra and the calculus of propositions have been applied in such fields
as switching theory and the study of nerve networks, and it is possible that the author's
extensions of these disciplines may find similar applications. Dr. Kiss conjectures that an
adequate description of physical and biological phenomena require 4 and 16 class logics,
without, however, developing this thesis. At any rate, considered as a purely algebraic theory,
the author has added a significant contribution to mathematical literature.

* ProceedingsInstitute of Radio Engineers, volume 37,1949.
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Review of "Cybernetics, or Control and Communication in the
Animal and the Machine," by Norbert Wiener*

C. E. Shannon

Published (1948) by John Wiley and Sons, Inc., 440 Fourth Ave., New York 16, N. Y. 194
pages. 6 x 9 1/4. $3.00.

The last decade has seen a considerable amount of research in a number of closely related
fields centering on the general problems of communication and control. The development of
large-scale computing machines, of fire-control equipment with its complex predicting and
servo systems, and research in communication theory and the mathematics of the nervous
system are all parts of this general trend. Professor Wiener has coined the word "cybernetics"
from the Greek word for "steersman" to cover this rapidly growing branch of science.
Communication engineers have a charter right and responsibility in several of the roots of this
broad field and will find Wiener's treatment interesting reading, filled with stimulating and
occasionally controversial ideas.

After a lengthy introduction in which he relates his own association with the problems of
cybernetics, the author presents some of his central theses: the essential unity of the various
disciplines involved, and the need for cross fertilization. Wiener sees the present historical
period as one of a second industrial revolution, a revolution in which machines take over the
more routine and clerical types of mental work. His outlook for an easy adaptation to this
change is justifiably somewhat pessimistic.

His first three chapters are concerned with the relation of statistical theory to the problems
of cybernetics. Communication systems, and information processing devices generally, must
operate on a statistical ensemble of possible inputs, and the statistical aspects are of paramount
significance in the newer theories. One important result of this approach is Wiener's theory of
linear least square filters and predictors, of which a summary is given. Wiener also considers
some other questions in information theory and makes the interesting conjecture that the
paradoxes of the "Maxwell demon" can be resolved by taking into account the information
received by the "demon" in entropy calculations. If this could be given experimental
verification, it would be of considerable significance in statistical mechanics.

The remainder of the book deals for the most part with problems of the nervous system and
analogies between it and computing machines. The author stresses the importance of the
feedback concept in understanding teleological behaviour. Many interesting parallels can be
drawn between certain nervous diseases, such as ataxia, and unstable oscillations of a servo
system. Other pathological conditions are analogous to failures of the internal memory of a
computer.

The book, unfortunately, contains numerous misprints, some of which, in the mathematical
sections, make for difficult reading. There are also a few errors of the over-simplified
statement, for instance the attempt to construct an arbitrary ensemble from a Brownian motion.

* Proceedings Institute ofRadio Engineers, volume 37, 1949.
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These criticisms, however, are minor. Professor Wiener, who has contributed much to
communication theory, is to be congratulated for writing an excellent introduction to a new and
challenging branch of science.



Review of "Description of a Relay Calculator," by the
Staff of the [Harvard] Computation Laboratory-

Claude E. Shannon

Published (1949) by the Harvard University Press, Cambridge, Mass. 264 pages + 512 -page
index + xvi pages + 37-page appendix. 210 figures. 8 x IDyl. $8.00.

The Harvard Computation Laboratory, under the direction of Professor H. H. Aiken, has
designed and constructed three large-scale digital calculators. The first of these, Mark I, was
described in Volume I of the Annals of the Computation Laboratory. The book under review is
Volume 24 in the series and describes the Mark II calculator, which is now in use at the
Dahlgren Naval Proving Ground. The recently completed Mark III, largely an electronic rather
than relay calculator, will be covered in a later volume.

The Mark II contains some 13,000 relays and is controlled by a routine from punched tape.
The speed of elementary operations is as follows: addition, 0.2 sec.; multiplication, 0.7 sec.;
division, 4.7 sec.; tape reading, 1.5 sec.; determination of elementary functions, 5-10 sec.
Numbers are represented by the "floating-decimal" method, i.e., ±p . IOn with p given to ten
significant figures and n ranging from -15 to + 15. The machine is divided into two identical
parts which can be used either independently for two problems or together for one.

After describing the general functional organization of the calculator, each of the
components is treated in detail down to individual circuit diagrams. The relay circuits involved
are often ingenious and exhibit nicely the amazing versatility of these elements. The final
chapters deal with operation and problem preparation for the machine. Various general
observations scattered through the text will be of interest, for example, the statement that
number transfers, additions, and multiplications occur in the approximate ratio 3:2: 1.

The book is well illustrated and the style clear and straightforward, if perhaps a trifle dry.
Those interested in the design and operation of computers will find it a valuable reference
volume, not only in connection with the Mark II calculator, but also with regard to general
questions of programming, checking, and methods of implementation that arise with any
computer.

* Proceedings Institute ofRadio Engineers, volume 38, 1950.
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The Relay Circuit Analyzer*

Claude E. Shannon and E. F. Moore

Abstract

This memorandum describes a machine (made of relays, selector switches, gas
diodes, and germanium diodes) for analyzing several properties of any combinational
relay circuit which uses four relays or fewer.

This machine, called the relay circuit analyzer, contains an array of switches on
which the specifications that the circuit is expected to satisfy can be indicated, as well as
a plugboard on which the relay circuit to be analyzed can be set up.

The analyzer can (1) verify whether the circuit satisfies the specifications, (2) make
certain kinds of attempts to reduce the number of contacts used, and also (3) perform
rigorous mathematical proofs which give lower bounds for the numbers and types of
contacts required to satisfy given specifications.

* Bell Laboratories Memorandum, March 31, 1953.
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The Relay Circuit Synthesizer*

Claude E. Shannon and E. F. Moore

Abstract

The Relay Circuit Synthesizer is a machine to aid in switching circuit design. It is
capable of designing two terminal circuits involving up to four relays in a few minutes.
The solutions are usually minimal. The machine, its operation, characteristics and
circuits are described.

* Bell Laboratories Memorandum, Nov. 30. 1953.
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[1] A Symbolic Analysis of Relay and Switching Circuits

This is Shannon's prize-winning Master's thesis, already mentioned in the biography and
interviews at the beginning of this collection and in the Preface to Part B. Shannon returned to
this subject in several later papers, notably [50]. In the following years a large number of
books appeared, dealing with the problems of constructing an efficient circuit to realize a given
switching function - see for example Caldwell [Cald58], Harrison [Harr65], Hermie [Henn68],
Keister, Ritchie and Washburn [KeRW51], McCluskey [McC165] and Phister [Phis58]. More
recent books are Davio, Deschamps and Thayse [DaDT78], McCluskey [McCI86], Mead and
Conway [CoMe80] and Roth [Roth80). At the present time, more than fifty-four years after the
paper was written, the subject has developed to a point which is hard for the mind to grasp. In
1992 it is possible to manufacture a large-scale integrated circuit containing hundreds of
thousands of gates on a single chip, with an automated process that takes as input the logical
specification of the desired circuit and produces the chip as output (see for example [LSI91 ]).

The following hitherto unpublished Bell Laboratories memorandum of Oct. 14, 1940, by
John Riordan, provides a correction to the first theorem in Section IV of the paper (see also the
footnote to paper [50]).

Series-Parallel Realization of the
Sum Modulo Two of n Switching Variables

This memorandum gives a correction to a theorem in Shannon's paper "A
Symbolic Analysis of Relay and Switching Circuits," relative to the series-parallel
realization of the sum modulo two of n switching variables (defined below).

The theorem is in Section IV and reads as follows:

Theorem: The two functions of n variables which require the most elements in
series-parallel realization are the sum modulo two and its negative, each of
which requires 3.2/1 - I - 2 elements.

It will be shown below that the sum modulo two of n variables and its negative
each may be realized by a series-parallel circuit having at most ( 10/9) n:2 elements.
It is not difficult to see that there are functions requiring more elements than this in
series-parallel realization: in fact, this is required by Shannon's theorem (in his
memorandum \'The Synthesis of Two Terminal Switching Circuits") that almost all
functions of n variables with 11 large require N elements where N is of the order of
211

111, but it appears difficult to identify the function requiring the most elements in
series-parallel realization. The number 3.2"- I - 2 appearing in the theorem remains
as the least upper limit known to the number of elements required in series-parallel
realization of an arbitrary function of n variables.

If X I and X 2 are switching variables, their sum modulo two and its negative are
defined by

XlOX 2 = X I X; + X~ X2 '

(X lOX 2 )' = X I X:2 + X~ X; .

As pointed out by Shannon the sum is associative so that in the case of 11 variables
parentheses may be distributed arbitrarily.
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In Shannon's proof, parentheses are placed around the sum of the first n - 1
variables, hence the validity of the proof as relating to sums modulo two depends
upon invariance in the number of elements when parentheses are placed otherwise.
This is untrue for 11 > 3; e.g., n = 4, denoting the variables X) to X 4 by their
subscripts only:

(1 02 03)04 = (12' + 1'2)3' + (12 + 1'2')3]4' + [(12' + ]'2)3 + (12 + 1'2')3']4,

(}02)0(3 04 ) = (12' + .'2)(34 + 3'4') + (12 + 1'2')(34' + 3'4) ,

requiring, respectively, 22 and 16 elements.

In general, if S II is the number of elements for 11 variables,

5/1 = 2(Sk + s,,-k), k = I, 2... n-l .

It turns out that least values are obtained for k = r11/ 2J (with brackets indicating
~ ~ integra] part of"). Hence

52m == 2(5 111 + sm) = 2s m '

S 2m +, = 2(S m + 1 + s 111) ,

and

where ~ is the differencing operator defined by the last expression.

From these and the initial values S J == 1, s 2 = 4, S J = 10,

s/1=4~+3r'2~, n=2~+r, 2~~n<2~+',

= (l1-r)2 + 3,.(n -r) = 11 2 + 1"11 -2r2 .

For fixed 11, the last expression attains its maximum for r = 11/4, i.e., SI/ = (9/8)n 2
,

but this value of r is impossible for n integral since 11 - r = 2". Looking only at the
terms involving r, namely r(11 - 2r), the sum of the factors is n rr F = 2k, a constant
for given k, and the maximum is attained for r = 11 - 21' or 31' == 11; the
corresponding value of 5" is (10/9) n 2

• Hence

2 < < 10 '2n - SI/ - 9 n ,

the lower limit being attained for r = 0, i.e., 11 = 2k
•

J. Riordan

[6] Mathematical Theory of the Differential Analyzer

This paper is based on Shannon's work at M.I.T. on the Bush differential analyzer, a
mechanical analog computer for solving differential equations, and establishes the basic theory
of such machines. Most analog computers today are electronic, not mechanical - see for
example Johnson [John63], or Kom and Kom [KorK72]. So are mechanical computers still of
any interest? Well, yes, as is illustrated by an article in today's New York Times (Sunday, May
10, 1992, Section I, page 16) describing a 184-foot Soviet patrol-boat, built in 1985. The main
computer on this ship is a mechanical computer using shafts and gears, apparently of the type
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described in [6] and [13].

[13] The Theory and Design of Linear Differential Equation Machines
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A greatly expanded version of the preceding paper. This was originally a restricted war-time
report written for the National Defense Research Committee, dated January )942. It was
declassified in Sept. 1946, and is published here for the first time.

[14] (With John Riordan) The Number of Two-Terminal
Series-Parallel Networks

The paper by MacMahon in which this problem was first studied (mentioned in Footnote I) has
been reprinted in [MacM78], pp. 617-619. This is Shannon's second published paper, and is
also one of earliest papers on combinatorics by his colleague John Riordan. Riordan later wrote
two very highly praised books on combinatorics [Rior58], [Rior68]. The enumeration of
series-parallel graphs is treated in the first of these books. Incidentally the numbers S n of
series-parallel graphs on n nodes and the associated numbers t n are Sequences 466 and 989 in
[Sloa73] (see also [Sloa92]). There have been many subsequent papers on the enumeration of
series-parallel graphs - see, for example, Carlitz and Riordan [CaRi56], Lomnicki [Lomn72]
and Meir and Moon [MeM090]. Moon [Moon87] gives the asymptotic formula

as 11 ~ 00, where D = 0.2063 ... and S = 0.2808....

[42] Network Rings

A hitherto unpublished Bell Laboratories memorandum, dated June 11, 1948. The topological
formula for the admittance of an electrical network stated in the first paragraph, and attributed
to "a group of Chinese scientists," is in fact much older and is probably due to J. C. Max well
([Maxw92], Vol. I, pp. 403-410). There is an excellent treatment of the topological approach to
the analysis of electrical circuits in Seshu and Reed [SesR61].

[44] A Theorem on Coloring the Lines of a Network

Shannon first stated this result in an unpublished Bell Laboratories memorandum dated July 8,
1940 (see item [2] of his Bibliography). In current graph-theory terminology, the theorem
states that the edge-chromatic number of a multigraph without loops and with maximal degree
m is at most [3m/2] - see Berge [Berg73], p. 262. For other results on the edge-chromatic
numbers of graphs see for example Berge [Berg?3], Chap. 12; Bondy and Murty [BonM76J,
Chap. 6; and Harary [Hara69], Chap. 12.

[50] The Synthesis of Two-Terminal Switching Circuits

A sequel to [I] - see the notes to that paper. The error in rI] mentioned in the footnote on
page 22 was discussed in those notes.

[54] Programming a Computer for Playing Chess

The seminal paper on computer chess. An excellent account of the current state of computer
chess may be found in the book edited by Marsland and Schaeffer [MarS90]. Chapter I
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[Mars90) gives a brief history, and states that
••Shannon's inspirational work was read and re-read by computer-chess
enthusiasts, and provided a basis for most early chess programs. Despite the
passage of time, that paper is still worthy of study. "

The current computer chess world champion is the machine •'Deep Thought" - see
[Hsu87J, [HsuA90], [HsuA90a].

[55] A Chess-Playing Machine

A popularization of the preceding paper which first appeared in the Scientific American,
February 1950, and was later reprinted in James R. Newman's World of Mathematics (Simon
and Schuster, New York, 1956, Vol. 4, pp. 2]24-2133). The latter version is reproduced here.

~

[70] Presentation of a Maze Solving Machine

This paper appeared in the proceedings of a cybernetics conference. The format is explained by
the editors (Heinz von Foerster, Margaret Mead and Hans Lukas Teuber) as follows.

· 'To the reader of this somewhat unusual document, a few words of
explanation, and caution. This is not a book in the usual sense, nor the
well-rounded transcript of a symposium. These pages should rather be
received as the partial account of conversations within a group, a group
whose interchange actually extends beyond the confines of the two day
meeting reported here. This account attempts to capture a fragment of the
group interchange in all its evanescence, because it represents to us one of
the few concerted efforts at interdisciplinary communication."

Later in the introduction they refer to
•.. . . the construction of such likable robots as Shannon's electronic rat
described in this volume. The fascination of watching Shannon's innocent
rat negotiate its maze does not derive from any obvious similarity between
the machine and a real rat; they are, in fact, rather dissimilar. The
mechanism, however, is strikingly similar to the notions held by certain
learning theorists about rats and about organisms in general. Shannon's
construction serves to bring these notions into bold relief."

Figure 2, showing Shannon and his mouse (or rat), was not part of the original article but is
a Bell Laboratories photograph from May ]952. The caption on the reverse side of the
photograph says

"In 1952., Claude E. Shannon of Bell Laboratories devised an experiment to
illustrate the capabilities of telephone relays. Here, an electrical mouse finds
its way unerringly through a maze, guided by information 'remembered in
the kind of switching relays used in dial telephone systems. Experiments
with the mouse helped stimulate Bell Laboratories researchers to think of
new ways to use the logical powers of computers for operations other than
numerical calculation."

For recent developments in electric mice the reader is referred to the accounts of various
"Micro-Mice" competitions that are held from time to time. One such competition is
described by Allan [Alan78J.
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[73] A Mind-Reading (?) Machine

881

Hagelbargers machine is described in [Hage54). For a description of what happened when the
two machines played against each other, see "Game playing machines" [99].

[75] The Potentialities of Computers

A hitherto unpublished Bell Laboratories memorandum, dated April 3, 1953. This is a paper to
be read at a conference, but we have been unable to identify the name of the conference. (The
speaker after Shannon, however, was Louis N. Ridenour.)

[76] Throbac I

We have printed the text of [76] and the circuit diagram from [77], but have omitted the lengthy
description of the circuit given in [77].

[85] (With D. W. Hagelbarger) A Relay Laboratory Outfit for Colleges

If all the computers in the world broke down, how many people today could build a machine to
play tic-rae-toe. or read Morse code? Even in 1954 Bell Labs was finding it difficult to recruit
electrical engineers with an adequate knowledge of switching circuit design. This
memorandum describes a relay kit with which students can build machines to

• play nim,

• perform binary or decimal addition,

• calculate the day of the week from the data (a perpetual calendar machine),

• play tic-tac-toe,

• control an elevator,

• act as a telephone exchange with four customers.

• solve the Tower of Hanoi puzzle,

• play the penny matching game (see also paper [11 ])~

• encode and decode Morse.

A later version of this kit is described in [Hage55]. Figures 1. 2 are actually taken from
(Hage55J, since the original photographs accompanying [85] were unavailable.

[93] A Universal Turing Machine with Two Internal States

The main theorem of this paper, that a universal Turing machine can be constructed with just
two internal states, is (as Shannon proves) the best possible result, since a one-state machine is
impossible.

In connection with the final section of this paper, J. H. Conway has pointed out that it is
possible to strengthen the result slightly, by proving that a universal Turing machine can be
constructed in which only O's and I 's appear on the tape and no more than four I's appear on
the tape at any given time.
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[94] (With Karel de Leeuw, Edward F. Moore and N. Shapiro)
Computability by Probabilistic Machines

There has been a great deal of subsequent work on the subject of this paper. See for example
Gill [Gi1l77]~ and, for a recent survey, Johnson [John90].

[97] The Simultaneous Synthesis of s Switching Functions
of n Variables

A sequel to (50J.

[99] Game Playing Machines

A survey of a number of game-playing machines, including Shannon's penny-matching and
maze solving machines (see (I O]~ [11]), as well as the Moore-Shannon machine for playing
Hex, which is not mentioned elsewhere.

[11] (With Peter Elias and Arniel Feinstein) A Note on the Maximum Flow
Through a Network

This is a version of the "max-flow min-cut" theorem, one of the most important results in
graph theory. It was discovered independently and at around the same time by Ford and
Fulkerson [ForF56J, [ForF62). See Berge ([Berg?3), Chap. 5), Harary (lHara69], Chap. 5).

[89] and [90] (With Edward F. Moore) Reliable Circuits Using Less
Reliable Relays

Originally entitled "Reliable circuits using crummy relays" 188], rumor has it that the title was
changed at the request of the Bell Laboratories Public Relations department. The paper is a
sequel to that of Von Neumann [VonN561 (described in the following paper). The main result
is the following. Given an unreliable relay, let a (resp. c) be the probability of a contact being
closed when its coil is energized (resp. not energized). As long as the contacts are statistically
independent and a :F- c, it is possible to construct networks out of these relays with reliability
arbitrarily close to I.

Naturally, in view of the importance of this subject for computer design, there have been a
large number of sequels and related papers. See in particular Pippenger [Pipp88 J, Feder
(Fede89), and Winograd and Cowan lWinC63j. We cannot resist quoting the first paragraph of
the latter:

~ 'One of the most interesting theoretical questions involved in the design of
programs for the construction of reliable automata from less reliable
modules has been the possible relevance to the problern of information
theory and of coding theory. J. von Neumann's original demonstration of
the process whereby reliable automata could be constructed from highly
redundant modular assemblies utilized a very primitive error-correcting code
and the law of large numbers. The result did not seem to be consistent with
the central theory of information theory, C. E. Shannon's noisy-channel
coding theorem. This theorem specifies a limit to the redundancy required
to obtain any given level of reliable communication through a noisy channel,
given sufficiently complex encoding and decoding equipment, and proves
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the existence of at least one error-correcting code, with redundancy close to
but not less than this limit. that exhibits such reliability. It is the purpose of
this monograph to show how this coding theorem may be extended to
include the case of computation with noisy modules rather than
communication, and how error-correcting codes may be employed in the
design of programs for constructing reliable automata from less reliable
modules, despite even occasional mistakes in the wiring diagram. "

[114] Von Neumann's Contribution to Automata Theory
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References I to 10 have been reprinted in Volume V of Von Neumann's Collected Papers
[VonN61 ).

[120] Computers and Automation-
Progress and Promise in the Twentieth Century

A talk given at Rice University on October 12, 1962, as part of a symposium on Man, Science,
Learning and Education.

[126] Scientific Aspects of Juggling

The following comments are based on information kindly provided by J. P. Buhler (Reed
College) and R. L. Graham (AT&T Bell Laboratories).

This article was written in late 1980 and early 1981. It was solicited by, and intended to be
published in, Scientific American, but for various reasons was never finished. It was widely
circulated in typescript form, and influenced a number of people interested in various aspects of
juggling. It was written after Shannon returned from the 1980 juggling convention; some of the
names of the top performers and estimates of the current state of the art are therefore out of
date. As often happened in his career, Shannon was ahead of his time. In the last few years
several articles, books, and a respectable Ph.D. thesis on juggling have appeared - see, for
example, Austin [Aust76], Beek [Beek88], [Beek89], Buhler and Graham [BuhG84], Donner
and Jameson [DonJ], Graham and Buhler [GraB 82], Magnusson and Tiemann {MaTi89],
Truzzi [Truz79], and Ziethen and Allen [Zie85]. Beek [Beek89] refers to the equation given in
Theorem 1 of this article as the "common equation of juggling. ' ,

The text has been slightly edited. Shannon also intended to include several more
illustrations, but these were not available and references to them in the text have been deleted.

[5] The Use of the Lakatos-Hickman Relay in a Subscriber Sender

Unpublished Bell Laboratories memorandum of August 13, 1940. Only the abstract is
included.

[7] A Study of the Deflection Mechanism and
Some Results on Rate Finders

This and the following two items are unpublished war-time reports dealing with aspects of the
mechanical differential analyzer (compare [6], [13 D. Only the abstracts are included.
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See preceding item.

[8] Backlash in Overdamped Systems

C. E. Shannon

[11] Some Experimental Results on the Deflection Mechanism

See notes to [7].

[30] (With C. L. Dolph) The Transient Behavior of a Large Number of
Four-Terminal Unilateral Linear Networks Connected in Tandem

An unpublished Bell Laboratories memorandum of April 10, )946. Only the abstract is
included.

[74] (With E. F. Moore) The Relay Circuit Analyzer

A Bell Laboratories memorandum, which was subsequently revised and published as (80J.
Only the abstract is included.

[84] (With E. F. Moore) The Relay Circuit Synthesizer

Unpublished Bell Laboratories memorandum of Nov. 30, )953, a sequel to the preceding item.
Only the abstract is included.
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An Algebra for Theoretical Genetics*

Claude E. Shannon

Abstract

In this thesis, an algebra is constructed for studying the dynamics of Mendelian populations.
The symbols of the algebra represent groups of individuals or populations. The indexed
symbol AJi. for example, represents a population in which two gene loci are under
consideration (the number of loci corresponds to the number of pairs of indices). The number
of allelomorphs in each locus is completely arbitrary, as is the recombination value for the loci.
The different components of a population symbol, represented by fixing the indices at specific
values, are numbers whose values correspond to the fractions of the population with certain
genetic formulae. It is convenient in some cases to consider as populations symbols whose
components are negative or even complex. Such symbols cannot, of course, represent an actual
group of individuals and are called unrealizable populations, but their use sometimes facilitates
the solution of problems.

Addition of two population symbols, RA J£ + SJl j j, results in a third population symbol
which is defined in such a way as to represent the population obtained by merely combining the
original populations in fractional proportions corresponding to the scalar coefficients Rand S.
Cross multiplication of population symbols Aj1x J.l jt gives a population symbol which is
defined in such a way as to represent the expected offspring population when the two original
populations are crossmated at random. When two gene loci are considered, this is realized by
the mathematical definition

Ajt x Jl j1 = 'h [p 0 A:'! + P I A~ r][p 0 Jl!~ + P I Jl!k]

1/[ "'1 j k "1 j.][ hi h.]+ /2 Po"-.. + P 1"- • k PoJl•• + P 1Jl • i

in which p) = 1 - Po is the recombination value for the two loci, and replacing an index by a
dot indicates summation of the population symbol on that index. Cross multiplication is
defined analogously for n loci. It is shown that this algebra is commutative on addition and
multiplication, distributive, and associative on addition but not on multiplication. These laws
together with two fundamental manipulation theorems: one, that summation of a population on
all indices gives unity and two, that inverting the upper and lower rows of indices of a
population leaves it unchanged, form the basic algorithms of the algebra.

A number of the well known theorems of theoretical genetics are easily proved by means of
this algebra. In addition, a number of new results are found. Completely general formulae for
the nth generation offspring under random intennating of an arbitrary initial population are
developed both for the cases of two and of three linked factors. For two linked factors, the
formula for the nth generation is

~ Jk = [Po- 1(p 0 A. : ~ + P I A: i) + (I - Po- I ) A: : A: ~ ]

[Po-I (PoA! ~ + PI AJ:k) + (I - Po-I) A. ~: A::]

* Ph.D. Dissertation, Massachusetts Institute of Technology, 1940.
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in which A71 is the initial population and P I the recombination value. Incidental to this, it is
shown that a recombination value> Y; is impossible when there is no interference. Conditions
are found for the stability under random intermating of a population when one or more loci are
considered. For the case of one locus, three sets of equivalent necessary and sufficient
conditions are established.

By means of certain homogeneous y populations an arbitrary population may be expanded
in a finite series displaying its various components. This expansion, together with the
multiplication law for the y populations, displays the elements of this algebra as hypercomplex
numbers. It is shown that an arbitrary population may be expanded uniquely as a sum of any n
linearly independent populations where n is the number of different possible genetic formulae'
for the factors considered.

It is possible to write down various types of equations involving known and unknown
populations using the operations of addition and cross multiplication. In general, such an
equation can be interpreted as a breeding experiment involving one or more unknown
populations and resulting in a genetically known population. Methods are developed whereby
most such equations can be solved in case a solution exists. Briefly this method of solution
may be summarized as follows. By summing on one or more indices of the unknown
populations, enough data about them is obtained to uniquely determine any cross products in
which they appear. The cross product terms in the original equations then become known and
the equations may be solved in exactly the same way as ordinary linear algebraic equations.

In case a selective action exists favoring individuals of a certain genetic constitution, the
previous formulae for stability no longer hold. Although this more difficult problem has not
been completely solved, a necessary condition for the possible existence of a stable population
under an arbitrary given selective action is established, and a formula for this population is
developed. This has only been done for the case of a single locus.

A start has been made toward the development of a calculus of populations, i.e., the study
of populations which may vary continuously with time. The time derivative of a population is
defined. The derivative of a population, although an indexed symbol, is not itself a population.
All the ordinary rules of derivation including the Leibnitz rule for the derivative of a cross
product of populations are shown to hold true. Also, a population may be expanded in a Taylor
series in powers of time, of the same fonn as the ordinary Taylor series.

I. Introduction

In this paper an attempt will be made to develop an algebra especially suited to problems in
the dynamics of Mendelian populations. Many of the results presented here are old in the
theory of genetics, but are included because the method of proof is novel, and usually simpler
and more genera] than those used previously.

For the benefit of readers who are not familiar with modern genetics theory, we will first
give a brief factual summary of those parts of it which are necessary for our work. Although all
parts of the theory have not been incontestably established, still it is possible for our purposes
to act as though they were, since the results obtained are known to be the same as if the simple
representation which we give were true. Hereafter we shall speak therefore as though the genes
actually exist and as though our simple representation of hereditary phenomena were really
true, since so far as we are concerned, this might just as well be so. We will omit from
consideration mutations and phenomena in the sex chromosomes.

Hereditary traits are transmitted by small elements called genes. These genes are carried in
rodlike bodies known as chromosomes, a large number of genes lying side by side along the
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(1)

length of a chromosome. Chromosomes occur in pairs and an individual obtains one
chromosome of each pair from his mother and the other from his father.

By the genetic constitution of an individual we mean the kind and location of the genes
which he possesses. If we represent the different genes by letters, then we may write a genetic
formula for an individual. Thus considering two chromosome pairs and four gene positions in
each chromosome, an individual might have the formula

AI B 1 C3 0 5 E4 F 1 0 6 HI
A 3 B I C4 0 3 E4 F 2 0 6 H 2

Here the series A I B I C 3 D 5 represents one chromosome, with A 3 B I C 4 0 3 the
corresponding one of the first pair. A I , B 1 , C 3, D 5, A 3, B I , C 4, D 3 are the genes lying in
the positions under consideration. E 4 FIG 6 H I and E 4 F 2 G 6 H 2 are the two
chromosomes of the second pair. We will sometimes write a genetic formula in one line. Thus
(I) would be written:

A I A 3 BIB I C 3 C4 0 5 D 3 E4 E4 F I F 2 G 6 G 6 HI H 2

alternate letters being taken from the top and bottom lines of ( I).

There is no essential ordering of chromosomes in a pair. That is to say the top and bottom
lines of the formula for a chromosome pair may be inverted and still represent the same
individual. Thus the formula (1) is identical, for example, with the following:

A 3B 1C4D 3 E4F 1G6H 1

A tB tC3Ds E4F2G6H 2

in which we have inverted the first pair.

Certain simple traits are controlled by only one pair of genes lying at analogous points in
corresponding chromosomes. Two such corresponding points in a chromosome pair are known
as a gene locus, and the different genes which may occupy one locus are known as
allelomorphs or more shortly as alleles. In our example (1) the positions occupied by genes C 3

and C 4 constitute a locus. We shall adopt the convention that allelomorphic genes shall have
the same base letter with different subscripts. Thus C I , C 2, C 3, C 4, C 5 represent five alleles.
A C gene can only occur in the locus corresponding to C genes.

The appearance of an individual depends only on the kinds of genes, not on their positions.
Thus an individual with the formula

AI B I C 4 D 3

A 3 B I C 3 D 5

E4 F I G6 H2

E4F2G6H 1

would appear (insofar as the characteristics controlled by these genes are concerned) the same
as (1). He would, however, breed differently as will appear later. Two such individuals are
said to be phenotypically the same with respect to these characteristics. They are genotypically
different; they have different genetic formulae with respect to these loci. Such a situation can
occur in a different way. In garden peas there are two alleles which control the size of the
plant. These genes we may represent by A I and A 2. If a plant has two A I genes, it will be
tall. If it has two A 2 genes, it will be a dwarf. A plant with one A I gene and one A 2 gene is
tall, since the gene for tallness (A I ) is, as we say, dominant over the recessive gene (A 2 ) for
shortness. Thus A I A I plants and A I A 2 (or A 2 A I) plants are phenotypically the same but
genotypically different with respect to tallness.

As we stated above, an individual receives one chromosome of each pair from the
corresponding pair possessed by his mother and the other from that of his father. Let us now
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consider a pair of chromosomes possessed by a parent. In case a phenomenon known as cross-
over does not occur in the chromosome pair under consideration, an offspring receives an entire
chromosome selected at random from these two. We say that the genes in the chromosome are
linked together, meaning that they tend to be transmitted as a body. Genes located close
together in the same chromosome are closely linked; the greater the distance between them, the
weaker the linkage. Let us suppose that an individual has the genetic formula represented as
follows

for a pair of corresponding chromosomes. Now, as we have said, in case crossover does not
occur, an offspring of this individual will receive either the series

A I B 2 C3 D3 E4 FIG I or A 2 B 2 C 2 DIE 6 FIG 2

and he is equally likely to receive either of these. However, it may happen that a crossover
occurs between these chromosomes. If this crossover occurred, for instance, between the C and
D loci, he would receive either

There is a definite probability that a crossover will occur between any two gene loci.
Determining the relative positions of genes in a chromosome according to such a probability
scale is known as mapping the chromosome. This has been carried out quite extensively for
Drosophila and to a lesser extent for some other plants and animals. The map distance between
two loci a and b may be defined as follows. Let x measure the actual physical distance along
the chromosome and let p(x) be the probability that a crossover occurs between the points x
and x + dx, providing it is known that no other crossover occurs near to the point x. This last
restriction is necessary due to a phenomenon known as interference in which a crossover at one
point hinders nearby crossovers. The map distance is then given by

Jb p(x) dx .
a

The recombination value of two loci is the probability of an odd number of crossovers between
these loci. For small distances the probability of more than one crossover is a second order
term and the map distance is nearly equal to the recombination value, and both approximate the
probability of one crossover between the loci.

If the two genes in a certain locus are identical, the individual is said to be homozygous in
this factor. Otherwise he is heterozygous. The individual (1) is thus homozygous in the B, E,
and G factors and heterozygous in all others.

A simple example will perhaps help to clarify these notions. Suppose that two gene loci are
under consideration. There are .three allelomorphic genes for the first locus, AI, A 2, A 3; the
second locus has four alleles, B I , B 2, B 3, B 4. The recombination value for these two loci is
1/4. An individual with the genetic formula

is mated with an individual having the formula
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What is the probability that an offspring of this mating will have the formula

A1 B4

A2 BI

895

Stated another way, what fraction of the offspring population should be expected to have this
formula?

Evidently an offspring must obtain the A) B4 chromosome from the first parent. The
probability that he will get an A) gene from this parent is 1/2 since A 3 and A I are equally
likely. If he gets this A) gene, the probability that he will also get a B4 gene from this parent is
1/4, the recombination value, since A 3 and B4 are in opposite chromosomes. Thus the
probability that both events occur is 1/2 . 1/4 = 1/8. Now our offspring must obtain A 2 and
B I from the second parent. He will certainly obtain an A2 since both genes in this locus are of
this type. The chance that he obtains a B I is 1/2, since B I and B 3 are equally likely. The
probability of the combination is therefore also 1/2. Our final answer is, since the events are
independent, 1/8 . 1/2 = 1/16. If we had asked what fraction would be of the type

A) B 2
A 2 8 2

then in place of multiplying by the recombination value 1/4, we would multiply by
1 - 1/4 = 3/4 since this is the probability that a crossover does not occur between the loci.

2. Notation

To non-mathematicians we point out that it is a commonplace of modem algebra for
symbols to represent concepts other than numbers, and frequently therefore not to obey all the
laws governing numbers. Such is the case in vector algebra, the theory of groups, rings, matrix
algebra, in symbolic logic, tensor analysis, etc. In the particular algebra we construct for
genetics theory the symbols represent Mendelian populations, and stand for a large group of
numbers which describe the genetic constitution of the population. Addition and multiplication
are defined to mean simple combination and cross breeding respectively, and it is shown that
nearly all the laws of ordinary numerical algebra hold here. One interesting exception is the
associative law of multiplication. It is not in general true that

(A. x fl ) x v = A. x (fl x v ) .

Much of the power and elegance of any mathematical theory depends on use of a suitably
compact and suggestive notation, which nevertheless completely describes the concepts
involved. We will employ an index notation somewhat similar to that of the tensor calculus,
which has proved so useful in differential geometry and in relativity theory. Because the
notation employed is so basic to our work we will first explain the meaning of indexed
symbols.

Consider, for example, the symbol

'\ hi
I\. j k • (2)

Here Ais the base letter and h, t. j, and k are indices. Each index has a certain specific range of
variation and the different indices may vary independently and even have different ranges of
variation. In our work two indices in the same vertical column, such as hand j in (2), will
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always have the same range, but vary independently over this range. Thus hand j might have
the range of values I, 2, and 3 while i and k have the range 1, 2, 3, 4, ... , 9.

When the indices of (2) take on specific values, e.g., h = 1, j = 3, i = 5, k = 5, the
symbol

"} 15
r; 35

represents a number. Symbol (2) thus stands for a whole group of numbers, one for each
combination of values of the indices; however, it should not be thought of as a group of
separate numbers, but rather as a single entity having components whose values are the
different numbers of the array.

When we think of an indexed symbol as representing a whole array of numbers and the
indices as variables which assume any of the values in their ranges we say the indices are live
or variable. Occasionally, however, it is desirable to think of AJ£ (say) as representing a
certain specific one of the components. Thus we may set h = 1, i = 3, j = 2, k = 3. We say
then that we have fixed or killed the indices at these values; they become dead indices. Also we
sometimes wish to think of the indices as fixed at some value which is perfectly arbitrary.
Without any change of notation we use AJ£to represent an arbitrary component rather than the
whole set of components. In such a case fixing the indices is purely subjective.

In an equation, although indices represented by different letters may vary independently, a
specific letter, e.g., h, must not take on different values in different places. Thus the sum of two
indexed symbols

v h ! + .. hir-,« rjk (3)

is an indexed symbol, say vJi, whose components are the sums of the corresponding
h' h'components of Aj t and Jl j k' For example

vI: = A:I + flll

On the other hand if

V hi = "} ~ki + J.1 ~ ~j k /\, J J I

then v ! ~ = A1~ + 111 ~, etc.

An equation in indexed symbols stands therefore for a large number of ordinary equations,
one for each combination of values of the variable indices.

Ordinary multiplication of indexed symbols will be indicated by juxtaposition, e.g., RJA~,
R~ A~, A~ fl t, Ordinary multiplication means numerical multiplication of the components
indicated, and results therefore in another indexed symbol. The multiplications above would
result respectively in symbols with indices as follows:

,.,.i ph ~h"j"j k, i, v k

where
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etc. There are always as many variable indices in a product as there are different variable
indices in the factors. Thus R.fAk has three independent variable indices i. i. k and hence the
product t j k has three indices.

An important operation in indexed symbols is summation on one or more indices. This is
so common in our work that we indicate it by replacing the index in question by a large dot.
Thus supposing the index h has a range of variation of 1 to 3 and i, a range 1 to 5, then

3
1-; ~'\";_'\1;+'\2; '\3;
!"wjk = ~ !"wjk - I\;jk I\;jk + !"wjk ,

11=1

3 5

A.i; = ~ ~ ;...j1 = Ali + All + AJl + Ali + AJi
It= J ;= I

+ '\ 21 + '\ 22 + 123 + '\ 24 + '\ 25
Ajk !"wjk Ajk Ajk !"wjk

+ '\ ~ l +'\~2 +'\~3 +'\~4 +'\~5
A.lk !"wJk !"w.lk A.lk !"w.lk·

Most of our indexed symbols will represent populations. Suppose we are considering two
different Mendelian factors. Let the first have two alleles, A 1 and A 2, and suppose the second
factor has three, B I' B 2, and B 3' Then any population may be divided into 21 genetically
different groups, having the genetic formulae

(I) A, A. B I B I (7) A 2 A 2 B I B I (13) A I A 2 B I B.

(2) A, Al B I B 2 (8) A 2 A 2 B, 8 2 (14) A I A 2 B I B2

(3) A, AI B, B) (9) A2 A 2 BI B) (15) A I A 2 B I B 3

(4) A, AI B 2 8 2 ( 10) A 2 A 2 8 2 8 2 (16) A. A 2 8 2 B 2

(5) A I AI B 2 B) (11 ) A 2 A 2 B 2 8) (17) A I A2 8 2 B 3

(6) A I At B3 B) ( 12) A 2 A 2 B3 B 3 (18) A I A2 B 3 B)

(19) A I A 2 B 2 B I

(20) A I A 2 B) B I

(21) A I A 2 B) B 2

This population would be represented by the symbol A)'1.
The indices hand j correspond to the first locus and since there are two alleles for this factor

they each have a range of variation of 1 to 2. The second factor has three alleles and
correspondingly; and k range over the values 1,2,3. Now, thinking of 11, i.], and k as fixed or
dead we define the components of A.11 in the following manner. If h = j and i = k then
A. J1 = A::: = the fraction of the population with the genetic formula A" A" BiB;. Thus
A. ~ ~ is the fraction of the population of the type A I A I B 3 B 3. If h *' l- or i *' k, or both,
then AJf. represents one half the fraction of the population having the formula A h A j BiB k

or, what is the same thing, Ai All B k B i» Thus Ai j and AT~ are one half the fractions
having the respective formulas A I A 2 B] B) and A 2 A I B) B 2 •

We shall use Greek letters as base letters for populations, and in general, then, the symbol
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(4)

represents a population in which s gene loci are under consideration. The first column of
indices, i I and j I' corresponds to the first factor under consideration, the second column to the
next factor, etc. Each factor may have an arbitrary number of alleles, and the linkage between
any two may be of any value including 50% or random assortment. In case i I = j I ,

i 2 = j 2' . · • , is = j s then 'A'/. '/2 ••.••• 'Is is the fraction of the population having the formula

(Ail A;, B;2 B i
2

••• S;I s. ). If these equalities are not all true then A~Il ~22 .•.•.. iJs is 1S the
fraction having the formula (A; A J· B; BJ· . .. S i 5J· ). It is helpful in using this notation

I I 2 2 S J

to note the close connection between the two rows of letters in the indices and the two rows of
genes in the chromosomes. The analogue is more than superficial, for we will later show how
crossing over, say between the second and third loci, is connected, in this notation, with the

b I 'l hi.sym 0 1\- •• j •

3. Fundamental Theorems

There are two fundamental manipulation laws which we present as theorems because of
their importance, although both are almost obvious.

Theorem I.
(5)

That is, exchanging the upper and lower rows of indices of a population gives an identical
population. This is evident from the meaning of the symbols, since a genetic formula
(Ail A j, Biz Biz ... Sis Sjs) is identical with the formula (A j , Ail B j 2B iz ... SjJ Sis)·

This exchange of indices may be carried out independently of the location of the gene loci in
question. However, if it is known that certain of the loci are in one chromosome pair, and none
of the others are in this pair, further identities will hold. Namely, we may invert the indices
corresponding to this chromosome pair and leave the others intact without changing the
meaning of the symbol. Thus, if in the population Ai fin, the first two loci are in one
chromosome pair, and the third in another, we have:

AZj/n = AZfj = A~~j = A~~~ .

Theorem II.

A:::::: = 1. (6)

That is, summation of a population on all indices gives the result one. Obviously the sum of all
the fractional parts of the population is unity. Those parts which we have divided by 2 appear
in the summation (6) twice, corresponding to an exchange of the upper and lower indices. Thus
with the population A7i the term A~ ~ appears twice in the summation A::, once as A~ ~ and
once as Af ~, which are equal by Theorem I.

The significance of summation on a smaller number of indices is also of considerable
importance. Consider the population AJi. Summation on k gives AJ~ , a symbol with three
variable or "live" indices. The reader may verify that if h :I:- j, A7i represents one half the
fraction of 'AJ£ which have the formula A h Aj B; _' where the _ may be any gene. If h = j
then AZ~ represents half the fraction having the formula A h A j Bi_plus half the fraction of
the type A h A h B; B, .

Summing on both k and i we have AJ: and this may be shown to have exactly the same
meaning as Aj where hand j refer to the same gene locus in each case. That is, summing on a
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pair of vertical indices is equivalent to eliminating this locus from consideration. Summing on
two horizontal indices, j and k, gives A, ~ ~ , a two-index symbol, whose components are the
fractions of all chromosomes in the population in which genes A h and B; both appear.
Likewise A. ~ k represents the fraction of all chromosome pairs in which A h is in one and B k in
the other.

Summation on three indices A, ~: gives a one-index symbol and its components are the gene
frequencies of AI, A2, ... in the general population. That is, A! : is the sum of the fraction of
homozygotes in A I and half the heterozygotes having one A I gene.

The reader will easily generalize these statements for more complex cases. For easy
reference we summarize the above remarks in the following proposition.

Theorem III.

1. If i I = j 1, i2 = j 2 is - 1 = j s- 1 then A~: 12 i~ is one half the fraction of the
population of the type Ai, Ail .. · Sis _plus half the fraction of the type Ai, Ai, ... 5 isS ;s ' If
the conditions above do not hold then it represents one half the population of the type
Ai. Aj , B;2 Bj 2 ... S;s _.

2. Summation on two vertical indices is equivalent to eliminating the corresponding locus
from consideration.

3. Summing on one index in each column gives the fractions of the chromosome pairs in
which alleles with the remaining indices appear.

4. The fraction of A~'I ~~'. Js having at least one A h gene is given by

2A~::~~~: - A,~:::::: .

In order to present a rigorous mathematical development it is convenient to consider
symbols whose components are not all positive real numbers lying between zero and one. Of
course, such a symbol cannot represent an actual group of individuals, but in some cases it is
possible to solve problems using these symbols and get an actual population for the final
answer. We shall speak of the symbol as a population in either case, but if the symbol does
correspond to a possible group of individuals we shall say the population is realizable. If the
components are all real numbers we will say the population is real. The use of unrealizable
populations also adds elegance and generality to some of our later theorems.

We now introduce an operation between two populations to be known as cross
multiplication and written:

hi hi
Ajk X tljk .

This will be defined in such a way that the cross product of two realizable populations
represents the expected offspring if the population in question are cross mated at random. We
will first give the definition for the case of two linked factors. Let the probability of zero or an
even number of crossovers between the two factors be Po = 1 - P I and let P I be the
probability of an odd number of crossovers (i.e., the recombination value). We define the cross

product of A.' i, J.1' l as follows:
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vjl = AJI x ~ji

C.E.Shannon

(8)

To prove that this represents the expected offspring population we use the idea of gene-pair
frequencies, a generalization of the idea of gene frequencies. We wish to determine the
probability that an offspring of mating Awith J.1 will have the genetic formula A h A j BiB k •

One wayan offspring may obtain this formula is to get A h B, from Aand A j B, from fl. This
corresponds to the term

(9)

in the equation (8). Each of the terms of (9) is a gene-pair frequency. The first is the frequency
of the gene pair A h B i in the population A. The second is the frequency of the gene-pair
A j B k in fl· The product is then the probability of obtaining an offspring A h A j BiB k by the
method described.

Gene-pair frequency here means the frequency with which this pair of genes occurs together
in the same chromosome aftercrossovers have taken place. The term

[
"1 hi "1 h.]POA. •• +Plr....; ( 10)

actually represents this because, from Theorem III, A: ~ represents the frequency with which
All and B i appear together in the same chromosome before crossover, and Po is the probability
that there is no crossover between these factors (or at most an even number of crossovers) so
that PoA~ ~ is the probability of getting A hand B,. together after crossovers if they start
together. Likewise P I A. Z7 is the probability of A hand B i ending together when they start in
opposite chromosomes of a pair. Since these two possibilities are mutually exclusive, and
collectively exhaustive, their sum (10) represents the gene-pair frequency of A h » B i in Aafter
crossovers. Similarly the second term of (9) is the gene-pair frequency of A j B Ii in J...l after
crossover and the product of these two is the probability of an offspring getting the pair A h B i

from A. and A j B k from J.1. The only other way for an offspring to get the formula
A h A j B; B k is to get Aj B k from A. and A h B; from fl. This corresponds in exactly the
same way to the second term of (8), and we may add the probabilities since the events are
mutually exclusive. All that remains to be explained in (8) is the factor I /2. In case the
equations h = j, i = k do not both hold then for the components of the offspring population we
want half of the fraction of individuals of this type in order to fit our previous definition of a
population symbol, and hence this factor. If both these equalities are true then both terms of (8)
are identical and we may add, getting

v i' [ "1 hi + "1 h.][ •• h i + flh.]hi = por..... Plr....i Po~.. PI .i ,

which is what we get by the derivation above in this case, since the two · 'different"
possibilities become identical under this restriction and therefore (8) holds for all values of the
indices.

For three factors the defining equation of the cross product is
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} . . hi j hi}
Vk;~' = Aklm X Ilklm

_ 1/ [ ~ II i t + ~ hi. ~ h.. ~ h. j]
- /2 POOI\.... POI I\. •• } + P 10r: • i} + P II /\. • i •

[ k I m kl. t.. t.m]
. Pooll ••• + POIIl •• m + PIOIl./m + Pllfl./.

1/ [ ~ kim ~ k I • ~ k.. ~ k » m]+ 1'1 POO/\. ••• + POII\. •• m + PIOI\..'m + PII/\'.' •

. [hi} hi. h.. h.j]P 00 fl ••• + POI fl •• } + P 10fl. i} + P I I fl. i. .

901

(11 )

In this equation Poo is the probability of an even number of crossovers between the first two
genes and an even number between the second and third. If we wish to consider interference
effects we cannot merely write Poo = Poqo with Po the probability of an even number of
crosses between the first two loci and q0 that for the second and third, since the events are not
independent. However, defining qo as the probability of an even number of crosses between
the second and third factors after it is known that an even number occurred between the first
two would make this valid. Similarly POI is the probability that an even number of crosses
occur between the first two factors and an odd number between the second two, etc. The
method of formation of the formula is fairly obvious; note first that all permutations of 0, 1 are
used on subscripts of the efficient p. Also a 1 corresponds to changing from one row of indices
to another, while a 0 corresponds to staying in the same row.

The proof of formula (11), and indeed the general case, is an easy generalization of the
method used for two factors. It merely amounts to showing that a term such as

[p 00 A~ ~ ~ + POI AZ~ j + P loA:;}. + P II AZ;1]

is the gene-triplet frequency for the set A h B i C} after crossovers in population Ai j~. This
the reader will readily verify.

For n linked genes the expression for the cross product of two populations will take the
form:

. [same expression with Areplaced by fl and iI, i2, .. · , is by t.ii. · . · ,js J }
+ 12 ( same pair of expressions with Aand fl interchanged } .

Although we have spoken throughout as though the factors under consideration were linked
and in the same chromosome, this is not necessary. Suppose that in equation (II) the first two
genes have a recombination value PI = 1 - Po, and that they are located in a different
chromosome from the third. Under these conditions it is easy to see that

Poo = POI = ~ Po

P 10 = P I I = Y2 P I

Also we have

'\hi} _ v h i m
I\.klm - Akl} ,

From these equations (11) may be reduced to

hi} _ him
flklm - Ilkl} .
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So the independence of factors merely simplifies the situation.

In case all three factors are independent,

Poo = POI = P 10 = P 11 = 1/4 ,

hi' him h /
andAkl~ = Ak/j =AkijetC.,sothat(ll)reducesto

II ~ hij kim IL ~ kim hij
"/2 A... J.1... + /2 A... J.1... .

We have proved the following fundamental result.

c. E. Shannon

Theorem IV. The cross product of two realizable populations represents the expected
offspring of these populations when cross mated at random.

Much of our work will now be the investigation of special cases of the general formulae
given above. We note at once both from the mathematical definition and obvious genetic
considerations the following result.

Theorem V.

That is to say, cross multiplication is commutative.

Let us now consider the case of a single factor, but with, however, any number of alleles.
Then the cross product reduces to

(14)

from which we get the following proposition.

Theorem VI. If A~ = fl ~ then

(15)

(16)

In other words, if two populations have the same gene frequencies for all alleles of a factor,
then they will have the same breeding characteristics when cross mated with another
population.

Theorem VII. If v ~ = A) x Jl ~ then

. 1· .
v ~ = 2" (A ~ + J.l ~) .

This follows immediately from (14) on summing on the index j and noting by Theorem II that
A: = Jl: = I. This theorem shows that a gene frequency of a cross product is the arithmetic
mean of the corresponding gene frequencies of the factors in the product.

We have already indicated in Part II how indexed symbols are added. When our symbols
represent populations we shall consider addition only when the sum of the coefficients is unity.
The purpose of this restriction is to keep all terms on an actual fractional basis and thus
preserve the validity of our theorems. In general this causes little or no inconvenience, as
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merely dividing by the sum of the coefficients will always normalize in this sense.

We write

'). hi - R flhi + R V h i + ... + R ~hiAjk - I j k 2 jk n V j k ,
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(17)

n

where I, Ri = 1, for the "sum" of the populations u, v . ... , (J in the fractional proportions
;=1

R I , R2, ••• , Rn: Note that all terms of a sum must have the same indices (although sometimes
an index may be changed in position in the same vertical column). This is part of a useful idea
in indexed symbols known as index balance.

Index balance serves as a simple partial check on equations. If the indices do not balance in
an equation, the equation is certainly wrong (in fact it is meaningless). The results governing
index balance for our work may be formulated as follows:

1. Each term in a sum must have the same indices.

2. Each side of an equation must have the same indices.

3. A product (ordinary or cross) has indices corresponding to each different live index
appearing on any of the factors of the product. (See Part II.)

Index balance applies only to live indices. There is no balance, for example, on the dead
indices 0 and 1 on POI in equation (11).

Addition of populations (17) is interpreted very simply as the population obtained by
combining random samples of fl, v ; ... , (J in the fractional proportions R I , R 2 , • •• , R n :

Theorem VIII. Cross multiplication is distributive on addition, e.g.,

'A.?£ x (RI~?i + R 2" ?L) = RI'A.'~ x ~,~ + R 2 'A. ,1x ",£ . (18)

We shall prove the theorem only for this simple case. The method of proof, however, is
perfectly general and will apply with any number of indices and any number of terms in the
sum. The left side of the equation is, by the definition (8):

1.12 [Po'\ h••i '\ he] [ (R jk R jk) (R s- R je)]n A + PiA.; Po Ill •• + 2" •• + PI IIl.k + 2".k

= R 1 {~ [p 0 A: ~ + P I A: ;] [p 0 fl ~ ~ + Pill ~ k]

+ ~ [p 0 A. ! ~ + P I A!k] [p 0 Il ~ ~ + p] Jl~ ;] }

R { I / [ '). hi'). h.] [ j k j • ]+ 2 ~2 POA •• + PIA.i POV e • + PIV.k

1/ [ '). j k '). j.] [hi h.]}+ /2 Po A •• + P I A • k PoV •• + PI" • ;

- R '). hi hi
- IAjk X Jljk +

The theorem on equilibrium of population after random intennating may be easily proved
by the methods we have developed. We shall consider a somewhat more general case than is
usually used, in that we allow any number of alleles, and also cross breeding between
generations (i.e., the generations need not come in distinct steps nor need each individual mate
in its own generation).
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Theorem IX.

R,Af' x A.:' + R2 A. :' x (A.:' x A:') + RJ(A:' x A~') x (A:' x A:') + ... (19)

The first term corresponds to a component representing direct offspring of our present
population A:', the second term represents a fraction obtained by mating this offspring with the
parent generation, etc. Consider any term of this expression. In order to have a meaning it
must have a factor (A:' x A7) =A~ A~ by (14), but this may be replaced by A:' from Theorem
VI since A: A: = A~. Hence the number of factors in the product may be reduced by one.
Continuing in this manner all terms reduce to the form Rk A~' x A7, and by adding we get the
desired result.

In particular, if we have' 'step type" generations this result shows that

A:7 x A.:' = (A.:' x A:') x (Af' x A:1 )

= etc.,

these expressions being the 2nd, 3rd, 4th, etc. offspring generations, and all of these are equal
to A~ A•. It is obvious that a necessary and sufficient condition for a population A:' to be in
this type of equilibrium is that

For two alleles it is well known that this is equivalent to the condition

A:A~=A~A~.

We now show how this, and the generalized result for any number of alleles, may be obtained.

Theorem X. The three following statements are all equivalent.
(I)A.:' = A: A~ = A:' x A.:' .
(2)A~:A: =A:1A:' .
(3) The matrix" A:' "is of rank one. By "A fl" is meant the matrix

A: A. ~

Af A~

In the first place (I) implies (2), for if

then

and
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Also (2) implies (1). Summing (2) on i gives

A:: = A~ A~ .

Hence

v b v ! _-~
rc; /"w. - 'JAii AI

Thus ( 1) and (2) are equivalent.

Condition (3) is equivalent to either of these, for if (1) is true then

A:'=A:A~,

90S

and the elements of the matrix II Afllcan be written as the product of a number depending only
on the row by a number depending only on the column. This is a well known condition that the
matrix be of rank not greater than one. The rank is actually one since at least one element is
different from zero to satisfy A.: = 1 . Thus (1) implies (3). If (3) is true then each second-
order minor of "A. 711 must vanish. In particular we have

Ah 1...~1 III , = 0 .
1...7 A~

Hence

so that (3) implies (2). This shows that all the conditions are equivalent and proves the
theorem.

If a population is in equilibrium we have

but this is not a sufficient condition for equilibrium, as the example

1 1
0- -

9 6

"A:
1

"

1 1 1
= - - -

6 9 6

0
1 1

- -
6 9

1
0

proves, for here1T + 1T +1T=

-

I while
6 = 3'6 i:- 0 so the population
1 1

- -
9 6

is not in equilibrium.
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In case more than one factor is considered the population will, in general, only reach
equilibrium (for gene combinations) asymptotically. Suppose we have two linked factors and
assume "step type" generations. The result of random intennating is given by the following
result.

Theorem XI. Under random intermating of A7£the nth generation is the population

~ j1= [Po - I (p 0 A. ~ ~ + P I A. : i) + (1 - Po - I ) A~ : A: ~ ]

[ n-l( "jk "j-) (I n-l)" j-"1 -k]
. Po Pol\,- - + P I I\, - k + - Po /\, - - I\, --

and (assuming Po ~ 1) approaches asymptotically the population

(20)

hi _ "1 h- " -i "1 i» " -kV jk - 1\, __ 1\, __ 1\, __ /\w __

Proof: By definition (8) the first generation is

as n ~ 00

so the theorem is true for n = I . We now show that if it is true for the nth generation it will be
true for the (n + 1)th generation and thus complete the proof by mathematical induction.
Assume, then, that the nth generation is

(21 )

whence, summing on j and k,

since A:: I and Po + PI = I . Also

Now the (n + I )th generation is given by the cross product of the nth generation with itself,
i.e.,
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[ { n - 1 ( '\ h i + '\ h.) + (1 _ Pon - I ) '\ .h••'\ •••; } + P I '\.h ••'\ •••; ]= Po Po Po/\".. PI/\".; /\" f\, r; /\"

[ ( n-l( v i « ,\j.) (1 n-I)'\j."1.k 1 ,\j."".k]· Po Po Po /\" •• + Pl/\". k + - Po 1\. •• 1\. •• f + P 11\. •• 1\. ••

[ n( "" jk "" j.) (1 n)"" j."" .k]. Po Po /\" •• + P II\. • k + - Po 1\. •• r; ••
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which is the same expression as (21) with n replaced by (n + 1). This therefore completes the
proof. The asymptotic value is obvious since if Po :t- 1 then as n ~ 00, Po -1 ~ 0 and
(1 - pO-I) ~ 1, so (21) reduces to

(22)

An obvious corollary is that a necessary and sufficient condition for a population t j£to be
stable under random intermating is that it satisfy the conditions

or that either Po = 0 or Po = t. If Po = 0 the expression (21) reduces to its equilibrium value

at the first generation. If P0 = I we have perfect linkage and the expression becomes A~ ~ A~ ~
as it should, since it then acts like a single factor.

We note that the speed with which equilibrium is approached depends entirely on the value
of Po. If Po is small the approach will be very rapid, less so as Po becomes larger, or the
linkage closer between the factors.

It is interesting to see that with a given population A7l, the equilibrium will be approached
more rapidly if there is very weak linkage (p 0 < Y2) than if the factors are completely
independent, either in different chromosomes or in the same chromosome with Po = ~.

Incidentally, if there is no interference between crosses a recombination value Po < ~ is
mathematically impossible. Suppose the map distance (measured in morgans) between two loci
is d. Let this distance be divided into a large number, n, of sections, each of map distance dIn.
Then if n is large dIn is small and the probability of a cross in anyone section is approximately
dl n and approaches this value as n ~ 00. The probability of exactly s crosses between the two
loci is given by

(23)

h [
n] n(n - 1) ... (n - s + 1). h b f . k .were s = s! IS t e num er 0 ways we can pic out the s sections

where the crosses may occur, (!!")S is the probability that these crosses do not occur and
n

(I - d) n - S is the probability that crosses do not occur in the other n - s sections. This limit
n

may be written as
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Jim n(n - 1)(11 - 2) ... (11 - S + 1) . ~ (1 _ :!-)" . (I _ :!- )-S
n~oo n . 11 • 11 ..• n s! n 11

c. E. Shannon

d S

The first factor approaches the limit 1, the second is a constant - the third is (setting
s! '

x = n/d)

lim (1 - :!-)11 = lim (1 - 1.- )xd = e- d ,
n --+00 n .\"400 x

and the last term approaches 1 since the exponent is a constant. The entire function therefore
approaches

d
S

-d-e
s!

as the probability of exactly s crosses. The probability of an odd number is then

-d d d 3 d 5
PI = e (- + - + +... )

I! 3! 5!

which is clearly less than 50% for any real d. In case interference is present we cannot multiply
probabilities as we did in (23), since the events are no longer independent and it is at least
mathematically possible to have values ofPI> ~. Thus suppose we have a long chromosome
which is very likely to cross over at least once, but one cross strongly inhibits any other crosses
for a large distance. It is evident that such conditions would allow recombination values greater
than 50%.

In the case when the factors are in different chromosomes, equation (20) can be simplified,
due to the fact that

AI~ki = A~ ~
J .II

under these conditions. It follows that

so that (20) reduces to

For three linked factors the first-generation offspring of the population A~ : In is

[ lltij v h i » 1".. 1".;]
POOA ••• + POJfIw•• j + PIOA.ij + PIIA.i"

[ v k l m ~kl lk.. lk mJ. Poo/\" ••• + POJ/\" •• 'm + P,O/\"./m + P,JA.i •.

The second random intennating gives

(24)
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[ ( ~hij v h i» ~h.. ~h.i)
Poo POO"'- •• ·• + POI"'- •• j + PIO"'-eij + PII"'-.i.

« ~h.)· )~Il •• )~.i.]+ PI) POO + P 11) "'-... + (p 10 + PO) "'- •• j "'- •••
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(25)

. [same expression with h, i.] replaced by k, I, m.].

The nth generation has also been determined in this case. It is given by the following
proposition.

Theorem XII. Under random intennating of the population AZ;~, the nth offspring generation
is given by

hi; _ [n-J( v b t t v b i » ~h.. ~h.i)fl k l m - Poo Poo "'- ••• + POI r; •• .i + P 10"'-. i j + P 11"'-. i.

+ «P00 + P(J I )" - I - Poo I ) { (p 00 + POI) A. : ~: + (p 10 + P II ) A. : i : } A. : : ,

+ «p (J() + P 10 )" - I - Poo I ) { (p 00 + P 10 ) A. : ~~ + (p 10 + P II ) A. : ~ j } A. : : :

+ «P(J() + P II ) n - I - Poo I ) { (p (J() + P II ) A. : : j + (p 01 + P 10 ) A. : :j } A. : ~:

+ (1 + 2poo l - (POD + POI)/-1 - (PIO + POO)Il-1 - (POD + PII)"-I) .

· [same expression with h, i, j replaced by k I, nl].

This may be proved by mathematical induction exactly as we proved Theorem XI. The
expression approaches A~ :: A: ~: A:: ~ A ~ :: A: ~: A:::' asymptotically as n ~ 00. In case
the three loci are in different chromosomes it reduces to

_1_[A ll i ; + (2 11- 1 _ l){Alli.A •• '; + A/·jA·;· + A.ijA h •• }

16"- I • • • • •• • • • • • • • • • • • • • • •

. [same expression with h, i.] replaced by k I, nl].

It is possible to expand a population in a series form which displays the homogeneous
components of the population. This series is very similar to the expansion of a Boolean
function in Symbolic Logic, and not only throws light on the mathematical nature of the
symbols we are using, but is also useful for computational purposes. To develop the expansion
we must first define a set of "constants' ': homogeneous populations of a certain fixed genetic
constitution. These constants will always be represented by the base letter y, and the indices
refer to the particular locus or loci we are considering. All the members of a constant y
population have the same genetic constitution with respect to the factors under consideration.
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For a single locus our definitions are as follows:

c. E. Shannon

If a * b then

. {t
~')'j = 0

if i = j = a,
otherwise.

(27)

a",i _ {!12
b Jj -) 0

if i = a and j = b , or if i = band j = a,
otherwise.

(28)

Here a and b are dead indices; they represent certain fixed numbers, while the live indices i
and j represent any of several values. The dead indices merely serve to distinguish one y from
another and there is, in general, no index balance on them. It will be seen from our definition
that gyJ represents a population whose members are all of the genetic type Aa Ab. Thus ~ J1 is
a homogeneous population with the formula A I A 2 •

If we are considering only a single dimorphic factor the series expansion of a population A~

is as follows:

'\; - '\ I 1",; + 2'\ 1 1",; + '\ 2 2",;
.~}-All,} A22,} A22,}· (29)

To prove this it is merely necessary to note that it reduces to an identity for all values of i and j.
Thus with i = 1,j = 1 all the terms on the right are zero, except the first which reduces to AI .
For i = 1, j = 2 only the second term is effective, giving A. ~ = 2 A. ~ ~ = A. ~, etc .

.The .expansion (29) displays A~ as a population made up of three homogeneous parts Iy~,
!y j, ~ y j. The fraction of each type is the coefficient of the corresponding y in the expansion.
For more than two alleles the expansion takes the form

i: - 'AI Iyi. + A,2 2yi. +...+ '\ n nyi.) - ))) 2 2 J /\,n n )

(30)

+ 2A. 2 2",i. + ... + 2A. n - 1 n-l",i.
3 3'J n n 'J.

With more than one factor under consideration we define the y populations according to the
following scheme:

a byh; = {Olab jk
if h = j = a, i = k = b,
otherwise.

(31)

If a ~ c or b *" d or both

a b~ i _ {~ if h = a, i = b, j = c, k = d or h = c, i = d, j = a, k = b,
c d j k - 0 otherwise.

(32)

Thus j ~ y'1represents a homogeneous population whose members all have the formula
A J A 3 B 2 B 2. Constants for more than two factors are defined in a completely analogous
manner. Thus d~ /y~ ;~ is a population whose members are of the type A a Ad
s, Be c. c..
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The series expansion for more than one locus has the form (taking three factors to be
specific):

(33)

where r I' r 2, r 3 are the number of alleles of the three factors. Each term corresponding to a
part of the population homozygous in all factors has the coefficient one; if the corresponding
part of the population is heterozygous in one or more factors the coefficient should be two.

The cross product of any two Ypopulation may be written as a linear combination of y's.
Thus

(34)

In case some of the numbers a, b, c, d are equal this expression is still true but may be
simplified. Thus if a = b

For two loci the law of multiplication of the 'Y's is
2

a b hie f hi Po [a b h i a b hi r d hie d h iJ
cd'Yjk X ghYjk = 4" efYjk + RhYjk + efYjk + ghYik

+ POPI [aby~i + aby~i + cdy~i + ed",~i + ad",hi + ad",hi4 eh)k sr t t « «n t t» st t i« «r t t) ghljk

2

+ cby~i + cby~iJ + ~ [ad",~i + ady~i + abyhi + abyhiJ«t t ,» gh]k 4 - s t t» gh]f< e h j k gf jk .

The series expansion and law of multiplication of the y's display a population as a
hypercomplex number, i.e., as a symbol of the form (aiel + a2e2 +...+ Qne n) where the
coefficients a I' a 2 , ••. , a n are numbers and the symbols e I, e2 , ••• , en are "unit vectors"
with some given law of multiplication such that the product of any two of the e's may be
written as a linear combination of e's. It is well known that except for trivial cases and the case
of ordinary complex numbers, no law of multiplication preserves all the commutative,
associative and distributive laws of ordinary numbers. In our case the associative law of
multiplication is sacrificed. Thus the product (Iy~ x I'Y~) x ~ y~ is, by (34):

1 1
(I'Y~) x I'Y~ x h~ = I'Y~ x h~ = "2 I'Y~ + "2 h~ ,

while on the other hand

I h I h I h I h

t
I l h I I "J(IY; x l"1i x 2"1i) = 1"1; x "2 lY; +"2 2'Yi

I 1 h 1[1 1 h I 1 h]= - l'Yi +"2 2 1'Y i + 2 2 'Y i2

3
~'Y7 +

1
~ 'Y7 .= - -

4 4



912 C. E. Shannon

This is a simple example of a multiplication in which the associative law does not hold, and
shows that in a cross product of several factors it is essential that parentheses be retained to
indicate the order in which multiplication is performed.

The series expansion (33) of a population shows how an arbitrary population may be
written as the sum of a set of particular homogeneous populations, the y's. The choice of this
particular set of populations as components was a matter of convenience, not of necessity. We
now show that any set of populations satisfying a certain simple condition would do as well.

Consider a set of n populations 1,Jl , ... , <1. We omit writing the indices, but there may
be any number of loci. We will say that these populations are linearly independent if there is
no set of numbers a I , a 2 , ••• , an' not all zero, such that

(35)

for all values of the live indices.

Theorem XIII Any population <p may be expressed uniquely as a linear combination of n
linearly independent populations, where n is the number of different possible genetic formulae
for the factors considered.

To prove this, note that a necessary and sufficient condition that (35) have no solution for
the a's (not all zero) is that the determinant

AI I I
11 1

AI I I
11 2

II 11 I
,..11 I

II II 1
,.. II 2

CJ II I
II I

CJ II .. , 1
II ... 2

(36)

Af, f 1 ... f, r, ": ... t.
r 1 f 1 · .. f s J.1.r,f 2 •• ·r,

be different from zero. In this determinant each population takes on the values of all
components in a column; i.e., the values obtained by giving the indices all possible values.

Now the non-vanishing of (36) is also a necessary and sufficient condition for the existence
of a unique solution for the b' s in the equations

<p = b , A + b 2 Jl + ... + bnCJ ,

and this proves the theorem.

In passing we note that if we have linked factors with r I, r 2 , ... , rs alleles respectively
then n, the number of different components, is given by

n =
rl r2 ... rs(rl r2 ... rs + I)

2
(37)

n =

We may think of 2s positions in which genes may be placed. There are r I possibilities for the
first and second positions, r 2 for the third and fourth, etc., and therefore a total of 1"r ,.~ rj ... r; .
However, as an interchange of the two chromosomes does not affect the genetic constitution we
should divide this by two, except for the ones which are homozygous in all factors and were not
counted twice. There are r I r 2 ... rs types of fully homozygous individuals and we may
correct our formula, then, by adding this and then dividing by two:

rr r~ ... r; + r I ,. 2 ••• rs
2 = 1/2 [r I r 2 ... r s (r I r 2 ... r s + 1)]
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In case the loci are not all in the same chromosome but spread out in a number of different
ones, we may evaluate the expression (37) for each chromosome involved and multiply these
results.

(39)

4. The Solution of Equations Involving Unknown Populations

It is easy to write down equations of various types involving unknown populations. Many
of these may be solved for the unknowns in terms of the known populations by means of the
theorems we have developed. In general an equation represents some breeding experiment
involving a population of unknown genetic constitution resulting in a genetically known
population. In the following we shall use the letters <1>, 'If, X ... for base letters in unknown
populations and A, u, v ... for known populations.

The general method of attack on these problems may be outlined as follows:
1. By summing on various indices we are able to evaluate gene frequencies,
gene pair frequencies, etc. for the unknown populations. This ordinarily
involves no more than the solution of one or more linear algebraic equations.
2. Knowing these we can evaluate cross products in which the unknowns
appear, since a cross product depends only on the values of the population
symbol with half the indices dotted.
3. With only linear terms remaining it is usually easy to solve the equations
by ordinary methods for algebraic equations.

To illustrate how this is done we shall consider several examples. Suppose first, for
simplicity, that only one locus is involved, and that we have the equation

R I ep:' + R 2 ep:' x ep:' + R 3 ep:' x (ep:' x ep:') + ... = A:' , (38)

where r R i = 1, with <t>:' unknown and A ~' known.

By Theorem IX this reduces immediately to the form

R <t>:' + S ep:' x <t>:' = A:'; R + S = I .

Summing on i we have, by Theorem VII,

R<t>~+~S<t>~+~S<t>~ ~ "1\.,. ,

or

Hence by Theorem VI we may replace <t>:' by A:' in any product. Returning then to
equation (39) we have

tf\ h = J.. A~' - ~ A~' x A~'
'ill R ' R' I'

(40)~ ~1
1\., .

and this must be the unique solution of the equation, if a solution exists. To prove that it is a
solution we merely try it in the equation and find that it is satisfied.

A more general equation in one unknown is the following:

R <t>:' x (fl:' x <1>:1) + S <t>:1 x <t>:1 + T <t>:'
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Summing on i:

cjlh _ 4 A~ _ R I.l~
• - 3R + 4S + 4T 3R + 4S + 4T

C. E. Shannon

(41)

4}...h R h
= 4-R .- 4-R fl.·

Replacing cjl f in each product of (39) by the expression 4 ~ R A~ - 4 ~ R I.l ~ gives

ih~ = 1- A~ _ (_4_ A~ _ _ R_ II~)
'f I T I 4 _ R I 4 -R r I

x [ 4 ~ R A~ x I.l ~ - 4~2R I.l ~ x I.l ~ + 4 ~sR A~ - 4 ~sR I.l ~]

as the solution of (39).

It may be easily shown that the above method is applicable to any single equation in one
unknown ct> ~ providing the coefficient of <t>: does not equal zero. Such an equation always has
a unique solution, although this solution may not always represent a realizable population.

A system of linear simultaneous equations may be solved by the ordinary methods for
algebraic equations, since by fixing the indices we actually have such a system of linear
algebraic equations. Thus suppose

n

i =1 R i j i ell ~ = j A~, j = 1, 2, · · ., n

represents a system of equation with J <I> ~, 2 <I> ~ , ••• , n <I> ~ unknowns. The indices i and j here
serve to distinguish between the different ct> and A. populations. The solution of this system is

k n M j i A. k
i<1> I = .~ -'R, j I ,

J=I ji
(42)

where IR ij I ' the determinant of the coefficients, is nonzero, and Mj i is the cofactor of R ij •

The reader may verify that simultaneous systems of equations with cross products involving
the unknown populations may also be solved by these methods. Turning now to problems
involving more than one gene locus the situation becomes a bit more complicated. Suppose
again we have the equation in one unknown

hi hi S ih h i _ '\ hiR 4>jk X 4>jk + 'fjk - Ajle: . (43)

Referring to the definition of a cross product for two factors we see that knowing the two
quantities ct> ~ ~ and ct> ~; the cross product in (43) is completely determined. Summing, then, on
j and k we get

(44)

and we see that to determine ct> ~; we should find ct> ~: . Summing (44) on i gives us

(45)
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hence

Substituting in (44):

'IS

(46)

Now from our original equation (43):

(47)

,.,hi - I 1.. h i _ Ii epJ~t x il\J~1. ,v i« - S jk S 'f' ~

and the cross product on the right may be calculated from the equations (46) and (47). This
gives the unique solution to the problem.

Generalizing these methods to systems of simultaneous equations in more than one
unknown and with any number of gene loci is not difficult. Of course, the equations become
larger and more cumbersome, but no new theoretical difficulties appear.

s. Lethal Factors and Selection

The results of a selective action may be calculated by the methods we have developed.
Suppose the chances of survival of the types Ah A; are R7 where hand i take values over all
alleles. Then starting with a population A~' the population reaching maturity will be

where D) is a normalizing factor given by

D 1 = 1: 1: R7 A7 .
h i

(48)

Sums on more than one index are of frequent occurrence in selection work and we adopt the
convention that summation on two or more indices simultaneously will be indicated by placing
a bar over these indices. Thus (48) would be written

D) = Rf Af .
The first-generation offspring of A7would be

~7 = ~ (R7 1..7) x (R7 1..7)
D)

= _l_(R!! A"-R~A~)Dr S S , ,

and if
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then

will reach maturity.

The next generation is given by

_1_ RlJ R~ A!l R~ A~ R~ R~ A~ R~ A~
D~ .J s s J .J ISS I I

etc.

A population will be in equilibrium if and only if the equation

Ah = .l. R~ Ah. AI."

I D I

is satisfied. This requires that

or

A~ (...!- Rf Ar - 1) = 0 .
D

This may be satisfied in two different ways. If none of the A~ = 0, we must have

C. E. Shannon

(49)

(50)

(51 )

R7 A~ = D ,

a system of linear algebraic equations with the unique solution (providing IR~' I ~ 0)

(52)

R} R1 R),-I I R),+I ." R,t,

Ry R~ Rr,-I Rr,+I'" R~
A/~ = k (53)

where k is a constant determined by the condition A: = I. Equation (51 ) may also be satisfied
if some of the A~ = O. We may not divide through by these components, but the remainder
gives us a set of, say, m < n equations in the m nonvanishing components which will, in
general, have a unique solution.

A population satisfying (49) above would be in equilibrium in the sense that the first-
generation expected offspring would be of the same genetic constitution. However, this
equilibrium may not be stable, for the actual offspring will in general deviate somewhat from
the expected offspring, and the population will be stable if and only if this deviation tends to
cause the next generation to return to the equilibrium position. The situation may be likened to
a ball which may be either balanced on the top of a hill or placed at the lowest point in a valley.
In either case the ball is in equilibrium, but only in the valley is it stable, for if given a slight
displacement on the hill the ball will tend to run down, while in the valley it tends to return to
the lowest point.
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Although a set of necessary and sufficient conditions for stability of a population have not
been found, we have the following proposition.

Theorem XIV. A necessary condition for stability of a realizable equilibrium population A~

(no gene frequency equals zero) under the selective action R:' is that

R~: < R~ , s'#h. (54)

Proof: Let the R:' coefficients be multiplied by such a constant that the equilibrium population
satisfies the normalized equation

or, since no A~ = 0,
-

R7 A. ~ = 1 .

(55)

(56)

Let this population take on a small increment ~ A:' with ~ A.: = O. The result of one
generation random intennating of this displaced population A7 + d A7is

Jl ~' = ~ R7 (A: + ~ A:}(A ~ + ~ A~) ,

whence

- -
Now the first term Rf A~. A~ = A~, and the third Rf A~ ~ A~ = L\ A. ~ from (56). For small
increments the last term is of the second order and may be neglected, so that

f.1 ~ = .L (A~ + ~ A~ + R7 A: L\ A~ J .
D

To evaluate the constant D, we first sum on h:

Jl:= ~ [A:+~A:+R~A~~Ar]

=.l- [I + 0 + L\A~]::: I
D D

thus

We see that the offspring of jhe displaced population is equal to this population plus an
additional increment Rf A. ~ L\ A•. Clearly a necessary condition for stability is that this be
opposite in sign to the original incrernentA A. ~. Now the original increment was completely
arbitrary. Let us fix hand s as two constant indices and suppose the components of the
increment were 6. A~ = + e , ~ A; = - E and all other components zero. Taking E positive



918

we have the condition

or

(R~ L\ A.! + R~ ,1 A.~ + ... + R~ ,1 A.". ) A. ~ < 0 .

c. E. Shannon

For a realizable population A. ~ is positive and all the terms in the parentheses are zero except
,1 A. ~ and ~ A.~, giving

R~ E - R~ E < 0 ,

or

R~ < R~ .

This proves the theorem.

For a dimorphic factor this condition is also easily shown to be sufficient for stability; but
examples show that it is not always sufficient for more than two alleles. Sufficient conditions
(not necessary) for any number of alleles are that

R~ = K I, a constant independent of h ,

R~ = K2, a constant independent of hand s ,

with K I < K 2. For then the correction term is
n

A~ [R~ 1: ,1A~ + R~ l\ A~]
;=1
i~Jr

which is clearly opposite in sign and less in absolute value than ~ A~ .

6. A Calculus of Populations

So far all our population symbols have been constants, i.e., each represented a certain
particular population. The manipulation of these discrete sets of numbers constitutes an
algebra. Sometimes, however, it is convenient to consider continuous time variations of a
population. Such a study leads to a calculus of populations. We have already used, in the
preceding section, the idea of an incremental population.

In this section we will define the "derivative" of a population and develop some of the
fundamentals of the calculus.

First let us generalize our idea of population to include variable populations, i.e.,
populations that are functions of time. We indicate this functional dependence by the usual

notation, e.g.,

(58)

represents the genetic constitution of the population A'1at the time t. In case no ambiguity is
introduced we sometimes omit the argument t, it being understood that

AJ£ = Aj£(t) .
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We define the derivative of a population as the indexed symbol whose components are the
time derivatives of the components of the population in question. Thus

d I AJl(t +!l t) - Ajl(t)
- A ?i(t) = lim (59)
dt J k L\ , -+ 0 ~ t

We assume the population large enough and the variation of A smooth enough for the limit to
exist in a practical sense.

Note that the derivative of a population is not a population. A population has the property
A.:: = 1 while its derivative has the following property.

Theorem XV.

!!-Aee=o.
dt e e

(60)

This is true if we first sum on all indices and then take the derivative, or vice versa. Both
follow immediately on taking the derivative of (6).

As in ordinary calculus we have simple rules for taking derivatives of sums, products, etc.
These are all exactly the same as those of ordinary calculus.

Theorem XVI.

1. If Aj1(t) is a constant,

!!- A.~i = 0 .
dt }k

2. If

'lhi_R hi R hi
Aj/.: - 1 J..!jk + 2 Vjk

then

!!-'l~i R d hi R d hi
dt 1\,.1 k = I dt J..l j k + 2 dt V.i k .

3. If
'l hi hi hi
I\,jk = J,lik X v i;

then

(61)

(62)

(63)

The first two of these rules for differentiation are obvious, since by fixing the indices they
merely state the ordinary rules for differentiating constants and sums. The third, which is the
analogue of the Leibnitz rule for differentiating a product, requires proof. Starting with the
definition of a derivative we have:

!!- AI! i = Iim _1_ [A ~1(t + d t) - AI~ ~ ( t) ]
dt J k L\ t~O ~ t } J k

1 h . J
= lim - [ ( fl j k(t) + ~ JlJ£(t) I x (v J/? £(t) + ~ v J~ £(t)} - J,l }J! £(t) X V J~ £(t) ]

L\,~o ~ t
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where~~J£(t) = J.17I(t + ~t) - J.1jl(t)andsimilarlyfor~vjl(t). Now the first cross
product may be multiplied out by our distributive law (Theorem VIII) giving

[

A hi() A hi() A hi()]. ' UY'k t ,LlJl·J;. t ,uV'k t
IIm Il J! ~ ( t) X J + V I! ~ ( t ) J + ~ J.l ~ '. (t) X J .
~ 1-+0 J k L\ t J k L\ t J k L\ t

The third tenn in general tends to zero with L\ t so that our limit is

II J~ 1. .!!..- Y II! f + V I! i d II Ii i
f"4 f\ dt ," .I k dt r- j k ,

the desired result.

For a population A.71 intennating at random this reduces to

d v h i v h i -2'\l1i d v h i
dt (I\. j k X I\. j 1.:) - I\. j k X dt I\. j k

A population whose components are analytic functions of time may be expanded in a
Tay lor series

I ' h ' d I' d 2
I' t

2

AJ!l-(t) = A/,l-(O) + - AJ!l·l/=o· t + -2 A,!II,=o - + "',
'dt elt· 2

for by fixing the indices we are again merely stating the standard Taylor theorem.
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Notes to Part C

[3] An Algebra for Theoretical Genetics

Since this dissertation is not mentioned in J. Felsenstein's Bibliography of Theoretical
Population Genetics (Dowden, Hutchinson & Ross, Stroudsberg, Penn., 1981), we wrote to
several experts in population genetics, asking if they were aware of this thesis, and if the results
were known to them.

Prof. James F. Crow (University of Wisconsin), replied that

"as far as I know, the thesis is entirely unknown to contemporary population
geneticists. It seems to have been written in complete isolation from the population
genetics community. It is clearly the work of a creative and original mind.

"Curiously, there were two other theses that were written at about the same time
and which were also almost entirely ignored at the time. One was by
C. W. Cotterman in 1940 (Ohio State University). The other was by G. Malecot in
1939 (University of Paris). Both workers, especially Malecot, have had a great, but
belated, influence on modem population genetics. Shannon has likewise discovered
principles that were rediscovered later.

441t was already shown by Robbins in 1918 (in papers known to Shannon) that a
randomly mating population approaches two-locus chromosomal equilibrium
asymptotically. Equation (8) is an extension to mating between populations. If the
two populations are identical, so that this is equivalent to random mating within a
population, then the unnumbered equation at the foot of the page applies. If this is
regarded as a recurrence equation, it is essentially the same as the equation given (I
think, later) by Malecot, Equation (11) was new at the time. The three-locus
problem was first solved by Hilda Geiringer (Ann. Math. Stat. 16: 390-393, 1945)
and more generally and elegantly by J. H. Bennett (Ann. Eugen. 18: 311-317,1954).

"Shannon's formula on page 18, relating recombination to map distance, with its
consequence that in the absence of interference recombination cannot exceed 500/0,
was not new at the time, having been discovered by Haldane in 1919. This is
something that was known to many geneticists, and is further evidence for Shannon's
isolation. The treatment of stable and unstable equilibria in Section 5 may have been
new at the time. The results are well known now, including Theorem XIV, but I
don't know what was known in 1940.

441n 1940 population genetics was dominated by Wright, Fisher, and Haldane,
who didn't approach the subject with the precise definitions and clarity that now
characterize it. Shannon joins Cotterman, and especially Malecot in treating the
subject in the modem manner. For a thesis it seems most remarkable. My regret is
that the work of all three did not become widely known in 1940. It would have
changed the history of the subject substantially, I think."

Prof. Thomas Nagylaki (University of Chicago), comments that

Hthis dissertation is in the spirit of Cotterman's, but the latter's is far more
penetrating and important, and presents many more applications. Malecot's has all
the qualities of Cotterman's and is also mathematically powerful. .. Everything in the
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thesis is known now, though some things were new in 1940.

C. E. Shannon

Page 8: The exchange of upper and lower indices for unlinked loci (see the
unnumbered display and the discussion above it) is dangerous. The coupling and
repulsion phases do have the same gametic output, but the symmetry in this display is
not preserved by reproduction. I would use only invariant symmetries, though one
might be able to employ this with suitable modifications. But this is not used later in
any essential way, so there are no consequent errors.

"Equations (8) and (11) are single-generation transitions. The former generalized
Robbins (1918) to multiple alleles and the crossing of two populations; the latter was
new. By taking A. = fl, we obtain recursions for random mating within a single
population; the solutions of (8) and (11) in this case are Theorems XI and XII,
respectively. Theorem XI generalized Robbins to multiple alleles; Theorem XII was
new. See Dr. Crow's references.

"Pages 27-28. Both Theorem XIV and its proof contain two distinct conceptual
errors. From the 'proof' it is obvious that Shannon means that (54) holds for every h
and every s "* h. In fact, the correct theorem is that (i) the inequality is not strict and
(ii) the inequality holds for every h for some s "* h (i.e., for every h, there exists at
least one s such that s =F- h and the inequality holds). This is not a minor point: there
are counterexamples to (54) as stated. The difficulty arises in the analysis of the
linearized perturbation equation at the top of page 28. First, Shannon assumes that
the deviation of each component of a multidimensional system from a stable
equilibrium is reduced monotonically in absolute value. In fact, this is true in one
dimension, but holds only asymptotically (when the maximal eigenvalue dominates)
in more than one. It is easy to write down a two-dimensional counterexample.
Second, there is no justification for using strict inequalities. The case of equality
depends on the quadratic terms, and without their analysis nothing can be asserted.

Page 28: The claim in the last paragraph of Section 5 was new and correct, though
Shannon's argument does not exclude equality. (Here, this is trivial because with
equality there is no selection.)"

We are very grateful to Professors Crow and Nagylaki for their comments.
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